1
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Han X, Zhao J, Zhou H, Zhou X, Deng Z, Liu Z, Yu Y. The biosynthesis of asiaticoside and madecassoside reveals tandem duplication-directed evolution of glycoside glycosyltransferases in the Apiales. PLANT COMMUNICATIONS 2024; 5:101005. [PMID: 38902923 PMCID: PMC11573922 DOI: 10.1016/j.xplc.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Certain plant species within the Apiales order accumulate triterpenoid saponins that feature a distinctive glucose-glucose-rhamnose (G-G-R) sugar chain attached at the C-28 position of the pentacyclic triterpene skeleton. Until recently, the genomic basis underlying the biosynthesis and evolution of this sugar chain has remained elusive. In this study, we identified two novel glycoside glycosyltransferases (GGTs) that can sequentially install the sugar chain's second D-glucose and third L-rhamnose during the biosynthesis of asiaticoside and madecassoside, two representative G-G-R sugar chain-containing triterpenoid saponins produced by Centella asiatica. Enzymatic assays revealed the remarkable substrate promiscuity of the two GGTs and the key residues crucial for sugar-donor selectivity of the glucosyltransferase and rhamnosyltransferase. We further identified syntenic tandem gene duplicates of the two GGTs in the Apiaceae and Araliaceae families, suggesting a well-conserved genomic basis underlying sugar chain assembly that likely has evolved in the early ancestors of the Apiales order. Moreover, expression patterns of the two GGTs in pierced leaves of C. asiatica were found to be correlated with the production of asiaticoside and madecassoside, implying their involvement in host defense against herbivores and pathogens. Our work sheds light on the biosynthesis and evolution of complex saponin sugars, paving the way for future engineering of diverse bioactive triterpenoids with unique glycoforms.
Collapse
Affiliation(s)
- Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingyi Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hong Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Zhang S, Meng F, Pan X, Qiu X, Li C, Lu S. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:731-752. [PMID: 38226777 DOI: 10.1111/tpj.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and β-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.
Collapse
Affiliation(s)
- Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
4
|
Yu H, Zhou J, Zhang J, He X, Peng S, Ling H, Dong Z, Lu X, Tian Y, Guan G, Tang Q, Zhong X, He Y. Functional Identification of HhUGT74AG11-A Key Glycosyltransferase Involved in Biosynthesis of Oleanane-Type Saponins in Hedera helix. Int J Mol Sci 2024; 25:4067. [PMID: 38612877 PMCID: PMC11012674 DOI: 10.3390/ijms25074067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.
Collapse
Affiliation(s)
- Han Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Jun Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xinyi He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Siqing Peng
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Hao Ling
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Zhuang Dong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| |
Collapse
|
5
|
Kamol P, Nukool W, Pumjaroen S, Inthima P, Kongbangkerd A, Suphrom N, Buddhachat K. Harnessing postharvest light emitting diode (LED) technology of Centella asiatica (L.) Urb. to improve centelloside content by up-regulating gene expressions in the triterpenoid pathway. Heliyon 2024; 10:e23639. [PMID: 38192854 PMCID: PMC10772125 DOI: 10.1016/j.heliyon.2023.e23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Centella asiatica (L.) Urb. has wound healing, anti-inflammatory, cognitive improvement, and neuroprotective properties which have been attributed to its centelloside content. However, the quantities of these bioactive compounds are limited and vary due to genetic and environmental factors. Light qualities are known to enhance the production of secondary metabolites in several plant species, both preharvest and postharvest. In this study, fresh leaves of C. asiatica were subjected to different light emitting diode (LED) quality including white, dark, red, blue, and green to assess centelloside content, phytochemical constituents, and transcription level expression of triterpenoid biosynthesis genes. Results showed that white and blue LEDs significantly increased centelloside content in C. asiatica leaves at 3 days postharvest (dph) by 73 % over the control group at 0 dph. Blue LEDs stimulated the expression of triterpenoid biosynthesis genes including C. asiatica squalene synthase (CaSQS), C. asiatica β-amyrin synthase (CabAS), and C. asiatica UDP gluclosyltransferase-73AH1 (CaUGT73AH1; CaUGT), while different LED conditions gave diverse results. Red LED treatment triggered higher total flavonoid content (TFC) and total triterpenoid content (TTC) while white LEDs enhanced total triterpenoid content (TTC). Taken together, our findings suggest that postharvest under blue LEDs is a great approach to increase centelloside production of C. asiatica through gene up-regulation in triterpenoid pathway. Therefore, postharvest technology by LEDs serves as an effective tool for improving raw material quality for medicinal plant industries.
Collapse
Affiliation(s)
- Puntitra Kamol
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wanrachon Nukool
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sakuntala Pumjaroen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phithak Inthima
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
6
|
Wan L, Huang Q, Li C, Yu H, Tan G, Wei S, El-Sappah AH, Sooranna S, Zhang K, Pan L, Zhang Z, Lei M. Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica (L.) Urban. FRONTIERS IN PLANT SCIENCE 2024; 14:1295186. [PMID: 38283979 PMCID: PMC10811118 DOI: 10.3389/fpls.2023.1295186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Centella asiatica (L.) Urban is a well-known medicinal plant which has multiple pharmacological properties. Notably, the leaves of C. asiatica contain large amounts of triterpenoid saponins. However, there have only been a few studies systematically elucidating the metabolic dynamics and transcriptional differences regarding triterpenoid saponin biosynthesis during the leaf development stages of C. asiatica. Here, we performed a comprehensive analysis of the metabolome and transcriptome to reveal the dynamic patterns of triterpenoid saponin accumulation and identified the key candidate genes associated with their biosynthesis in C. asiatica leaves. In this study, we found that the key precursors in the synthesis of terpenoids, including DMAPP, IPP and β-amyrin, as well as 22 triterpenes and eight triterpenoid saponins were considered as differentially accumulated metabolites. The concentrations of DMAPP, IPP and β-amyrin showed significant increases during the entire stage of leaf development. The levels of 12 triterpenes decreased only during the later stages of leaf development, but five triterpenoid saponins rapidly accumulated at the early stages, and later decreased to a constant level. Furthermore, 48 genes involved in the MVA, MEP and 2, 3-oxidosqualene biosynthetic pathways were selected following gene annotation. Then, 17 CYP450s and 26 UGTs, which are respectively responsible for backbone modifications, were used for phylogenetic-tree construction and time-specific expression analysis. From these data, by integrating metabolomics and transcriptomics analyses, we identified CaHDR1 and CaIDI2 as the candidate genes associated with DMAPP and IPP synthesis, respectively, and CaβAS1 as the one regulating β-amyrin synthesis. Two genes from the CYP716 family were confirmed as CaCYP716A83 and CaCYP716C11. We also selected two UGT73 families as candidate genes, associated with glycosylation of the terpenoid backbone at C-3 in C. asiatica. These findings will pave the way for further research on the molecular mechanisms associated with triterpenoid saponin biosynthesis in C. asiatica.
Collapse
Affiliation(s)
- Lingyun Wan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Haixia Yu
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guiyu Tan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shugen Wei
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Suren Sooranna
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kun Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
7
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Alcalde MA, Hidalgo-Martinez D, Bru Martínez R, Sellés-Marchart S, Bonfill M, Palazon J. Insights into enhancing Centella asiatica organ cell biofactories via hairy root protein profiling. FRONTIERS IN PLANT SCIENCE 2023; 14:1274767. [PMID: 37965024 PMCID: PMC10642384 DOI: 10.3389/fpls.2023.1274767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
Recent advancements in plant biotechnology have highlighted the potential of hairy roots as a biotechnological platform, primarily due to their rapid growth and ability to produce specialized metabolites. This study aimed to delve deeper into hairy root development in C. asiatica and explore the optimization of genetic transformation for enhanced bioactive compound production. Previously established hairy root lines of C. asiatica were categorized based on their centelloside production capacity into HIGH, MID, or LOW groups. These lines were then subjected to a meticulous label-free proteomic analysis to identify and quantify proteins. Subsequent multivariate and protein network analyses were conducted to discern proteome differences and commonalities. Additionally, the quantification of rol gene copy numbers was undertaken using qPCR, followed by gene expression measurements. From the proteomic analysis, 213 proteins were identified. Distinct proteome differences, especially between the LOW line and other lines, were observed. Key proteins related to essential processes like photosynthesis and specialized metabolism were identified. Notably, potential biomarkers, such as the Tr-type G domain-containing protein and alcohol dehydrogenase, were found in the HIGH group. The presence of ornithine cyclodeaminase in the hairy roots emerged as a significant biomarker linked with centelloside production capacity lines, indicating successful Rhizobium-mediated genetic transformation. However, qPCR results showed an inconsistency with rol gene expression levels, with the HIGH line displaying notably higher expression, particularly of the rolD gene. The study unveiled the importance of ornithine cyclodeaminase as a traceable biomarker for centelloside production capacity. The strong correlation between this biomarker and the rolD gene emphasizes its potential role in optimizing genetic transformation processes in C. asiatica.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo, Peru
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Roque Bru Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology, Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology, Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
10
|
Chen K, Zhang M, Gao B, Hasan A, Li J, Bao Y, Fan J, Yu R, Yi Y, Ågren H, Wang Z, Liu H, Ye M, Qiao X. Characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartane-type saponins in Astragalus membranaceus. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:698-710. [PMID: 36529909 PMCID: PMC10037152 DOI: 10.1111/pbi.13983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1G146V/I variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1G146V/S and the reported AmGT8 and AmGT8A394F . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
- Beijing Institute of Clinical Pharmacy, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Baihan Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Junhao Li
- Department of Physics and AstronomyUppsala UniversityUppsalaSweden
| | - Yang'oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Jingjing Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Hans Ågren
- Department of Physics and AstronomyUppsala UniversityUppsalaSweden
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| |
Collapse
|
11
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Hou M, Nie F, Zhao J, Ju Z, Yang L, Wang Q, Zhao S, Wang Z. New Glycosyltransferases in Panax notoginseng Perfect Main Ginsenosides Biosynthetic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:963-973. [PMID: 36548634 DOI: 10.1021/acs.jafc.2c05601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ginsenosides, the main bioactive ingredients of the Panax genus, are dammarane or oleanane triterpenoids with glycosylated modifications at C3/C6/C20 hydroxyls or C28 carboxyl, and their diverse glycosylation pattern has attracted great attention. However, the biosynthesis of some important saponins is still unclear. In this study, six UGTs were characterized, two of which were novel. PnUGT71A3 catalyzes not only the C6 hydroxyl glycosylation of protopanaxatriol (PPT) and F1 to form Rh1 and Rg1, respectively, but also the C20 hydroxyl glycosylation of protopanaxadiol (PPD)-type Rg3 to generate Rd. Especially, PnUGT94M1 is UDP-β-l-rhamnose (UDP-Rha)-dependent, regioselectively catalyzing the C2' hydroxyl rhamnosylation of C6 glucose of the PPT-type ginsenosides Rg1 and Rh1 to generate ginsenosides Re and Rg2, respectively. Site-directed mutagenesis showed that His21, Asp120, Ser363, and Pro372 are key residues, and the triple mutant (G344S/G345S/L346T) highly improved the activity toward Rg1 and Rh1. The findings in this study, perfect main ginsenosides biosynthetic pathways in the Panax genus, expand the biocatalyst toolbox for ginsenoside production and show that the PSPG motif is one of the options to modify UGTs to improve their activities.
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng Nie
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianing Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengcai Ju
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingzhong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Revisiting the transcriptome data of Centella asiatica identified an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Assessment of major centelloside ratios in Centella asiatica accessions grown under identical ecological conditions, bioconversion clues and identification of elite lines. Sci Rep 2022; 12:8177. [PMID: 35581314 PMCID: PMC9114379 DOI: 10.1038/s41598-022-12077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Centellosides viz., asiatic acid, madecassic acid, asiaticoside, madecassoside, are the major bioactive molecules in Centella asiatica. In this study madecassic acid:asiatic acid, madecassoside:asiaticoside (C6-hydroxylation versus non-hydroxylation) and asiaticoside:asiatic acid, madecassoside:madecassic acid (C28-glycoside versus aglycone) ratios in 50 C. asiatica accessions originally collected from their natural habitats in south India and grown under identical ecological conditions for six generations were determined using validated HPTLC-densitometry protocols. Asiatic acid, madecassic acid, asiaticoside and madecassoside contents ranged from 0.00-0.29% (average 0.03 ± 0.06%; 28 accessions recorded asiatic acid content as zero), 0.02-0.72% (0.12 ± 0.13%), 0.04-2.41% (0.44 ± 0.52%) and 0.15-5.27% (1.59 ± 1.26%), respectively. Distinctly, C6-hydroxylated (madecassic acid:asiatic acid 4.00, madecassoside:asiaticoside 3.61) and C28-glycosylated (asiaticoside:asiatic acid 14.67, madecassoside: madecassic acid 13.25) centellosides dominated over the respective non-derivatized entities. Our results infer that both C6-hydroxylation by CYP450-dependent monooxygenases and C28-glycosylation by UDP-Glc glucosyltransferases are dominant bioconversion steps in C. asiatica. Besides, this study discovered six elite lines of C. asiatica, with their (asiaticoside + madecassoside) contents above the industrial benchmark (≥ 4%) from south India. Two elite clones with asiaticoside contents ≥ 2% were also identified. Standardization of the agrotechniques of these elite lines could lead to their industrial applications. Further, this study emphasizes the need for standardizing all four centellosides as biomarkers in C. asiatica raw drugs, pharmaceutical and cosmetic products.
Collapse
|
15
|
Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int J Mol Sci 2021; 22:ijms221910826. [PMID: 34639166 PMCID: PMC8509628 DOI: 10.3390/ijms221910826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
Coumarins, natural products abundant in Melilotus albus, confer features in response to abiotic stresses, and are mainly present as glycoconjugates. UGTs (UDP-glycosyltransferases) are responsible for glycosylation modification of coumarins. However, information regarding the relationship between coumarin biosynthesis and stress-responsive UGTs remains limited. Here, a total of 189 MaUGT genes were identified from the M. albus genome, which were distributed differentially among its eight chromosomes. According to the phylogenetic relationship, MaUGTs can be classified into 13 major groups. Sixteen MaUGT genes were differentially expressed between genotypes of Ma46 (low coumarin content) and Ma49 (high coumarin content), suggesting that these genes are likely involved in coumarin biosynthesis. About 73.55% and 66.67% of the MaUGT genes were differentially expressed under ABA or abiotic stress in the shoots and roots, respectively. Furthermore, the functions of MaUGT68 and MaUGT186, which were upregulated under stress and potentially involved in coumarin glycosylation, were characterized by heterologous expression in yeast and Escherichia coli. These results extend our knowledge of the UGT gene family along with MaUGT gene functions, and provide valuable findings for future studies on developmental regulation and comprehensive data on UGT genes in M. albus.
Collapse
|
16
|
Palumbo F, Vannozzi A, Barcaccia G. Impact of Genomic and Transcriptomic Resources on Apiaceae Crop Breeding Strategies. Int J Mol Sci 2021; 22:ijms22189713. [PMID: 34575872 PMCID: PMC8465131 DOI: 10.3390/ijms22189713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/18/2023] Open
Abstract
The Apiaceae taxon is one of the most important families of flowering plants and includes thousands of species used for food, flavoring, fragrance, medical and industrial purposes. This study had the specific intent of reviewing the main genomics and transcriptomic data available for this family and their use for the constitution of new varieties. This was achieved starting from the description of the main reproductive systems and barriers, with particular reference to cytoplasmic (CMS) and nuclear (NMS) male sterility. We found that CMS and NMS systems have been discovered and successfully exploited for the development of varieties only in Foeniculum vulgare, Daucus carota, Apium graveolens and Pastinaca sativa; whereas, strategies to limit self-pollination have been poorly considered. Since the constitution of new varieties benefits from the synergistic use of marker-assisted breeding in combination with conventional breeding schemes, we also analyzed and discussed the available SNP and SSR marker datasets (20 species) and genomes (8 species). Furthermore, the RNA-seq studies aimed at elucidating key pathways in stress tolerance or biosynthesis of the metabolites of interest were limited and proportional to the economic weight of each species. Finally, by aligning 53 plastid genomes from as many species as possible, we demonstrated the precision offered by the super barcoding approach to reconstruct the phylogenetic relationships of Apiaceae species. Overall, despite the impressive size of this family, we documented an evident lack of molecular data, especially because genomic and transcriptomic resources are circumscribed to a small number of species. We believe that our contribution can help future studies aimed at developing molecular tools for boosting breeding programs in crop plants of the Apiaceae family.
Collapse
|
17
|
Ranjith GP, Jisha S, Hemanthakumar AS, Saji CV, Shenoi RA, Sabu KK. Impact of potential stimulants on asiaticoside and madecassoside levels and expression of triterpenoid-related genes in axenic shoot cultures of Centella asiatica (L.) Urb. PHYTOCHEMISTRY 2021; 186:112735. [PMID: 33839454 DOI: 10.1016/j.phytochem.2021.112735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The triterpenoid saponins, asiaticoside and madecassoside from Centella asiatica (L.) Urb. are known to have a wide range of applications in pharmaceutical and cosmetic industries. The effect of addition of Potential Metabolite Stimulants (PMSs) - casein acid hydrolysate, meat peptone, salicylic acid, copper sulphate, and silver nitrate, on the concentrations of these saponins and transcript levels of associated genes encoding important biosynthetic enzymes, was assessed in axenic shoot cultures of C. asiatica. Among the stimulants, silver nitrate induced asiaticoside content approximately 6-fold increase in madecassoside levels, after three weeks post-treatment with a decrease in biomass compared to its control. Gene expression analysis of essential genes involved in triterpenoid synthesis such as β-amyrin synthase showed an upregulation of approximately 50-fold at the third week of silver nitrate treatment compared to control. These findings suggest that silver nitrate can act as a metabolite stimulant, to enhance the formation of triterpenoids in axenic shoot culture of C. asiatica, which could be utilized in studying the regulation of terpenoid biosynthesis and biotechnological application for the increased production of these bioactive molecules.
Collapse
Affiliation(s)
- Gouri Priya Ranjith
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - S Jisha
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - Achutan Sudarsanan Hemanthakumar
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - Chinthu V Saji
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus, Kottayam, 686009, Kerala, India
| | - Rajesh A Shenoi
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus, Kottayam, 686009, Kerala, India
| | - Kallevettankuzhy Krishnannair Sabu
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
18
|
Tang JR, Chen G, Lu YC, Tang QY, Song WL, Lin Y, Li Y, Peng SF, Yang SC, Zhang GH, Hao B. Identification of two UDP-glycosyltransferases involved in the main oleanane-type ginsenosides in Panax japonicus var. major. PLANTA 2021; 253:91. [PMID: 33818668 DOI: 10.1007/s00425-021-03617-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/25/2021] [Indexed: 05/28/2023]
Abstract
Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated. Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-β-D-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-β-D-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.
Collapse
Affiliation(s)
- Jun-Rong Tang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, Yunnan, People's Republic of China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Ying-Chun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Qing-Yan Tang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wan-Ling Song
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Yuan Lin
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Ying Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Su-Fang Peng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Gemplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
19
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Cytotoxic Property of Grias neuberthii Extract on Human Colon Cancer Cells: A Crucial Role of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1565306. [PMID: 32328120 PMCID: PMC7152961 DOI: 10.1155/2020/1565306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Traditional herbal medicine has become an important alternative in the treatment of various cancer types, including colon cancer, which represents one of the main health problems around the world. Therefore, the search for new therapies to counteract this disease is very active. Grias neuberthii is an endemic plant located in the Ecuadorian Amazon region, which has been used in traditional medicine for its pharmacological properties, including its ability to inhibit tumor cell growth, although scientific studies are limited. We have analyzed the effect of this plant on two colon carcinoma cell lines, that is, RKO (normal p53) and SW613-B3 (mutated p53) cells. Among several extracts obtained from various parts of G. neuberthii plant, we identified the extract with the greatest cytotoxic potential, derived from the stem bark. The cytotoxic effect was similar on both cell lines, thus indicating that it is independent of the status of p53. However, significant differences were observed after the analysis of colony formation, with RKO cells being more sensitive than SW613-B3. No evidence for apoptotic markers was recorded; nevertheless, both cell lines showed signs of autophagy after the treatment, including increased Beclin-1 and LC3-II and decreased p62. Finally, three chemical compounds, possibly responsible for the effect observed in both cell lines, were identified: lupeol (1), 3′-O-methyl ellagic acid 4-O-β-D-rhamnopyranoside (2), and 19-α-hydroxy-asiatic acid monoglucoside (3).
Collapse
|
21
|
Srivastava G, Garg A, Misra RC, Chanotiya CS, Ghosh S. Transcriptome analysis and functional characterization of oxidosqualene cyclases of the arjuna triterpene saponin pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110382. [PMID: 32005387 DOI: 10.1016/j.plantsci.2019.110382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Arjuna (Terminalia arjuna) tree has been popular in Indian traditional medicine to treat cardiovascular ailments. The tree accumulates bioactive triterpene glycosides (saponins) and aglycones (sapogenins), in a tissue-preferential manner. Oleanane triterpenes/saponins (derived from β-amyrin) with potential cardioprotective function predominantly accumulate in the bark. However, arjuna triterpene saponin pathway enzymes remain to be identified and biochemically characterized. Here, we employed a combined transcriptomics, metabolomics and biochemical approach to functionally define a suite of oxidosqualene cyclases (OSCs) that catalyzed key reactions towards triterpene scaffold diversification. De novo assembly of 131 millions Illumina NextSeq500 sequencing reads obtained from leaf and stem bark samples led to a total of 156,650 reference transcripts. Four distinct OSCs (TaOSC1-4) with 54-71 % sequence identities were identified and functionally characterized. TaOSC1, TaOSC3 and TaOSC4 were biochemically characterized as β-amyrin synthase, cycloartenol synthase and lupeol synthase, respectively. However, TaOSC2 was found to be a multifunctional OSC producing both α-amyrin and β-amyrin, but showed a preference for α-amyrin product. Both TaOSC1 and TaOSC2 produced β-amyrin, the direct precursor for oleanane triterpene/saponin biosynthesis; but, TaOSC1 transcript expressed preferentially in bark, suggesting a major role of TaOSC1 in the biosynthesis of oleanane triterpenes/saponins in bark.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
22
|
Ninh PT, Nhu VTQ, Thao TTP, Ha LTT, Van Loc T, Van Chien T, Van Sung T. Chemical composition and the inhibition of acetyl cholinesterase activity of Centella asiatica
from Quang Tho village, Quang Dien district, Thua Thien - Hue province. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pham Thi Ninh
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | | | - Tran Thi Phuong Thao
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | - Le Thi Thu Ha
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | - Tran Van Loc
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | - Tran Van Chien
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | - Tran Van Sung
- Insitute of Chemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| |
Collapse
|
23
|
Rahimi S, Kim J, Mijakovic I, Jung KH, Choi G, Kim SC, Kim YJ. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv 2019; 37:107394. [PMID: 31078628 DOI: 10.1016/j.biotechadv.2019.04.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra-/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden.
| | - Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
24
|
Zhao YJ, Li C. Biosynthesis of Plant Triterpenoid Saponins in Microbial Cell Factories. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12155-12165. [PMID: 30387353 DOI: 10.1021/acs.jafc.8b04657] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triterpenoid saponins are triterpenoid glycoside compounds which have been widely used in pharmaceutical, agricultural, and food industries. Traditionally, they are extracted from plants, which is time-consuming and environmentally unfriendly. Recently, de novo synthesis of triterpenoid saponins in microbial cell factories was realized, which provides a promising and green approach to alter the traditional supply way. However, the complex biosynthetic pathway and the poor suitability between the endogenous and heterogeneous pathways tremendously limit the yield of triterpenoid saponins. We introduce the biosynthetic pathways of triterpenoid saponins first, and we then summarize the microbial cell factories developed to produce these compounds. Further, we discuss the strategies applied to enhance the production. This paper systematically illustrates the biosynthesis of plant triterpenoid saponins in microbial cell factories.
Collapse
Affiliation(s)
- Yu-Jia Zhao
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chun Li
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
25
|
Gao L, Lin Z, Liu Y, Wang X, Wan L, Zhang L, Liu X. Hypolipidemic effect of Fragarianilgerrensis Schlecht. medicine compound on hyperlipidemic rats. Lipids Health Dis 2018; 17:222. [PMID: 30231880 PMCID: PMC6146778 DOI: 10.1186/s12944-018-0868-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fragarianilgerrensis Schlecht. medicine compound (FN-MC) is a kind of Chinese herbs' compound consisted of Fragarianilgerrensis Schlecht. and Centella asiatica (L.) Urban. The study was to investigate the hypolipidemia effect of FN-MC in a hypolipidemic rat model. METHODS Male SD rats were randomly divided into five groups: normal-fat diet (NFD) group, high-fat diet (HFD) group, FN-MC (2 g/Kg) group, FN-MC (4 g/Kg) group and simvastatin (PDC) group. After FN-MC treatment, body weight, food intake, serum and hepatic biochemistry parameters of rats were measured and the pathological changes of liver and its cells were observed by optical microscope and transmission electron microscopy. RESULTS The results showed that FN-MC significantly decreased the levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), apolipoprotein B (ApoB) and hepatic malondialdehyde (MDA), while increased serum high-density lipoprotein (HDL-C), apolipoprotein A1 (ApoA1) and hepatic Superoxide Dismutase (SOD). FN-MC also improved the structure of liver and decreased the lipid drops in the cytoplasm significantly. In addition, FN-MC significantly decreased the weight gain and had no significant effects on food intake. CONCLUSIONS The study suggested that FN-MC exhibited strong ability to improve the dyslipidemia and prevent hepatic fatty deposition in rats fed with high-fat diet. Meanwhile, FN-MC exerted anti-obesity and antioxidant properties. HIGHLIGHTS Fragarianilgerrensis Schlecht. medicine compound possesses a hypolipidemic effect on hyperlipidemic rat model Fragarianilgerrensis Schlecht. medicine compound administration improves the antioxidant capacity of rats Fragarianilgerrensis Schlecht. medicine compound prevents hepatic fatty deposition.
Collapse
Affiliation(s)
- Liangcai Gao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Zejie Lin
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yilian Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinyi Wang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Linlin Wan
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Liuliu Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinnan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
26
|
Kim OT, Um Y, Jin ML, Kim JU, Hegebarth D, Busta L, Racovita RC, Jetter R. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis. PLANT & CELL PHYSIOLOGY 2018; 59:1200-1213. [PMID: 29579306 DOI: 10.1093/pcp/pcy055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/06/2018] [Indexed: 05/23/2023]
Abstract
Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.
Collapse
Affiliation(s)
- Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Mei Lan Jin
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Jang Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, South Korea
| | - Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, Canada
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Radu C Racovita
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|