1
|
Chen J, Dang YM, Liu MC, Gao L, Guan T, Hu A, Xiong L, Lin H. AMPK induces PIAS3 mediated SUMOylation of E3 ubiquitin ligase Smurf1 impairing osteogenic differentiation and traumatic heterotopic ossification. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119771. [PMID: 38844181 DOI: 10.1016/j.bbamcr.2024.119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
AMP-activated protein kinase (AMPK) is a typical sensor of intracellular energy metabolism. Our previous study revealed the role of activated AMPK in the suppression of osteogenic differentiation and traumatic heterotopic ossification, but the underlying mechanism remains poorly understood. The E3 ubiquitin ligase Smurf1 is a crucial regulator of osteogenic differentiation and bone formation. We report here that Smurf1 is primarily SUMOylated at a C-terminal lysine residue (K324), which enhances its activity, facilitating ALK2 proteolysis and subsequent bone morphogenetic protein (BMP) signaling pathway inhibition. Furthermore, SUMOylation of the SUMO E3 ligase PIAS3 and Smurf1 SUMOylation was suppressed during the osteogenic differentiation and traumatic heterotopic ossification. More importantly, we found that AMPK activation enhances the SUMOylation of Smurf1, which is mediated by PIAS3 and increases the association between PIAS3 and AMPK. Overall, our study revealed that Smurf1 can be SUMOylated by PIAS3, Furthermore, Smurf1 SUMOylation mediates osteogenic differentiation and traumatic heterotopic ossification through suppression of the BMP signaling pathway. This study revealed that promotion of Smurf1 SUMOylation by AMPK activation may be implicated in traumatic heterotopic ossification treatment.
Collapse
Affiliation(s)
- Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Linqing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Guan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Anxin Hu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Shiyovich A, Berman AN, Besser SA, Biery DW, Kaur G, Divakaran S, Singh A, Huck DM, Weber B, Plutzky J, Di Carli MF, Nasir K, Cannon C, Januzzi JL, Bhatt DL, Blankstein R. Association of Lipoprotein (a) and Standard Modifiable Cardiovascular Risk Factors With Incident Myocardial Infarction: The Mass General Brigham Lp(a) Registry. J Am Heart Assoc 2024; 13:e034493. [PMID: 38761082 PMCID: PMC11179826 DOI: 10.1161/jaha.123.034493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a robust predictor of coronary heart disease outcomes, with targeted therapies currently under investigation. We aimed to evaluate the association of high Lp(a) with standard modifiable risk factors (SMuRFs) for incident first acute myocardial infarction (AMI). METHODS AND RESULTS This retrospective study used the Mass General Brigham Lp(a) Registry, which included patients aged ≥18 years with an Lp(a) measurement between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasm, and prior known atherosclerotic cardiovascular disease. Diabetes, dyslipidemia, hypertension, and smoking were considered SMuRFs. High Lp(a) was defined as >90th percentile, and low Lp(a) was defined as <50th percentile. The primary outcome was fatal or nonfatal AMI. A combination of natural language processing algorithms, International Classification of Diseases (ICD) codes, and laboratory data was used to identify the outcome and covariates. A total of 6238 patients met the eligibility criteria. The median age was 54 (interquartile range, 43-65) years, and 45% were women. Overall, 23.7% had no SMuRFs, and 17.8% had ≥3 SMuRFs. Over a median follow-up of 8.8 (interquartile range, 4.2-12.8) years, the incidence of AMI increased gradually, with higher number of SMuRFs among patients with high (log-rank P=0.031) and low Lp(a) (log-rank P<0.001). Across all SMuRF subgroups, the incidence of AMI was significantly higher for patients with high Lp(a) versus low Lp(a). The risk of high Lp(a) was similar to having 2 SMuRFs. Following adjustment for confounders and number of SMuRFs, high Lp(a) remained significantly associated with the primary outcome (hazard ratio, 2.9 [95% CI, 2.0-4.3]; P<0.001). CONCLUSIONS Among patients with no prior atherosclerotic cardiovascular disease, high Lp(a) is associated with significantly higher risk for first AMI regardless of the number of SMuRFs.
Collapse
Affiliation(s)
- Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Adam N. Berman
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Stephanie A. Besser
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - David W. Biery
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Gurleen Kaur
- Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Sanjay Divakaran
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Avinainder Singh
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Daniel M. Huck
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Marcelo F. Di Carli
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiovascular MedicineHouston Methodist DeBakey Heart and Vascular CenterHoustonTX
| | - Christopher Cannon
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - James L. Januzzi
- Cardiology DivisionMassachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical ResearchBostonMA
| | - Deepak L. Bhatt
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Mount Sinai HeartIcahn School of Medicine at Mount Sinai Health SystemNew YorkNY
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| |
Collapse
|
5
|
Hong YK, Lin YC, Cheng TL, Lai CH, Chang YH, Huang YL, Hung CY, Wu CH, Hung KS, Ku YC, Ho YT, Tang MJ, Lin SW, Shi GY, McGrath JA, Wu HL, Hsu CK. TEM1/endosialin/CD248 promotes pathologic scarring and TGF-β activity through its receptor stability in dermal fibroblasts. J Biomed Sci 2024; 31:12. [PMID: 38254097 PMCID: PMC10804696 DOI: 10.1186/s12929-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-β-mediated responses in pathologic scars. RESULTS The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-β1 signaling through binding with and stabilizing TGF-β receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-β signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lun Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Han Wu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Shu Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chu Ku
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Ho
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hua-Lin Wu
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
7
|
Wan R, Wang L, Duan Y, Zhu M, Li W, Zhao M, Yuan H, Xu K, Li Z, Zhang X, Yu G. ADRB2 inhibition combined with antioxidant treatment alleviates lung fibrosis by attenuating TGFβ/SMAD signaling in lung fibroblasts. Cell Death Discov 2023; 9:407. [PMID: 37923730 PMCID: PMC10624856 DOI: 10.1038/s41420-023-01702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal interstitial lung disease with a poor prognosis and limited therapeutic options, which is characterized by aberrant myofibroblast activation and pathological remodeling of the extracellular matrix, while the mechanism remains elusive. In the present investigation, we observed a reduction in ADRB2 expression within both IPF and bleomycin-induced fibrotic lung samples, as well as in fibroblasts treated with TGF-β1. ADRB2 inhibition blunted bleomycin-induced lung fibrosis. Blockage of the ADRB2 suppressed proliferation, migration, and invasion and attenuated TGF-β1-induced fibroblast activation. Conversely, the enhancement of ADRB2 expression or functionality proved capable of inducing fibroblast-to-myofibroblast differentiation. Subsequent mechanistic investigation revealed that inhibition of ADRB2 suppressed the activation of SMAD2/3 in lung fibroblasts and increased phos-SMAD2/3 proteasome degradation, and vice versa. Finally, ADRB2 inhibition combined with antioxidants showed increased efficacy in the therapy of bleomycin-induced lung fibrosis. In short, these data indicate that ADRB2 is involved in lung fibroblast differentiation, and targeting ADRB2 could emerge as a promising and innovative therapeutic approach for pulmonary fibrosis.
Collapse
Grants
- This work was supported by Ministry of Science and Technology, PR China, 2019YFE0119500, State Innovation Base for Pulmonary Fibrosis (111 Project), and Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
- This work was supported by Henan Project of Science and Technology, 212102310894, 222102310711, 232102310067, and 232102521025, Xinxiang Major Project 21ZD002.
Collapse
Affiliation(s)
- Ruyan Wan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yudi Duan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Zhu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wenwen Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengxia Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongmei Yuan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao Zhang
- Zhengzhou 101 Middle School, Zhengzhou, Henan, 450000, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
8
|
Shiyovich A, Berman AN, Besser SA, Biery DW, Huck DM, Weber B, Cannon C, Januzzi JL, Booth JN, Nasir K, Di Carli MF, López JAG, Kent ST, Bhatt DL, Blankstein R. Cardiovascular outcomes in patients with coronary artery disease and elevated lipoprotein(a): implications for the OCEAN(a)-outcomes trial population. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead077. [PMID: 37641636 PMCID: PMC10460541 DOI: 10.1093/ehjopen/oead077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Aims The ongoing Olpasiran Trials of Cardiovascular Events and Lipoprotein(a) Reduction [OCEAN(a)]-Outcomes trial is evaluating whether Lp(a) lowering can reduce the incidence of cardiovascular events among patients with prior myocardial infarction (MI) or percutaneous coronary intervention (PCI) and elevated Lp(a) (≥200 nmol/L). The purpose of this study is to evaluate the association of elevated Lp(a) with cardiovascular outcomes in an observational cohort resembling the OCEAN(a)-Outcomes trial main enrolment criteria. Methods and results This study included patients aged 18-85 years with Lp(a) measured as part of their clinical care between 2000 and 2019. While patients were required to have a history of MI, or PCI, those with severe kidney dysfunction or a malignant neoplasm were excluded. Elevated Lp(a) was defined as ≥200 nmol/L consistent with the OCEAN(a)-Outcomes trial. The primary outcome was a composite of coronary heart disease death, MI, or coronary revascularization. Natural language processing algorithms, billing and ICD codes, and laboratory data were employed to identify outcomes and covariates. A total of 3142 patients met the eligibility criteria, the median age was 61 (IQR: 52-73) years, 28.6% were women, and 12.3% had elevated Lp(a). Over a median follow-up of 12.2 years (IQR: 6.2-14.3), the primary composite outcome occurred more frequently in patients with versus without elevated Lp(a) [46.0 vs. 38.0%, unadjHR = 1.30 (95% CI: 1.09-1.53), P = 0.003]. Following adjustment for measured confounders, elevated Lp(a) remained independently associated with the primary outcome [adjHR = 1.33 (95% CI: 1.12-1.58), P = 0.001]. Conclusion In an observational cohort resembling the main OCEAN(a)-Outcomes Trial enrolment criteria, patients with an Lp(a) ≥200 nmol/L had a higher risk of cardiovascular outcomes.
Collapse
Affiliation(s)
- Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam N Berman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Besser
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David W Biery
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel M Huck
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Cannon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, and Baim Institute for Clinical Research, Boston, MA 02115, USA
| | - John N Booth
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Khurram Nasir
- Department of Cardiovascular Medicine, Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX 77030, USA
| | - Marcelo F Di Carli
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shia T Kent
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Deepak L Bhatt
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY 10029, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Shin J, Piao Y, Bang D, Kim S, Jo K. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer. Int J Mol Sci 2022; 23:13919. [PMID: 36430395 PMCID: PMC9699175 DOI: 10.3390/ijms232213919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Some of the recent studies on drug sensitivity prediction have applied graph neural networks to leverage prior knowledge on the drug structure or gene network, and other studies have focused on the interpretability of the model to delineate the mechanism governing the drug response. However, it is crucial to make a prediction model that is both knowledge-guided and interpretable, so that the prediction accuracy is improved and practical use of the model can be enhanced. We propose an interpretable model called DRPreter (drug response predictor and interpreter) that predicts the anticancer drug response. DRPreter learns cell line and drug information with graph neural networks; the cell-line graph is further divided into multiple subgraphs with domain knowledge on biological pathways. A type-aware transformer in DRPreter helps detect relationships between pathways and a drug, highlighting important pathways that are involved in the drug response. Extensive experiments on the GDSC (Genomics of Drug Sensitivity and Cancer) dataset demonstrate that the proposed method outperforms state-of-the-art graph-based models for drug response prediction. In addition, DRPreter detected putative key genes and pathways for specific drug-cell-line pairs with supporting evidence in the literature, implying that our model can help interpret the mechanism of action of the drug.
Collapse
Affiliation(s)
- Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
10
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
11
|
Trelford CB, Di Guglielmo GM. Autophagy regulates transforming growth factor β signaling and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119284. [PMID: 35605790 DOI: 10.1016/j.bbamcr.2022.119284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGFβ) stimulates tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and cell migration. TGFβ signaling is regulated by the endocytosis of cell surface receptors and their subcellular trafficking into the endo-lysosomal system. Here we investigated how autophagy, a cellular quality control network that delivers material to lysosomes, regulates TGFβ signaling pathways that induce EMT and cell migration. We impaired autophagy in non-small cell lung cancer cells using chloroquine, spautin-1, ULK-101, or small interfering RNA (siRNA) targeting autophagy-related gene (ATG)5 and ATG7 and observed that inhibiting autophagy results in a decrease in TGFβ1-dependent EMT transcription factor and cell marker expression, as well as attenuated stress fiber formation and cell migration. This correlated with decreased internalization of cell surface TGFβ receptors and their trafficking to early/late endosomal and lysosomal compartments. The effects of autophagy inhibition on TGFβ signaling were investigated by Smad2/Smad3 phosphorylation and cellular localization using western blotting, subcellular fractionation, and immunofluorescence microscopy. We observed that inhibiting autophagy decreased the amount and timeframe of Smad2/Smad3 signaling. Taken together, our results suggest that inhibiting autophagy attenuates pro-tumorigenic TGFβ signaling by regulating receptor trafficking, resulting in impaired Smad2/Smad3 phosphorylation and nuclear accumulation.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Gianni M Di Guglielmo
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
12
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
13
|
Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad. Biomed Pharmacother 2022; 149:112931. [PMID: 36068784 DOI: 10.1016/j.biopha.2022.112931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
The genesis and development of renal fibrosis involve a variety of pathways closely related to inflammation, cytokines, oxidative stress and metabolic abnormalities. Renal fibrosis is the result of a complex combination of a variety of lesions. Epithelial-mesenchymal transdifferentiation (EMT) of renal tubular epithelial cells is considered the key to renal fibrosis. Losartan is a typical Angiotensin II (ANG II) receptor antagonist and relaxes blood vessels. In this study, we investigated the effects of losartan on Unilateral Ureteral Obstruction (UUO) model mice by studying the changes in the TGF-β/Smad and metabolomics. Male C57BL/6 J mice were intervened with the UUO model and given losartan (10, 20, 30 mg/kg/d) for 28 consecutive days. The results showed that losartan could reduce UUO-induced abnormal serum metabolic spectrum and renal function. It could also improve renal tubular-interstitial injury and fibrosis by reducing tubulointerstitial dilation and collagen deposition. In addition, losartan promoted the expression of Smurf2 and Smurf1, i.e., Smad7 and E3 ubiquitin-linked enzymes, in the nucleus to degrade the type I receptor of TGF-β1 (TβR-I) and P-Smad2/3 to inhibit renal tubular epithelial cells EMT. In summary, these findings indicated that losartan could regulate the TGF-β/Smad and metabolic pathway in UUO model mice through ubiquitination to reduce renal fibrosis.
Collapse
|
14
|
Kyrodimos E, Chrysovergis A, Mastronikolis N, Tsiambas E, Manaios L, Roukas D, Pantos P, Ragos V, Peschos D, Papanikolaou V. Impact of Ubiquitination Signaling Pathway Modifications on Oral Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:1-6. [PMID: 35399999 DOI: 10.21873/cdp.10069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Among intra-cellular homeostasis mechanisms, ubiquitination plays a critical role in protein metabolism regulation by degrading proteins via activating a broad spectrum of ubiquitin chains. In fact, ubiquitination and sumoylation signaling pathways are characterized by increased complexity regarding the molecules and their interactions. The Ubiquitin-Proteasome System (Ub-PS) recognizes and targets a broad spectrum of protein substrates. Ubiquitin conjugation modifies each substrate protein determining its biochemical fate (degradation). A major functional activity of Ub-PS is autophagy mechanism regulation. Interestingly, Ub-PS promotes all stages of bulk autophagy (initiation, execution, and termination). Autophagy is a crucial catabolic process that provides protein degradation and for this reason the interaction with Ub-PS is crucial. Furthermore, ubiquitination controls and regulates specific types of protein targets. Ub-PS is also involved in oxidative cellular stress and DNA damage response. Additionally, the functional role of Ub-PS in ribosome machinery regulation seems to be crucial. Concerning carcinogenesis, Ub-PS is involved in malignant disease development and progression by negatively affecting the corresponding TGF-B-, MEEK/MAPK/ERK-JNK- dependent signaling pathways. In the current review article, we describe the role of Ub-PS biochemical modifications and alterations in oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
- Efthimios Kyrodimos
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | - Aristeidis Chrysovergis
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | | | - Evangelos Tsiambas
- Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens, Greece.,Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Pavlos Pantos
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios Papanikolaou
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| |
Collapse
|
15
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
16
|
Wang X, Liu T, Huang Y, Dai Y, Lin H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open Biol 2021; 11:210043. [PMID: 34753319 PMCID: PMC8580444 DOI: 10.1098/rsob.210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial-mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.
Collapse
Affiliation(s)
- Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Ting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifeng Dai
- Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
17
|
Cao Y, Yang Z, Chen Y, Jiang S, Wu Z, Ding B, Yang Y, Jin Z, Tang H. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9:630401. [PMID: 34124032 PMCID: PMC8193943 DOI: 10.3389/fcell.2021.630401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN), a common diabetic microvascular complication, is characterized by its complex pathogenesis, higher risk of mortality, and the lack of effective diagnosis and treatment methods. Many studies focus on the diagnosis and treatment of diabetes mellitus (DM) and have reported that the pathophysiology of DN is very complex, involving many molecules and abnormal cellular activities. Given the respective pivotal roles of NF-κB, Nrf2, and TGF-β in inflammation, oxidative stress, and fibrosis during DN, we first review the effect of posttranslational modifications on these vital molecules in DN. Then, we describe the relationship between these molecules and related abnormal cellular activities in DN. Finally, we discuss some potential directions for DN treatment and diagnosis. The information reviewed here may be significant in the design of further studies to identify valuable therapeutic targets for DN.
Collapse
Affiliation(s)
- Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Zhao Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Trelford CB, Ng E, Campbell CI, Di Guglielmo GM. p62/Sequestosome 1 regulates transforming growth factor beta signaling and epithelial to mesenchymal transition in A549 cells. Cell Signal 2021; 85:110040. [PMID: 34000385 DOI: 10.1016/j.cellsig.2021.110040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023]
Abstract
Transforming growth factor beta (TGFβ) receptor trafficking regulates many TGFβ-dependent cellular outcomes including epithelial to mesenchymal transition (EMT). EMT in A549 non-small cell lung cancer (NSCLC) cells has recently been linked to the regulation of cellular autophagy. Here, we investigated the role of the autophagy cargo receptor, p62/sequestosome 1 (SQSTM1), in regulating TGFβ receptor trafficking, TGFβ1-dependent Smad2 phosphorylation and EMT in A549 NSCLC cells. Using immunofluorescence microscopy, p62/SQSTM1 was observed to co-localize with TGFβ receptors in the late endosome. Small interfering RNA (SiRNA)-mediated silencing of p62/SQSTM1 resulted in an attenuated time-course of Smad2 phosphorylation but did not alter Smad2 nuclear translocation. However, p62/SQSTM1 silencing promoted TGFβ1-dependent EMT marker expression, actin stress fiber formation and A549 cell migration. We further observed that Smad4-independent TGFβ1 signaling decreased p62/SQSTM1 protein levels via a proteasome-dependent mechanism. Although p62/SQSTM1 silencing did not impede TGFβ-dependent autophagy, our results suggest that p62/SQSTM1 may aid in maintaining A549 cells in an epithelial state and TGFβ1 decreases p62/SQSTM1 prior to inducing EMT and autophagy.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Evelyn Ng
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Craig I Campbell
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada
| | - Gianni M Di Guglielmo
- Schulich School of Medicine and Dentistry, Western University, Department of Physiology and Pharmacology, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
19
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
20
|
Nam B, Park H, Lee YL, Oh Y, Park J, Kim SY, Weon S, Choi SH, Yang JH, Jo S, Kim TH. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci 2020; 21:ijms21249771. [PMID: 33371439 PMCID: PMC7767413 DOI: 10.3390/ijms21249771] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β1 (TGFβ1) is a major mediator in the modulation of osteoblast differentiation. However, the underlying molecular mechanism is still not fully understood. Here, we show that TGFβ1 has a dual stage-dependent role in osteoblast differentiation; TGFβ1 induced matrix maturation but inhibited matrix mineralization. We discovered the underlying mechanism of the TGFβ1 inhibitory role in mineralization using human osteoprogenitors. In particular, the matrix mineralization-related genes of osteoblasts such as osteocalcin (OCN), Dickkopf 1 (DKK1), and CCAAT/enhancer-binding protein beta (C/EBPβ) were dramatically suppressed by TGFβ1 treatment. The suppressive effects of TGFβ1 were reversed with anti-TGFβ1 treatment. Mechanically, TGFβ1 decreased protein levels of C/EBPβ without changing mRNA levels and reduced both mRNA and protein levels of DKK1. The degradation of the C/EBPβ protein by TGFβ1 was dependent on the ubiquitin–proteasome pathway. TGFβ1 degraded the C/EBPβ protein by inducing the expression of the E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (SMURF1) at the transcript level, thereby reducing the C/EBPβ-DKK1 regulatory mechanism. Collectively, our findings suggest that TGFβ1 suppressed the matrix mineralization of osteoblast differentiation by regulating the SMURF1-C/EBPβ-DKK1 axis.
Collapse
Affiliation(s)
- Bora Nam
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hyosun Park
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Young Lim Lee
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
| | - Younseo Oh
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
| | - Jinsung Park
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Yeon Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Subin Weon
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Jae-Hyuk Yang
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Correspondence: (S.J.); (T.-H.K.); Tel.: +82-2-2290-9248 (S.J.); +82-2-2290-9245 (T.-H.K.); Fax: +82-2-2298-8231 (S.J. & T.-H.K.)
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (B.N.); (H.P.); (Y.L.L.); (Y.O.); (J.P.); (S.Y.K.); (S.W.)
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Correspondence: (S.J.); (T.-H.K.); Tel.: +82-2-2290-9248 (S.J.); +82-2-2290-9245 (T.-H.K.); Fax: +82-2-2298-8231 (S.J. & T.-H.K.)
| |
Collapse
|
21
|
Louzada RA, Corre R, Ameziane El Hassani R, Meziani L, Jaillet M, Cazes A, Crestani B, Deutsch E, Dupuy C. NADPH oxidase DUOX1 sustains TGF-β1 signalling and promotes lung fibrosis. Eur Respir J 2020; 57:13993003.01949-2019. [DOI: 10.1183/13993003.01949-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/22/2020] [Indexed: 01/20/2023]
Abstract
Interstitial lung fibroblast activation coupled with extracellular matrix production is a pathological signature of pulmonary fibrosis, and is governed by transforming growth factor (TGF)-β1/Smad signalling. TGF-β1 and oxidative stress cooperate to drive fibrosis. Cells can produce reactive oxygen species through activation and/or induction of NADPH oxidases, such as dual oxidase (DUOX1/2). Since DUOX enzymes, as extracellular hydrogen peroxide (H2O2)-generating systems, are involved in extracellular matrix formation and in wound healing in different experimental models, we hypothesised that DUOX-based NADPH oxidase plays a role in the pathophysiology of pulmonary fibrosis.Our in vivo data (idiopathic pulmonary fibrosis patients and mouse models of lung fibrosis) showed that the NADPH oxidase DUOX1 is induced in response to lung injury. DUOX1-deficient mice (DUOX1+/− and DUOX1−/−) had an attenuated fibrotic phenotype. In addition to being highly expressed at the epithelial surface of airways, DUOX1 appears to be well expressed in the fibroblastic foci of remodelled lungs. By using primary human and mouse lung fibroblasts, we showed that TGF-β1 upregulates DUOX1 and its maturation factor DUOXA1 and that DUOX1-derived H2O2 promoted the duration of TGF-β1-activated Smad3 phosphorylation by preventing phospho-Smad3 degradation. Analysis of the mechanism revealed that DUOX1 inhibited the interaction between phospho-Smad3 and the ubiquitin ligase NEDD4L, preventing NEDD4L-mediated ubiquitination of phospho-Smad3 and its targeting for degradation.These findings highlight a role for DUOX1-derived H2O2 in a positive feedback that amplifies the signalling output of the TGF-β1 pathway and identify DUOX1 as a new therapeutic target in pulmonary fibrosis.
Collapse
|
22
|
RAC1B Induces SMAD7 via USP26 to Suppress TGFβ1-Dependent Cell Migration in Mesenchymal-Subtype Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12061545. [PMID: 32545415 PMCID: PMC7352540 DOI: 10.3390/cancers12061545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
The small GTPase RAC1B has been shown to act as a powerful inhibitor of the transforming growth factor (TGF)β type I receptor ALK5 and TGFβ1/ALK5-induced epithelial–mesenchymal transition and cell motility. However, the precise mechanism has remained elusive. RNAi-mediated knockdown of RAC1B in the pancreatic ductal adenocarcinoma (PDAC)-derived cell line Panc1 failed to alter transcriptional activity from a transfected ALK5 promoter–reporter construct. In contrast, pharmacological inhibition of the proteasome decreased the abundance of ALK5 protein in cell lines of the mesenchymal subtype (Panc1, IMIM-PC-1, and breast cancer MDA-MB-231), but not in a PDAC cell line of the epithelial subtype (Colo357). Here, we focused on the inhibitory Smad protein, SMAD7, as a potential candidate for RAC1B-mediated inhibition of cell migration. In Panc1 cells devoid of RAC1B, SMAD7 protein was dramatically reduced and these cells were refractory to TGFβ1-induced upregulation of SMAD7 protein but not mRNA expression. Intriguingly, RNAi-mediated knockdown or ectopic overexpression of SMAD7 in Panc1 cells up- or downregulated, respectively, ALK5 protein expression and mimicked the suppressive effect of RAC1B on TGFβ/SMAD3-dependent transcriptional activity, target gene expression and cell migration. Transfection of SMAD7 was further able to partially rescue cells from the RAC1B knockdown-mediated increase in migratory properties. Conversely, knockdown of SMAD7 was able to partially rescue Panc1 and MDA-MB-231 cells from the antimigratory effect of ectopically expressed RAC1B. Finally, we demonstrate that RAC1B upregulation of SMAD7 protein requires intermittent transcriptional induction of the deubiquitinating enzyme USP26. Our data suggest that RAC1B induces SMAD7 by promoting its deubiquitination and establishes this Smad as one of RAC1B’s downstream effectors in negative regulation of ALK5 and TGFβ1-induced cell migration in mesenchymal-type carcinoma cells.
Collapse
|
23
|
do Patrocinio AB, Cabral FJ, Bitencourt ALB, Brigato OM, Magalhães LG, de Lima Paula LA, Franco L, Guerra-Sá and R, Rodrigues V. Inhibition of 19S proteasome deubiquitinating activity in Schistosoma mansoni affects viability, oviposition, and structural changes. Parasitol Res 2020; 119:2159-2176. [DOI: 10.1007/s00436-020-06686-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/07/2020] [Indexed: 01/21/2023]
|
24
|
Huang Y, Wang Y, Wang X, Lin L, Wang P, Sun J, Jiang L. The Effects of the Transforming Growth Factor-β1 (TGF-β1) Signaling Pathway on Cell Proliferation and Cell Migration are Mediated by Ubiquitin Specific Protease 4 (USP4) in Hypertrophic Scar Tissue and Primary Fibroblast Cultures. Med Sci Monit 2020; 26:e920736. [PMID: 32308208 PMCID: PMC7191961 DOI: 10.12659/msm.920736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypertrophic scar results from an abnormal repair response to trauma in the skin and involves fibroblasts proliferation with increased collagen deposition. Transforming growth factor-ß1 (TGF-ß1) and TGF-ß receptor type I (TGF-ßR1) are involved in tissue repair and are increased by ubiquitin-specific protease 4 (USP4). This study aimed to investigate the effects of TGF-ßR1 and USP4 in human tissue samples of hypertrophic scar and on cell proliferation and cell migration in primary fibroblast cultures in vitro. MATERIAL AND METHODS Skin excision tissue samples with adjacent normal skin were obtained from 15 patients with hypertrophic scar, which provided tissue sections and primary fibroblast culture for analysis. Immunohistochemistry detected the expression of USP4 and TGF-ßR1 in tissue sections. MicroRNA (miRNAs) expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to measure protein expression levels. Cultured skin fibroblasts were investigated using immunofluorescence staining. Fibroblast proliferation, apoptosis, and migration were measured with the Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and a wound-healing assay, respectively. RESULTS The expression of USP4 and TGF-ßR1 in hypertrophic scar were increased compared with normal skin. Fibroblasts cultured from hypertrophic scar tissue showed increased expression of of USP4 and TGF-ßR1. Fibroblast transfection with USP4 short-interfering RNA (siRNA) resulted in reduced fibroblast proliferation and migration, and increased apoptosis. Downregulation of USP4 inhibited the expression of TGF-ßR1 protein and increased the expression levels of Smad7 protein. CONCLUSIONS USP4 regulated the proliferation, migration, and apoptosis of hypertrophic scar fibroblasts by regulating the TGF-ß1 signaling pathway.
Collapse
Affiliation(s)
- Yong Huang
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Yuting Wang
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Xueming Wang
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Lixin Lin
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Peng Wang
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Junjun Sun
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Lei Jiang
- Department of Plastic and Aesthetic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
25
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
26
|
Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells 2019; 8:cells8091082. [PMID: 31540324 PMCID: PMC6769930 DOI: 10.3390/cells8091082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Juan Casado-Vela
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain;
| | | | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain;
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Correspondence: (M.Q.); (C.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
- Correspondence: (M.Q.); (C.B.)
| |
Collapse
|
27
|
Bhatti MZ, Pan L, Wang T, Shi P, Li L. REGγ potentiates TGF-β/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 2019; 64:109412. [PMID: 31491459 DOI: 10.1016/j.cellsig.2019.109412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common endocrine cancer with an increasing incidence and mortality. Epithelial-mesenchymal transition (EMT) is a biological process contributing to tumor progression, metastasis, and the acquisition of chemotherapy resistance. The impact of the REGγ proteasome activator on EMT in human thyroid cancer cells and the molecular mechanism is still unclear. Here, we found silencing REGγ in thyroid cancer cells inhibited cell migration and invasion, with concurrent upregulation of E-cadherin and Smurf2 expression. Mechanistically, REGγ dependent regulation of Smurf2, an E3 ligase for Smad3, contributed to alteration of Zeb1/2, Snail, Slug, and Twist. Consistently, TGF-β mediated suppression of E-cadherin was attenuated in REGγ deficient cells, coupled with changes in cell morphology, migration and invasion. Furthermore, xenograft metastasis mouse model showed a reduced E-cadherin expression at both mRNA and protein levels, and decreased cell migration. Taken together, our findings provided an important evidence for the role of REGγ in tumor suppression, thereby implicating REGγ as a potential anti-cancer strategy in thyroid cancer therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Tianzhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
28
|
Fang Z, Zhu Z, Zhang H, Peng Y, Liu J, Lu H, Li J, Liang L, Xia S, Wang Q, Fu B, Wu K, Zhang L, Ginzburg Y, Liu J, Chen H. GDF11 contributes to hepatic hepcidin (HAMP) inhibition through SMURF1-mediated BMP-SMAD signalling suppression. Br J Haematol 2019; 188:321-331. [PMID: 31418854 DOI: 10.1111/bjh.16156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of β-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and β-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.
Collapse
Affiliation(s)
- Zheng Fang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Zesen Zhu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Haihang Zhang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jin Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Hongyu Lu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jiang Li
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Long Liang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Shenghua Xia
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Qiguang Wang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Bin Fu
- Department of Haematology, Central South University Xiangya Hospital, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Centre of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yelena Ginzburg
- Division of Haematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Huiyong Chen
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
29
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
30
|
Bone Metastasis Phenotype and Growth Undergo Regulation by Micro-Environment Stimuli: Efficacy of Early Therapy with HGF or TGFβ1-Type I Receptor Blockade. Int J Mol Sci 2019; 20:ijms20102520. [PMID: 31121879 PMCID: PMC6567054 DOI: 10.3390/ijms20102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) and transforming growth factor β1 (TGFβ1) are biological stimuli of the micro-environment which affect bone metastasis phenotype through transcription factors, but their influence on the growth is scarcely known. In a xenograft model prepared with 1833 bone metastatic cells, derived from breast carcinoma cells, we evaluated mice survival and Twist and Snail expression and localization after competitive inhibition of HGF with NK4, or after blockade of TGFβ1-type I receptor (RI) with SB431542: in the latter condition HGF was also measured. To explain the in vivo data, in 1833 cells treated with SB431542 plus TGFβ1 we measured HGF formation and the transduction pathway involved. Altogether, HGF seemed relevant for bone-metastatic growth, being hampered by NK4 treatment, which decreased Twist more than Snail in the metastasis bulk. TGFβ1-RI blockade enhanced HGF in metastasis and adjacent bone marrow, while reducing prevalently Snail expression at the front and bulk of bone metastasis. The HGF accumulation in 1833 cells depended on an auxiliary signaling pathway, triggered by TGFβ1 under SB431542, which interfered in the transcription of HGF activator inhibitor type 1 (HAI-1) downstream of TGFβ-activated kinase 1 (TAK1): HGF stimulated Twist transactivation. In conclusion, the impairment of initial outgrowth with NK4 seemed therapeutically promising more than SB431542 chemotherapy; a functional correlation between Twist and Snail in bone metastasis seemed to be influenced by the biological stimuli of the micro-environment, and the targeting of these phenotype biomarkers might inhibit metastasis plasticity and colonization, even if it would be necessary to consider the changes of HGF levels in bone metastases undergoing TGFβ1-RI blockade.
Collapse
|
31
|
Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 2019; 38:5396-5412. [PMID: 30923343 PMCID: PMC6609469 DOI: 10.1038/s41388-019-0796-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival and migration; however its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-β). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-β-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-β-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac Guanine nucleotide Exchange-Factors (Rac-GEFs) were also up-regulated in TGF-β-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-β-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.
Collapse
|
32
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
33
|
Fang CL, Lin CC, Chen HK, Hseu YC, Hung ST, Sun DP, Uen YH, Lin KY. Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci 2018; 109:3438-3449. [PMID: 30168892 PMCID: PMC6215897 DOI: 10.1111/cas.13789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
Although gastric cancer (GC) is one of the most common cancers, knowledge of its development and carcinogenesis is limited. To date, expression of ubiquitin-specific protease 3 (USP3) in all types of cancer, including GC, is still unknown. The present study explored the involvement of USP3 in the carcinogenesis and prognosis of GC. We measured USP3 expression in normal and GC tissues and cell lines. Correlations between USP3 protein level and clinicopathological parameters, as well as the significance of USP3 protein level for disease-free survival were assessed. Small hairpin RNA technology and transfection were used to investigate the effect of USP3 manipulation on cell proliferation and spreading. Moreover, xenograft proliferation and metastasis were used to explore the influence of USP3 on tumor growth and metastasis in animals. An increase in USP3 expression was observed in GC cells and tissues. The overexpression of USP3 was significantly correlated with several clinicopathological parameters and poor disease-free survival. Multivariate Cox regression analysis showed that the overexpression of USP3 was an independent prognostic biomarker. Silencing of USP3 suppressed GC cell proliferation and spreading in vitro as well as xenograft proliferation and metastasis in vivo; however, opposite results were obtained when USP3 was overexpressed. Further studies showed that USP3 influenced cell proliferation and spreading by regulating the cell cycle control- and epithelial-mesenchymal transition-related molecules. This study suggests that USP3 overexpression can be a useful biomarker for predicting the outcomes of GC patients and that USP3 targeting represents a potential modality for treating GC.
Collapse
Affiliation(s)
- Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Kun Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Shih-Ting Hung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Surgery, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
34
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Ubiquitin System. Int J Mol Sci 2018; 19:ijms19041080. [PMID: 29617326 PMCID: PMC5979459 DOI: 10.3390/ijms19041080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
|
36
|
Yan J, Du F, Li SD, Yuan Y, Jiang JY, Li S, Li XY, Du ZX. AUF1 modulates TGF-β signal in renal tubular epithelial cells via post-transcriptional regulation of Nedd4L expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:48-56. [PMID: 28986222 DOI: 10.1016/j.bbamcr.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation process plays important roles in renal disease pathogenesis. AU-rich element RNA-binding protein (AUF1) interacts with and destabilizes mRNAs containing AU-rich elements (AREs) in their 3'UTR. The current study demonstrated that AUF1 was increased in unilateral ureteral obstruction (UUO) animal models. While proliferation and migration of HK2 cells was unaltered by AUF1 downregulation under normal condition, proliferative inhibition and migratory promotion mediated by TGF-β was significantly compromised. Mechanically, AUF1 downregulation decreased phosphorylated Smad2/3 via increasing their E3 ligase Nedd4L at the posttranscriptional level. In addition, the current study identified Nedd4L as a previously unreported target of AUF1. AUF1 regulates Nedd4L expression at the posttranscriptional level by interaction with AREs in the 3'UTR of the Nedd4L mRNA. Collectively, the current study indicates that AUF1 might be a potential player in renal tubulointerstitial fibrosis through modulation of TGF-β signal transduction via posttranscriptional regulation of Nedd4L.
Collapse
Affiliation(s)
- Jing Yan
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China; Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Feng Du
- Department of Nephrology, Sheng Jing Hospital, China Medical University, Shenyang 110005, China
| | - Sheng-Dong Li
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Ye Yuan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Si Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Xin-Yu Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, the 1(st) affiliated Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|