1
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2025; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Chen GL, Li JY, Chen X, Liu JW, Zhang Q, Liu JY, Wen J, Wang N, Lei M, Wei JP, Yi L, Li JJ, Ling YP, Yi HQ, Hu Z, Duan J, Zhang J, Zeng B. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J Clin Invest 2024; 134:e174508. [PMID: 38127458 PMCID: PMC10904053 DOI: 10.1172/jci174508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Qian Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jie-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jun-Peng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Li Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Jia Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Yu-Peng Ling
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - He-Qiang Yi
- Department of Cardiothoracic Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences and
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences and
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| |
Collapse
|
3
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
4
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
5
|
Kimura M, Nomura S, Ouchi T, Kurashima R, Nakano R, Sekiya H, Kuroda H, Kono K, Shibukawa Y. Intracellular cAMP signaling-induced Ca 2+ influx mediated by calcium homeostasis modulator 1 (CALHM1) in human odontoblasts. Pflugers Arch 2024:10.1007/s00424-024-03038-4. [PMID: 39528838 DOI: 10.1007/s00424-024-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In odontoblasts, intracellular Ca2+ signaling plays key roles in reactionary dentin formation and generation of dentinal pain. Odontoblasts also express several Gs protein-coupled receptors that promote production of cyclic AMP (cAMP). However, the crosstalk between intracellular cAMP and Ca2+ signaling, as well as the role of cAMP in the cellular functions of odontoblasts, remains unclear. In this study, we measured intracellular cAMP levels and intracellular free Ca2+ concentration ([Ca2+]i). We also investigated the effect of intracellular cAMP on mineralization by the odontoblasts. In the presence of extracellular Ca2+, the application of forskolin (adenylyl cyclase activator) or isoproterenol (Gs protein-coupled beta-2 adrenergic receptor agonist) increased intracellular cAMP levels and [Ca2+]i in odontoblasts. The [Ca2+]i increases could not be observed by removing extracellular Ca2+, indicating that cAMP is capable to activate Ca2+ entry. Forskolin-induced [Ca2+]i increase was inhibited by a protein kinase A inhibitor in odontoblasts. The [Ca2+]i increase was sensitive to Gd3+, 2APB, or Zn2+ but not verapamil, ML218, or La3+. In immunofluorescence analyses, odontoblasts were immunopositive for calcium homeostasis modulator 1 (CALHM1), which was found close to ionotropic ATP receptor subtype, P2X3 receptors. When CALHM1 was knocked down, forskolin-induced [Ca2+]i increase was suppressed. Alizarin red and von Kossa staining showed that forskolin decreased mineralization. These findings suggest that activation of adenylyl cyclase elicited increases in the intracellular cAMP level and Ca2+ influx via protein kinase A activation in odontoblasts. Subsequent cAMP-dependent Ca2+ influx was mediated by CALHM1 in odontoblasts. In addition, the intracellular cAMP signaling pathway in odontoblasts negatively mediated dentinogenesis.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Rei Nakano
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, 230-0045, Japan
- Japan Animal Specialty Medical Institute (JASMINE), Yokohama, 224-0001, Japan
| | - Hinako Sekiya
- Department of Endodontics, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
- Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, 238-8570, Japan
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
6
|
Ren Y, Yang X, Shen Y. Oligomeric rearrangement may regulate channel activity. BIOPHYSICS REPORTS 2024; 10:293-296. [PMID: 39539288 PMCID: PMC11554575 DOI: 10.52601/bpr.2023.230018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2024] Open
Abstract
Channels are typically gated by several factors, including voltage, ligand and mechanical force. Most members of the calcium homeostasis modulator (CALHM) protein family, large-pore ATP release channels, exist in different oligomeric states. Dynamic conversions between CALHM1 heptamers and octamers to gate the channel were proposed. Meanwhile, the latest study observed that the transient receptor potential vanilloid 3 (TRPV3) channel adopts a dynamic transition between pentamers and canonical tetramers in response to small molecule treatment. These results suggest that oligomeric rearrangement may add a new layer to regulate the channel activities.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
8
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
9
|
Tang X, Wang H, Liu H, Li G, Sturgis EM, Shete S, Wei Q. Potentially functional variants of CHMP4A and PANX1 in the pyroptosis-related pathway predict survival of patients with non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1712-1721. [PMID: 38860607 PMCID: PMC11329348 DOI: 10.1002/mc.23767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Pyroptosis has been implicated in the advancement of various cancers. Triggering pyroptosis within tumors amplifies the immune response, thereby fostering an antitumor immune environment. Nonetheless, few published studies have evaluated associations between functional variants in the pyroptosis-related genes and clinical outcomes of patients with non-oropharyngeal head and neck squamous cell carcinoma (NON-ORO HNSCC). METHODS We conducted an association study of 985 NON-ORO HNSCC patients who were randomly divided into two groups: the discovery group of 492 patients and the replication group of 493 patients. We used Cox proportional hazards regression analysis to examine associations between genetic variants of the pyroptosis-related genes and survival of patients with NON-ORO HNSCC. Bayesian false discovery probability (BFDP) was used for multiple testing correction. Functional annotation was applied to the identified survival-associated genetic variants. RESULTS There are 8254 single-nucleotide polymorphisms (SNPs) located in 82 pyroptosis-related genes, of which 202 SNPs passed multiple testing correction with BFDP < 0.8 in the discovery and six SNPs retained statistically significant in the replication. In subsequent stepwise multivariable Cox regression analysis, two independent SNPs (CHMP4A rs1997996 G > A and PANX1 rs56175344 C > G) remained significant with an adjusted hazard ratios (HR) of 1.31 (95% confidence interval [CI] = 1.09-1.57, p = 0.004) and 0.65 (95% CI = 0.51-0.83, p = 0.0005) for overall survival (OS), respectively. Further analysis of the combined genotypes revealed progressively worse OS associated with the number of unfavorable genotypes (ptrend < 0.0001 and 0.021 for OS and disease-specific survival, respectively). Moreover, both PANX1 rs56175344G and CHMP4A rs1997996A alleles were correlated with reduced mRNA expression levels. CONCLUSIONS Genetic variants in the pyroptosis pathway genes may predict the survival of NON-ORO HNSCC patients, likely by reducing the gene expression, but our findings need to be replicated by larger studies.
Collapse
Affiliation(s)
- Xiaozhun Tang
- Department of Head and Neck Surgery, the Affiliated Cancer Hospital of Guangxi Medical University, Guangxi Cancer Hospital, Nanning, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huiling Wang
- Department of Head and Neck Surgery, the Affiliated Cancer Hospital of Guangxi Medical University, Guangxi Cancer Hospital, Nanning, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erich M. Sturgis
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, Koga K, Tateoka T, Yoshioka H, Shinozaki Y, Kinouchi H, Tanaka KF, Bito H, Tsuda M, Koizumi S. Disease-relevant upregulation of P2Y 1 receptor in astrocytes enhances neuronal excitability via IGFBP2. Nat Commun 2024; 15:6525. [PMID: 39117630 PMCID: PMC11310333 DOI: 10.1038/s41467-024-50190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Hideaki Suzuki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuki Nagai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Toru Tateoka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
11
|
Du M, Liu Y, Cao J, Li X, Wang N, He Q, Zhang L, Zhao B, Dugarjaviin M. Food from Equids-Commercial Fermented Mare's Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods 2024; 13:2344. [PMID: 39123538 PMCID: PMC11312395 DOI: 10.3390/foods13152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented mare's milk (koumiss), a traditional Central Asian dairy product derived from fermented mare's milk, is renowned for its unique sour taste and texture. It has long been consumed by nomadic tribes for its nutritional and medicinal benefits. This study aimed to comprehensively analyze the protective effects of koumiss against alcohol-induced harm across behavioral, hematological, gastrointestinal, hepatic, and reproductive dimensions using a mouse model. Optimal intoxicating doses of alcohol and koumiss doses were determined, and their effects were explored through sleep tests and blood indicator measurements. Pretreatment with koumiss delayed inebriation, accelerated sobering, and reduced mortality in mice, mitigating alcohol's impact on blood ethanol levels and various physiological parameters. Histopathological and molecular analyses further confirmed koumiss's protective role against alcohol-induced damage in the liver, stomach, small intestine, and reproductive system. Transcriptomic studies on reproductive damage indicated that koumiss exerts its benefits by influencing mitochondrial and ribosomal functions and also shows promise in mitigating alcohol's effects on the reproductive system. In summary, koumiss emerges as a potential natural agent for protection against alcohol-induced harm, opening avenues for future research in this field.
Collapse
Affiliation(s)
- Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
12
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Vardam-Kaur T, Banuelos A, Gabaldon-Parish M, Macedo BG, Salgado CL, Wanhainen KM, Zhou MH, van Dijk S, Santiago-Carvalho I, Beniwal AS, Leff CL, Peng C, Tran NL, Jameson SC, Borges da Silva H. The ATP-exporting channel Pannexin 1 promotes CD8 + T cell effector and memory responses. iScience 2024; 27:110290. [PMID: 39045105 PMCID: PMC11263643 DOI: 10.1016/j.isci.2024.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Sensing of extracellular ATP (eATP) controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin 1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses in vivo, however, has not been previously addressed. Here, we report that T-cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 promotes both effector and memory CD8+ T cell responses. Panx1 favors initial effector CD8+ T cell activation through extracellular ATP (eATP) export and subsequent P2RX4 activation, which helps promote full effector differentiation through extracellular lactate accumulation and its subsequent recycling. In contrast, Panx1 promotes memory CD8+ T cell survival primarily through ATP export and subsequent P2RX7 engagement, leading to improved mitochondrial metabolism. In summary, Panx1-mediated eATP export regulates effector and memory CD8+ T cells through distinct purinergic receptors and different metabolic and signaling pathways.
Collapse
Affiliation(s)
- Trupti Vardam-Kaur
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | - Bruna Gois Macedo
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | | | - Maggie Hanqi Zhou
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | - Angad S. Beniwal
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Chloe L. Leff
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henrique Borges da Silva
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| |
Collapse
|
14
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
15
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
16
|
Paz-López S. ATP release mediated by pannexin-3 is required for plasma cell survival via P2X4 receptors in bone marrow. Purinergic Signal 2024:10.1007/s11302-024-10024-z. [PMID: 38772961 DOI: 10.1007/s11302-024-10024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Sonia Paz-López
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
17
|
Vardam-Kaur T, Banuelos A, Gabaldon-Parish M, Macedo BG, Salgado CL, Wanhainen KM, Zhou MH, van Dijk S, Santiago-Carvalho I, Beniwal AS, Leff CL, Peng C, Tran NL, Jameson SC, da Silva HB. The ATP-exporting channel Pannexin-1 promotes CD8 + T cell effector and memory responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.19.537580. [PMID: 37131831 PMCID: PMC10153284 DOI: 10.1101/2023.04.19.537580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sensing of extracellular ATP (eATP) controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin-1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses in vivo, however, has not been previously addressed. Here, we report that T cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 promotes both effector and memory CD8+ T cell responses. Panx1 favors initial effector CD8+ T cell activation through extracellular ATP (eATP) export and subsequent P2RX4 activation, which helps promote full effector differentiation through extracellular lactate accumulation and its subsequent recycling. In contrast, Panx1 promotes memory CD8+ T cell survival primarily through ATP export and subsequent P2RX7 engagement, leading to improved mitochondrial metabolism. In summary, Panx1-mediated eATP export regulates effector and memory CD8+ T cells through distinct purinergic receptors and different metabolic and signaling pathways.
Collapse
Affiliation(s)
- Trupti Vardam-Kaur
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: Omeros Corporation, Seattle, Washington, United States
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Maria Gabaldon-Parish
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: University of New Mexico, Albuquerque, New Mexico, United States
| | - Bruna Gois Macedo
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | | | | | - Maggie Hanqi Zhou
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: Biomedical Sciences Graduate Program, University of California, San Diego, California, United States
| | | | - Angad S. Beniwal
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Chloe L. Leff
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States
- Current address: Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, Massachusetts, United States
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Henrique Borges da Silva
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| |
Collapse
|
18
|
Yang H, Zhang Z, Zhao K, Zhang Y, Yin X, Zhu G, Wang Z, Yan X, Li X, He T, Wang K. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy. Hum Immunol 2024; 85:110774. [PMID: 38521664 DOI: 10.1016/j.humimm.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.
Collapse
Affiliation(s)
- Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Yulian Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Tianzhen He
- Nantong University, Institute of Special Environmental Medicine, Nantong, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China.
| |
Collapse
|
19
|
Ghiasi SM, Christensen NM, Pedersen PA, Skovhøj EZ, Novak I. Imaging of extracellular and intracellular ATP in pancreatic beta cells reveals correlation between glucose metabolism and purinergic signalling. Cell Signal 2024; 117:111109. [PMID: 38373668 DOI: 10.1016/j.cellsig.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Adenosine triphosphate (ATP) is a universal energy molecule and yet cells release it and extracellular ATP is an important signalling molecule between cells. Monitoring of ATP levels outside of cells is important for our understanding of physiological and pathophysiological processes in cells/tissues. Here, we focus on pancreatic beta cells (INS-1E) and test the hypothesis that there is an association between intra- and extracellular ATP levels which depends on glucose provision. We imaged real-time changes in extracellular ATP in pancreatic beta cells using two sensors tethered to extracellular aspects of the plasma membrane (eATeam3.10, iATPSnFR1.0). Increase in glucose induced fast micromolar ATP release to the cell surface, depending on glucose concentrations. Chronic pre-treatment with glucose increased the basal ATP signal. In addition, we co-expressed intracellular ATP sensors (ATeam1.30, PercevalHR) in the same cultures and showed that glucose induced fast increases in extracellular and intracellular ATP. Glucose and extracellular ATP stimulated glucose transport monitored by the glucose sensor (FLII12Pglu-700uDelta6). In conclusion, we propose that in beta cells there is a dynamic relation between intra- and extracellular ATP that depends on glucose transport and metabolism and these processes may be tuned by purinergic signalling. Future development of ATP sensors for imaging may aid development of novel approaches to target extracellular ATP in, for example, type 2 diabetes mellitus therapy.
Collapse
Affiliation(s)
- Seyed M Ghiasi
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Per A Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Emil Z Skovhøj
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Puebla M, Muñoz MF, Lillo MA, Contreras JE, Figueroa XF. Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels. Biol Res 2024; 57:19. [PMID: 38689353 PMCID: PMC11059852 DOI: 10.1186/s40659-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Manuel F Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
| |
Collapse
|
21
|
Choi SW, Kwon JW, Kang TM, Park KS, Kim SJ. Calcium homeostasis modulator 2 (Calhm2) as slowly activating membrane current channel in mouse B cells. Biochem Biophys Res Commun 2024; 699:149561. [PMID: 38280307 DOI: 10.1016/j.bbrc.2024.149561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
In mouse B lymphocytes, an unidentified slow-activating voltage-dependent current resembling the characteristics of the Calhm family ion channel (ICalhm-L) was investigated. RT-PCR analysis revealed the presence of Calhm2 and 6 transcripts, with subsequent whole-cell patch-clamp studies indicating that the ICalhm-L is augmented by heat, alkaline pH, and low extracellular [Ca2+]. Overexpression of Calhm2, but not Calhm6, in N2A cells recapitulated ICalhm-L. Moreover, Calhm2 knockdown in Bal-17 cells abolished ICalhm-L. We firstly identify the voltage-dependent ion channel function of the Calhm2 in the mouse immune cells. ATP release assays in primary mouse B cells suggested a significant contribution of Calhm2 for purinergic signaling at physiological temperature.
Collapse
Affiliation(s)
- Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Jae-Won Kwon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| |
Collapse
|
22
|
Shigetomi E, Sakai K, Koizumi S. Extracellular ATP/adenosine dynamics in the brain and its role in health and disease. Front Cell Dev Biol 2024; 11:1343653. [PMID: 38304611 PMCID: PMC10830686 DOI: 10.3389/fcell.2023.1343653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Extracellular ATP and adenosine are neuromodulators that regulate numerous neuronal functions in the brain. Neuronal activity and brain insults such as ischemic and traumatic injury upregulate these neuromodulators, which exert their effects by activating purinergic receptors. In addition, extracellular ATP/adenosine signaling plays a pivotal role in the pathogenesis of neurological diseases. Virtually every cell type in the brain contributes to the elevation of ATP/adenosine, and various mechanisms underlying this increase have been proposed. Extracellular adenosine is thought to be mainly produced via the degradation of extracellular ATP. However, adenosine is also released from neurons and glia in the brain. Therefore, the regulation of extracellular ATP/adenosine in physiological and pathophysiological conditions is likely far more complex than previously thought. To elucidate the complex mechanisms that regulate extracellular ATP/adenosine levels, accurate methods of assessing their spatiotemporal dynamics are needed. Several novel techniques for acquiring spatiotemporal information on extracellular ATP/adenosine, including fluorescent sensors, have been developed and have started to reveal the mechanisms underlying the release, uptake and degradation of ATP/adenosine. Here, we review methods for analyzing extracellular ATP/adenosine dynamics as well as the current state of knowledge on the spatiotemporal dynamics of ATP/adenosine in the brain. We focus on the mechanisms used by neurons and glia to cooperatively produce the activity-dependent increase in ATP/adenosine and its physiological and pathophysiological significance in the brain.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
23
|
Pfeifer A, Mikhael M, Niemann B. Inosine: novel activator of brown adipose tissue and energy homeostasis. Trends Cell Biol 2024; 34:72-82. [PMID: 37188562 DOI: 10.1016/j.tcb.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Extracellular purinergic molecules act as signaling molecules that bind to cellular receptors and regulate signaling pathways. Growing evidence suggests that purines regulate adipocyte function and whole-body metabolism. Here, we focus on one specific purine: inosine. Brown adipocytes, which are important regulators of whole-body energy expenditure (EE), release inosine when they are stressed or become apoptotic. Unexpectedly, inosine activates EE in neighboring brown adipocytes and enhances differentiation of brown preadipocytes. Increasing extracellular inosine, either directly by increasing inosine intake or indirectly via pharmacological inhibition of cellular inosine transporters, increases whole-body EE and counteracts obesity. Thus, inosine and other closely related purines might be a novel approach to tackle obesity and associated metabolic disorders by enhancing EE.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Mickel Mikhael
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Ohshima Y, Tsukimoto M, Watanabe S, Tsushima Y, Ishioka NS. Extracellular ATP Release Triggered by 131I-Trastuzumab Mitigates Radiation-Induced Reduction in Cell Viability through the P2Y 6 Receptor in SKOV3 Cells. Biol Pharm Bull 2024; 47:1868-1875. [PMID: 39537170 DOI: 10.1248/bpb.b24-00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Intracellular ATP is released outside cells by various stimuli and is involved in cytoprotection by activating purinergic receptors. However, it remains unclear whether targeted radionuclide therapy induces extracellular ATP release. Here, we prepared 131I-labeled trastuzumab (131I-trastuzumab) and examined extracellular ATP release and its roles in 131I-trastuzumab's growth inhibitory effects. 131I-trastuzumab was prepared by labeling with the chloramine-T method. The binding of 131I-trastuzumab to cells was investigated using the human epidermal growth factor receptor 2 (HER2)-positive cells (SKOV3) and the HER2-negative cell (MCF7). Extracellular ATP was determined by measuring chemiluminescence using a luciferin-luciferase reagent. The growth inhibitory effects of 131I-trastuzumab were investigated by colony formation assay. 131I-trastuzumab bound exclusively to SKOV3 cells. Treatment with 131I-trastuzumab at 4 MBq/mL and higher concentrations significantly increased extracellular ATP levels, whereas non-radioactive trastuzumab didn't. This suggested that ATP release was specifically induced by radiation derived from 131I. The growth inhibitory effects of 131I-trastuzumab were significantly enhanced by pretreatment with apyrase (ecto-ATPase) or MRS2578 (a P2Y6-selective antagonist), whereas they were significantly reduced by treatment with a P2Y6-selective agonist. In conclusion, 131I-trastuzumab induced extracellular ATP release, and the released ATP was shown to be involved in mitigating radiation-induced reduction in cell viability through P2Y6 receptor.
Collapse
Affiliation(s)
- Yasuhiro Ohshima
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institute for Quantum Science and Technology
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shigeki Watanabe
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institute for Quantum Science and Technology
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine
| | - Noriko S Ishioka
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institute for Quantum Science and Technology
| |
Collapse
|
25
|
Nishioka Y, Hayashi K, Morito K, Takayama K, Nagasawa K. Altered Expression of Astrocytic ATP Channels and Ectonucleotidases in the Cerebral Cortex and Hippocampus of Chronic Social Defeat Stress-Susceptible BALB/c Mice. Biol Pharm Bull 2024; 47:1172-1178. [PMID: 38880625 DOI: 10.1248/bpb.b24-00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.
Collapse
Affiliation(s)
- Yuka Nishioka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kana Hayashi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
26
|
Zhang Y, Chen S, Luo L, Greenly S, Shi H, Xu JJ, Yan C. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental? Circ Res 2023; 133:902-923. [PMID: 37850368 PMCID: PMC10807647 DOI: 10.1161/circresaha.123.322652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS For prodeath GsPCRs, we explored β1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in β1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. β1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Department of Medicine
- Department of Biochemistry and Biophysics
| | - Sarah Greenly
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Hangchuan Shi
- Department of Clinical and Translational Research
- Department of Public Health Sciences; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine
| |
Collapse
|
27
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
28
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
29
|
Lyu Y, Wang T, Huang S, Zhang Z. Mitochondrial Damage-Associated Molecular Patterns and Metabolism in the Regulation of Innate Immunity. J Innate Immun 2023; 15:665-679. [PMID: 37666239 PMCID: PMC10601681 DOI: 10.1159/000533602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The innate immune system, as the host's first line of defense against intruders, plays a critical role in recognizing, identifying, and reacting to a wide range of microbial intruders. There is increasing evidence that mitochondrial stress is a major initiator of innate immune responses. When mitochondria's integrity is disrupted or dysfunction occurs, the mitochondria's contents are released into the cytosol. These contents, like reactive oxygen species, mitochondrial DNA, and double-stranded RNA, among others, act as damage-related molecular patterns (DAMPs) that can bind to multiple innate immune sensors, particularly pattern recognition receptors, thereby leading to inflammation. To avoid the production of DAMPs, in addition to safeguarding organelles integrity and functionality, mitochondria may activate mitophagy or apoptosis. Moreover, mitochondrial components and specific metabolic regulations modify properties of innate immune cells. These include macrophages, dendritic cells, innate lymphoid cells, and so on, in steady state or in stimulation that are involved in processes ranging from the tricarboxylic acid cycle to oxidative phosphorylation and fatty acid metabolism. Here we provide a brief summary of mitochondrial DAMPs' initiated and potentiated inflammatory response in the innate immune system. We also provide insights into how the state of activation, differentiation, and functional polarization of innate immune cells can be influenced by alteration to the metabolic pathways in mitochondria.
Collapse
Affiliation(s)
- Yanmin Lyu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoqiang Zhang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
31
|
Skieresz-Szewczyk K, Jackowiak H. Pattern Distribution of Connexins in the Ortho- and Parakeratinized Epithelium of the Lingual Mucosa in Birds. Cells 2023; 12:1776. [PMID: 37443811 PMCID: PMC10341081 DOI: 10.3390/cells12131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Connexins are important proteins involved in cell-to-cell communication and cytodifferentiation during renewal and cornification of the multilayered epithelia. So far, there is a lack of reports on this subject in birds' structurally different ortho- and parakeratinized epithelium of the tongue. The study aims to describe the distribution and expression profiles of the α-connexins (Cx40 and 43) and β-connexins (Cx26, 30, and 31) in those epithelia in duck, goose, and domestic turkey. Research revealed the presence of the mentioned connexins and the occurrence of interspecies differences. Connexins form gap junctions in the cell membrane or are in the cytoplasm of keratinocytes. Differences in connexin expression were noted between the basal and intermediate layers, which may determine the proliferation of keratinocytes. Cx40, 43, and Cx30 in the gap junction of the keratinocytes of the intermediate layer are related to the synchronization of the cornification process. Because of the exfoliation of cornified plaques, a lack of connexins was observed in the cornified layer of orthokeratinized epithelium. However, in parakeratinized epithelium, connexins were present in the cell membrane of keratinocytes and thus maintained cellular integrity in gradually desquamating cells. The current studies will be useful in further comparative analyses of normal and pathological epithelia of the oral cavity in birds.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | | |
Collapse
|
32
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
33
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
34
|
Danielli S, Ma Z, Pantazi E, Kumar A, Demarco B, Fischer FA, Paudel U, Weissenrieder J, Lee RJ, Joyce S, Foskett JK, Bezbradica JS. The ion channel CALHM6 controls bacterial infection-induced cellular cross-talk at the immunological synapse. EMBO J 2023; 42:e111450. [PMID: 36861806 PMCID: PMC10068325 DOI: 10.15252/embj.2022111450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.
Collapse
Affiliation(s)
- Sara Danielli
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Zhongming Ma
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eirini Pantazi
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Amrendra Kumar
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Benjamin Demarco
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Fabian A Fischer
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Usha Paudel
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jillian Weissenrieder
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Robert J Lee
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Otorhinolaryngology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | |
Collapse
|
35
|
Arkhipov SN, Potter DL, Sultanova RF, Ilatovskaya DV, Harris PC, Pavlov TS. Probenecid slows disease progression in a murine model of autosomal dominant polycystic kidney disease. Physiol Rep 2023; 11:e15652. [PMID: 37024297 PMCID: PMC10079433 DOI: 10.14814/phy2.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Development of autosomal dominant polycystic kidney disease (ADPKD) involves renal epithelial cell abnormalities. Cystic fluid contains a high level of ATP that, among other effects, leads to a reduced reabsorption of electrolytes in cyst-lining cells, and thus results in cystic fluid accumulation. Earlier, we demonstrated that Pkd1RC/RC mice, a hypomorphic model of ADPKD, exhibit increased expression of pannexin-1, a membrane channel capable of ATP release. In the current study, we found that human ADPKD cystic epithelia have higher pannexin-1 abundance than normal collecting ducts. We hypothesized that inhibition of pannexin-1 function with probenecid can be used to attenuate ADPKD development. Renal function in male and female Pkd1RC/RC and control mice was monitored between 9 and 20 months of age. To test the therapeutic effects of probenecid (a uricosuric agent and a pannexin-1 blocker), osmotic minipumps were implanted in male and female Pkd1RC/RC mice, and probenecid or vehicle was administered for 42 days until 1 year of age. Probenecid treatment improved glomerular filtration rates and slowed renal cyst formation in male mice (as shown in histopathology). The mechanistic effects of probenecid on sodium reabsorption and fluid transport were tested on polarized mpkCCDcl4 cells subjected to short-circuit current measurements, and in 3D cysts grown in Matrigel. In the mpkCCDcl4 epithelial cell line, probenecid elicited higher ENaC currents and attenuated in vitro cyst formation, indicating lower sodium and less fluid retention in the cysts. Our studies open new avenues of research into targeting pannexin-1 in ADPKD pathology.
Collapse
Affiliation(s)
- Sergey N. Arkhipov
- Division of Hypertension and Vascular ResearchHenry Ford HealthDetroitMichiganUSA
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| | - D'Anna L. Potter
- Division of Hypertension and Vascular ResearchHenry Ford HealthDetroitMichiganUSA
| | - Regina F. Sultanova
- Division of NephrologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Peter C. Harris
- Department of Nephrology and Hypertension, Mayo ClinicRochesterMinnesotaUSA
| | - Tengis S. Pavlov
- Division of Hypertension and Vascular ResearchHenry Ford HealthDetroitMichiganUSA
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
36
|
Dale N, Butler J, Dospinescu VM, Nijjar S. Channel-mediated ATP release in the nervous system. Neuropharmacology 2023; 227:109435. [PMID: 36690324 DOI: 10.1016/j.neuropharm.2023.109435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
ATP is well established as a transmitter and modulator in the peripheral and central nervous system. While conventional exocytotic release of ATP at synapses occurs, this transmitter is unusual in also being released into the extracellular space via large-pored plasma membrane channels. This review considers the channels that are known to be permeable to ATP and some of the functions of channel-mediated ATP release. While the possibility of ATP release via channels mediating volume transmission has been known for some time, localised ATP release via channels at specialised synapses made by taste cells to the afferent nerve has recently been documented in taste buds. This raises the prospect that "channel synapses" may occur in other contexts. However, volume transmission and channel synapses are not necessarily mutually exclusive. We suggest that certain glial cells in the brain stem and hypothalamus, which possess long processes and are known to release ATP, may be candidates for both modes of ATP release -channel-mediated volume transmission in the region of their somata and more localised transmission possibly via either conventional or channel synapses from their processes at distal targets. Finally, we consider the different characteristics of vesicular and channel synapses and suggest that channel synapses may be advantageous in requiring less energy than their conventional vesicular counterparts. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK.
| | - Jack Butler
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| | | | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| |
Collapse
|
37
|
Chu J, Yang J, Zhou Y, Chen J, Chen KH, Zhang C, Cheng HY, Koylass N, Liu JO, Guan Y, Qiu Z. ATP-releasing SWELL1 channel in spinal microglia contributes to neuropathic pain. SCIENCE ADVANCES 2023; 9:eade9931. [PMID: 36989353 PMCID: PMC10058245 DOI: 10.1126/sciadv.ade9931] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/22/2023] [Indexed: 06/09/2023]
Abstract
Following peripheral nerve injury, extracellular adenosine 5'-triphosphate (ATP)-mediated purinergic signaling is crucial for spinal cord microglia activation and neuropathic pain. However, the mechanisms of ATP release remain poorly understood. Here, we show that volume-regulated anion channel (VRAC) is an ATP-releasing channel and is activated by inflammatory mediator sphingosine-1-phosphate (S1P) in microglia. Mice with microglia-specific deletion of Swell1 (also known as Lrrc8a), a VRAC essential subunit, had reduced peripheral nerve injury-induced increase in extracellular ATP in spinal cord. The mutant mice also exhibited decreased spinal microgliosis, dorsal horn neuronal hyperactivity, and both evoked and spontaneous neuropathic pain-like behaviors. We further performed high-throughput screens and identified an FDA-approved drug dicumarol as a novel and potent VRAC inhibitor. Intrathecal administration of dicumarol alleviated nerve injury-induced mechanical allodynia in mice. Our findings suggest that ATP-releasing VRAC in microglia is a key spinal cord determinant of neuropathic pain and a potential therapeutic target for this debilitating disease.
Collapse
Affiliation(s)
- Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuan Zhou
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Henry Yi Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Koylass
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O. Liu
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
39
|
Wang X, Dong YT, Hu XM, Zhang JZ, Shi NR, Zuo YQ, Wang X. The circadian regulation of extracellular ATP. Purinergic Signal 2023; 19:283-295. [PMID: 35939197 PMCID: PMC9984637 DOI: 10.1007/s11302-022-09881-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular ATP is a potent signaling molecule released from various cells throughout the body and is intimately involved in the pathophysiological functions of the nervous system and immune system by activating P2 purinergic receptors. Recent increasingly studies showed that extracellular ATP exhibits circadian oscillation with an approximately 24-h periodicity, which participates in regulatory pathways of central oscillator suprachiasmatic nucleus and peripheral oscillator bladder, respectively. Oscillators modulate the protein expression of ATP release channels and ectonucleotidase activity through clock genes; indeed, real-time alterations of ATP release and degradation determine outcomes of temporal character on extracellular ATP rhythm. The regulatory pathways on extracellular ATP rhythm are different in central and peripheral systems. In this review, we summarize the circadian rhythm of extracellular ATP and discuss several circadian regulatory pathways in different organs via ATP release and degradation, to provide a new understanding for purinergic signaling in the regulatory mechanism of circadian rhythm and a potential target to research the circadian regulation of extracellular ATP in other circadian oscillators.
Collapse
Affiliation(s)
- Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yu-Ting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xiu-Ming Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xu Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| |
Collapse
|
40
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
41
|
Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023; 224:109333. [PMID: 36400278 DOI: 10.1016/j.neuropharm.2022.109333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nucleotides play a crucial role in extracellular signaling across species boundaries. All the three kingdoms of life (Bacteria, Archea and Eukariota) are responsive to extracellular ATP (eATP) and many release this and other nucleotides. Thus, eATP fulfills different functions, many related to danger-sensing or avoidance reactions. Basically all living organisms have evolved sensors for eATP and other nucleotides with very different affinity and selectivity, thus conferring a remarkable plasticity to this signaling system. Likewise, different intracellular transduction systems were associated during evolution to different receptors for eATP. In mammalian evolution, control of intracellular ATP (iATP) and eATP homeostasis has been closely intertwined with that of Ca2+, whether in the extracellular milieu or in the cytoplasm, establishing an inverse reciprocal relationship, i.e. high extracellular Ca2+ levels are associated to negligible eATP, while low intracellular Ca2+ levels are associated to high eATP concentrations. This inverse relationship is crucial for the messenger functions of both molecules. Extracellular ATP is sensed by specific plasma membrane receptors of widely different affinity named P2 receptors (P2Rs) of which 17 subtypes are known. This confers a remarkable plasticity to P2R signaling. The central nervous system (CNS) is a privileged site for purinergic signaling as all brain cell types express P2Rs. Accruing evidence suggests that eATP, in addition to participating in synaptic transmission, also plays a crucial homeostatic role by fine tuning microglia, astroglia and oligodendroglia responses. Drugs modulating the eATP concentration in the CNS are likely to be the new frontier in the therapy of neuroinflammation. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
42
|
Abstract
Salt taste, the taste of sodium chloride (NaCl), is mechanistically one of the most complex and puzzling among basic tastes. Sodium has essential functions in the body but causes harm in excess. Thus, animals use salt taste to ingest the right amount of salt, which fluctuates by physiological needs: typically, attraction to low salt concentrations and rejection of high salt. This concentration-valence relationship is universally observed in terrestrial animals, and research has revealed complex peripheral codes for NaCl involving multiple taste pathways of opposing valence. Sodium-dependent and -independent pathways mediate attraction and aversion to NaCl, respectively. Gustatory sensors and cells that transduce NaCl have been uncovered, along with downstream signal transduction and neurotransmission mechanisms. However, much remains unknown. This article reviews classical and recent advances in our understanding of the molecular and cellular mechanisms underlying salt taste in mammals and insects and discusses perspectives on human salt taste.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; .,Japan Science and Technology Agency, CREST, Saitama, Japan
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
44
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|
45
|
Mechanical Stretch Activates TRPV4 and Hemichannel Responses in the Nonpigmented Ciliary Epithelium. Int J Mol Sci 2023; 24:ijms24021673. [PMID: 36675184 PMCID: PMC9865367 DOI: 10.3390/ijms24021673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Previously, we reported a mechanosensitive ion channel, TRPV4, along with functional connexin hemichannels on the basolateral surface of the ocular nonpigmented ciliary epithelium (NPE). In the lens, TRPV4-mediated hemichannel opening is part of a feedback loop that senses and respond to swelling. The present study was undertaken to test the hypothesis that TRPV4 and hemichannels in the NPE respond to a mechanical stimulus. Porcine NPE cells were cultured on flexible membranes to study effects of cyclic stretch and ATP release was determined by a luciferase assay. The uptake of propidium iodide (PI) was measured as an indicator of hemichannel opening. NPE cells subjected to cyclic stretch for 1-10 min (10%, 0.5 Hz) displayed a significant increase in ATP release into the bathing medium. In studies where PI was added to the bathing medium, the same stretch stimulus increased cell PI uptake. The ATP release and PI uptake responses to stretch both were prevented by a TRPV4 antagonist, HC067047 (10 µM), and a connexin mimetic peptide, Gap 27 (200µm). In the absence of a stretch stimulus, qualitatively similar ATP release and PI uptake responses were observed in cells exposed to the TRPV4 agonist GSK1016790A (10 nM), and Gap 27 prevented the responses. Cells subjected to an osmotic swelling stimulus (hypoosmotic medium: 200 mOsm) also displayed a significant increase in ATP release and PI uptake and the responses were abolished by TRPV4 inhibition. The findings point to TRPV4-dependent connexin hemichannel opening in response to mechanical stimulus. The TRPV4-hemichannel mechanism may act as a mechanosensor that facilitates the release of ATP and possibly other autocrine or paracrine signaling molecules that influence fluid (aqueous humor) secretion by the NPE.
Collapse
|
46
|
Chu J, Yang J, Zhou Y, Chen J, Chen KH, Zhang C, Cheng HY, Koylass N, Liu JO, Guan Y, Qiu Z. ATP-releasing SWELL1 channel in spinal microglia contributes to neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523161. [PMID: 36712065 PMCID: PMC9881986 DOI: 10.1101/2023.01.08.523161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Following peripheral nerve injury, extracellular ATP-mediated purinergic signaling is crucial for spinal cord microglia activation and neuropathic pain. However, the mechanisms of ATP release remain poorly understood. Here, we show that volume-regulated anion channel (VRAC) is an ATP-releasing channel and is activated by inflammatory mediator sphingosine-1-phosphate (S1P) in microglia. Mice with microglia-specific deletion of Swell1 (also known as Lrrc8a), a VRAC essential subunit, had reduced peripheral nerve injury-induced increase in extracellular ATP in spinal cord. The mutant mice also exhibited decreased spinal microgliosis, dorsal horn neuronal hyperactivity, and both evoked and spontaneous neuropathic pain-like behaviors. We further performed high-throughput screens and identified an FDA-approved drug dicumarol as a novel and potent VRAC inhibitor. Intrathecal administration of dicumarol alleviated nerve injury-induced mechanical allodynia in mice. Our findings suggest that ATP-releasing VRAC in microglia is a key spinal cord determinant of neuropathic pain and a potential therapeutic target for this debilitating disease.
Collapse
|
47
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
48
|
Ek-Vitorin JF, Shahidullah M, Lopez Rosales JE, Delamere NA. Patch clamp studies on TRPV4-dependent hemichannel activation in lens epithelium. Front Pharmacol 2023; 14:1101498. [PMID: 36909173 PMCID: PMC9998544 DOI: 10.3389/fphar.2023.1101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
ATP release from the lens via hemichannels has been explained as a response to TRPV4 activation when the lens is subjected to osmotic swelling. To explore the apparent linkage between TRPV4 activation and connexin hemichannel opening we performed patch-clamp recordings on cultured mouse lens epithelial cells exposed to the TRPV4 agonist GSK1016790A (GSK) in the presence or absence of the TRPV4 antagonist HC067047 (HC). GSK was found to cause a fast, variable and generally large non-selective increase of whole cell membrane conductance evident as a larger membrane current (Im) over a wide voltage range. The response was prevented by HC. The GSK-induced Im increase was proportionally larger at negative voltages and coincided with fast depolarization and the simultaneous disappearance of an outward current, likely a K+ current. The presence of this outward current in control conditions appeared to be a reliable predictor of a cell's response to GSK treatment. In some studies, recordings were obtained from single cells by combining cell-attached and whole-cell patch clamp configurations. This approach revealed events with a channel conductance 180-270 pS following GSK application through the patch pipette on the cell-attached side. The findings are consistent with TRPV4-dependent opening of Cx43 hemichannels.
Collapse
Affiliation(s)
- Jose F Ek-Vitorin
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, United States
| | | | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
50
|
Jia S, Liu J, Chu Y, Liu Q, Mai L, Fan W. Single-cell RNA sequencing reveals distinct transcriptional features of the purinergic signaling in mouse trigeminal ganglion. Front Mol Neurosci 2022; 15:1038539. [PMID: 36311028 PMCID: PMC9606672 DOI: 10.3389/fnmol.2022.1038539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Trigeminal ganglion (TG) is the first station of sensory pathways in the orofacial region. The TG neurons communicate with satellite glial cells (SGCs), macrophages and other cells forming a functional unit that is responsible for processing of orofacial sensory information. Purinergic signaling, one of the most widespread autocrine and paracrine pathways, plays a crucial role in intercellular communication. The multidirectional action of purinergic signaling in different cell types contributes to the neuromodulation and orofacial sensation. To fully understand the purinergic signaling in these processes, it is essential to determine the shared and unique expression patterns of genes associated with purinergic signaling in different cell types. Here, we performed single-cell RNA sequencing of 22,969 cells isolated from normal mouse TGs. We identified 18 distinct cell populations, including 6 neuron subpopulations, 3 glial subpopulations, 7 immune cell subpopulations, fibroblasts, and endothelial cells. We also revealed the transcriptional features of genes associated with purinergic signaling, including purinergic receptors, extracellular adenosine triphosphate (eATP) release channels, eATP metabolism-associated enzymes, and eATP transporters in each cell type. Our results have important implications for understanding and predicting the cell type-specific roles of the purinergic signaling in orofacial signal processing in the trigeminal primary sensory system.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - JinYue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qing Liu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lijia Mai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Wenguo Fan,
| |
Collapse
|