1
|
Rutkowski N, Görlitz F, Wiesner E, Binz-Lotter J, Feil S, Feil R, Benzing T, Hackl MJ. Real-time imaging of cGMP signaling shows pronounced differences between glomerular endothelial cells and podocytes. Sci Rep 2024; 14:26099. [PMID: 39478086 PMCID: PMC11525973 DOI: 10.1038/s41598-024-76768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Recent clinical trials of drugs enhancing cyclic guanosine monophosphate (cGMP) signaling for cardiovascular diseases have renewed interest in cGMP biology within the kidney. However, the role of cGMP signaling in glomerular endothelial cells (GECs) and podocytes remains largely unexplored. Using acute kidney slices from mice expressing the FRET-based cGMP biosensor cGi500 in endothelial cells or podocytes enabled real-time visualization of cGMP. Stimulation with atrial natriuretic peptide (ANP) or SNAP (NO donor) and various phosphodiesterase (PDE) inhibitors elevated intracellular cGMP in both cell types. GECs showed a transient cGMP response upon particulate or soluble guanylyl cyclase activation, while the cGMP response in podocytes reached a plateau following ANP administration. Co-stimulation (ANP + SNAP) led to an additive response in GECs. The administration of PDE inhibitors revealed a broader basal PDE activity in GECs dominated by PDE2a. In podocytes, basal PDE activity was mainly restricted to PDE3 and PDE5 activity. Our data demonstrate the existence of both guanylyl cyclase pathways in GECs and podocytes with cell-specific differences in cGMP synthesis and degradation, potentially suggesting new therapeutic options for kidney diseases.
Collapse
Affiliation(s)
- Nelli Rutkowski
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frederik Görlitz
- Bio- and Nanophotonics, Department of Microsystem Engineering, University of Freiburg, Freiburg, Germany
| | - Eva Wiesner
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Thomas Benzing
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Nephrolab Cologne, CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
2
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
3
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Chen X, Delić D, Cao Y, Zhang Z, Wu H, Hasan AA, Gaballa MMS, Yin L, Krämer BK, Klein T, Shi X, He B, Shen L, Hocher B. Renal and cardiac effects of the PDE9 inhibitor BAY 73-6691 in 5/6 nephrectomized rats. Pflugers Arch 2024; 476:755-767. [PMID: 38305876 DOI: 10.1007/s00424-024-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3',5'-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73-6691) on the heart and kidney. Two doses of BAY 73-6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73-6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73-6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Denis Delić
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397, Biberach, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Zeyu Zhang
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongwei Wu
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Lianghong Yin
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
- IMD Institut Für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany.
| |
Collapse
|
5
|
Ghatage T, Singh S, Mandal K, Dhar A. MasR and pGCA receptor activation protects primary vascular smooth muscle cells and endothelial cells against oxidative stress via inhibition of intracellular calcium. J Cell Biochem 2023. [PMID: 37210727 DOI: 10.1002/jcb.30422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Cardiovascular diseases (CVDs) are associated with vascular smooth muscle cell (VSMC) and endothelial cell (EC) damage. Angiotensin1-7 (Ang1-7) and B-type natriuretic peptide (BNP) are responsible for vasodilation and regulation of blood flow. These protective effects of BNP are primarily mediated by the activation of sGCs/cGMP/cGKI pathway. Conversely, Ang1-7 inhibits Angiotensin II-induced contraction and oxidative stress via Mas receptor activation. Thus, the aim of the study was to determine the effect of co-activation of MasR and particulate guanylate cyclase receptor (pGCA) pathways by synthesized novel peptide (NP) in oxidative stress-induced VSMCs and ECs. MTT and Griess reagent assay kits were used for the standardization of the oxidative stress (H2 O2 ) induced model in VSMCs. The expression of targeted receptors in VSMC was done by RT-PCR and Western blot analysis. Protective effect of NP in VSMC and EC was determined by immunocytochemistry, FACS analysis, and Western blot analysis. Underlying mechanisms of EC-dependent VSMC relaxation were done by determining downstream mRNA gene expression and intracellular calcium imaging of cells. Synthesized NP significantly improved oxidative stress-induced injury in VSMCs. Remarkably, the actions of NP were superior to that of the Ang1-7 and BNP alone. Further, a mechanistic study in VSMC and EC suggested the involvement of upstream mediators of calcium inhibition for the therapeutic effect. NP is reported to possess vascular protective activities and is also involved in the improvement of endothelial damage. Moreover, it is highly effective than that of individual peptides BNP and Ang1-7 and therefore it may represent a promising strategy for CVDs.
Collapse
Affiliation(s)
- Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Heinl ES, Broeker KAE, Lehrmann C, Heydn R, Krieger K, Ortmaier K, Tauber P, Schweda F. Localization of natriuretic peptide receptors A, B, and C in healthy and diseased mouse kidneys. Pflugers Arch 2023; 475:343-360. [PMID: 36480070 PMCID: PMC9908653 DOI: 10.1007/s00424-022-02774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection. Since neither the NP-mediated renal functions nor the renal target cells of renoprotection are completely understood, we performed systematic localization studies of NP receptors using in situ hybridization (RNAscope) in mouse kidneys. NPR-A mRNA is highly expressed in glomeruli (mainly podocytes), renal arterioles, endothelial cells of peritubular capillaries, and PDGFR-receptor β positive (PDGFR-β) interstitial cells. No NPR-A mRNA was detected by RNAscope in the tubular system. In contrast, NPR-B expression is highest in proximal tubules. NPR-C is located in glomeruli (mainly podocytes), in endothelial cells and PDGFR-β positive cells. To test for a possible regulation of NPRs in kidney diseases, their distribution was studied in adenine nephropathy. Signal intensity of NPR-A and NPR-B mRNA was reduced while their spatial distribution was unaltered compared with healthy kidneys. In contrast, NPR-C mRNA signal was markedly enhanced in cell clusters of myofibroblasts in fibrotic areas of adenine kidneys. In conclusion, the primary renal targets of ANP and BNP are glomerular, vascular, and interstitial cells but not the tubular compartment, while the CNP receptor NPR-B is highly expressed in proximal tubules. Further studies are needed to clarify the function and interplay of this specific receptor expression pattern.
Collapse
Affiliation(s)
- Elena-Sofia Heinl
- Institute for Physiology, University Regensburg, Regensburg, Germany.
| | | | - Claudia Lehrmann
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Rosmarie Heydn
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Katharina Krieger
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Katharina Ortmaier
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Philipp Tauber
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute for Physiology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Meibom D, Micus S, Andreevski AL, Anlauf S, Bogner P, von Buehler CJ, Dieskau AP, Dreher J, Eitner F, Fliegner D, Follmann M, Gericke KM, Maassen S, Meyer J, Schlemmer KH, Steuber H, Tersteegen A, Wunder F. BAY-7081: A Potent, Selective, and Orally Bioavailable Cyanopyridone-Based PDE9A Inhibitor. J Med Chem 2022; 65:16420-16431. [PMID: 36475653 PMCID: PMC9791655 DOI: 10.1021/acs.jmedchem.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.
Collapse
|
8
|
Sahakyan G, Vejux A, Sahakyan N. The Role of Oxidative Stress-Mediated Inflammation in the Development of T2DM-Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249035. [PMID: 36558167 PMCID: PMC9786776 DOI: 10.3390/molecules27249035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is manifested in more than 10% of people with diabetes. It is a common cause of kidney failure and end-stage kidney disease. Understanding of mechanisms underlying the initiation and development of diabetes-induced kidney injuries will allow for the development of more effective methods of prevention and treatment of the disease. Diabetic nephropathy is a wide-ranging complication of diabetes, and it is necessary to discuss the "weight" of pro-inflammatory pathways and molecules in the progress of renal injuries during the development of the disease. A large spectrum of pro-inflammatory molecules and pathways participate in different stages of the pathophysiological progression of diabetic nephropathy, including pro-inflammatory cytokines, chemokines, their receptors, adhesion molecules, and transcription factors. On the other hand, it is known that one of the consequences of hyperglycemia-induced ROS generation is the up-regulation of pro-inflammatory cascades, which, in turn, activate the transcription of genes encoding cytokines-chemokines, growth factors, and extracellular matrix proteins. It is a proven fact that a variety of plant secondary metabolites, such as tannins, flavonoids, and other polyphenols, demonstrate significant anti-diabetic, redox-modulating properties and effectively modulate the inflammatory response. Thus, this review is discussing the possible role of plant phenols in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gohar Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
| | - Anne Vejux
- Team “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, University Bourgogne Franche-Comté, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| | - Naira Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| |
Collapse
|
9
|
Vollmer Barbosa C, Lang H, Melk A, Schmidt BMW. Renal events in patients receiving neprilysin inhibitors: a systematic review and meta-analysis. Nephrol Dial Transplant 2022; 37:2418-2428. [PMID: 35022763 DOI: 10.1093/ndt/gfac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While it is well known that angiotensin-converting enzyme inhibitors (ACEi)/angiotensin receptor blockers (ARBs) increase the risk of acute renal failure, the role of neprilysin inhibition (NEPi) is unclear and some physicians are reluctant to prescribe sacubitril/valsartan because of safety concerns. This meta-analysis aimed to examine the risk for renal events, progression of chronic kidney disease (CKD) or progression to dialysis on combined NEPi and ACEi/ARBs compared with ACEi or ARBs. METHODS We performed a systematic meta-analysis including 17 randomized controlled trials (study drug sacubitril/valsartan or omapatrilat), involving a total of 23 569 patients, after searching PubMed, Cochrane, ClinicalTrials.org and Embase for eligible studies. From the included trials, all renal endpoints, including long- and short-term outcomes and hyperkalemia, were extracted. Pooled odds ratios (ORs) were calculated using the DerSimonian and Laird method. The study was registered at PROSPERO. RESULTS Overall, treatment with sacubitril/valsartan or omapatrilat showed a slightly lower risk of any renal event [OR 0.82 (0.7-0.97)] compared with treatment with an ACEi or ARB alone. Also, there was a decreased risk of severe acute renal events [OR 0.8 (0.69-0.93)] and a decrease in estimated glomerular filtration rate decline [mean difference -0.58 mL/min (-0.83 to -0.33 mL/min)]. There was no difference in chronic renal events [OR 0.92 (0.8-1.05)] or hyperkalemia [OR 1.02 (0.84-1.23)]. CONCLUSION NEPi + ACEi/ARBs are safe in terms of renal adverse events. Longer trials focusing on CKD are needed to evaluate the effect of NEPi on decreasing progression of CKD.
Collapse
Affiliation(s)
- Clara Vollmer Barbosa
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| | - Hannah Lang
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Bernhard M W Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
12
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
13
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
14
|
Jorge ARC, Marinho AD, Silveira JADM, Nogueira Junior FA, de Aquino PEA, Alves APNN, Jorge RJB, Ferreira Junior RS, Monteiro HSA. Phosphodiesterase-5 inhibitor sildenafil attenuates kidney injury induced by Bothrops alternatus snake venom. Toxicon 2021; 202:46-52. [PMID: 34516995 DOI: 10.1016/j.toxicon.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Acute kidney injury pathogenesis in envenoming by snakes is multifactorial and involves immunologic reactions, hemodynamic disturbances, and direct nephrotoxicity. Sildenafil (SFC), a phosphodiesterase 5 inhibitor, has been reported to protect against pathological kidney changes. OBJECTIVE This study aimed to investigate the protective effect of sildenafil against Bothrops alternatus snake venom (BaV)-induced nephrotoxicity. METHODS Kidneys from Wistar rats (n = 6, weighing 260-300 g) were isolated and divided into four groups: (1) perfused with a modified Krebs-Henseleit solution (MKHS) containing 6 g% of bovine serum albumin; (2) administered 3 μg/mL SFC; (3) perfused with 3 μg/mL BaV; and (4) administered SFC + BaV, both at 3 μg/mL. Subsequently, the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and percentage of electrolyte tubular sodium and chloride transport (%TNa+, %TCl-, respectively) were evaluated. The cyclic guanosine monophosphate (cGMP) levels were analyzed in the perfusate, and the kidneys were removed to perform oxidative stress and histopathological analyses. RESULTS All renal parameters evaluated were reduced with BaV. In the SFC + BaV group, SFC restored PP to normal values and promoted a significant increase in %TNa+ and %TCl-. cGMP levels were increased in the SFC + BaV group. The oxidative stress biomarkers, malondialdehyde (MDA) and glutathione (GSH), were reduced by BaV. In the SFC + BaV group, a decrease in MDA without an increase in GSH was observed. These findings were confirmed by histological analysis, which showed improvement mainly in tubulis. CONCLUSION Our data suggest the involvement of phosphodiesterase-5 and cGMP in BaV-induced nephrotoxicity since its effects were attenuated by the administration of SFC.
Collapse
Affiliation(s)
- Antônio Rafael Coelho Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Aline Diogo Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| | - João Alison de Moraes Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Francisco Assis Nogueira Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Pedro Everson Alexandre de Aquino
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil; Department of Dental Clinic, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Monsenhor Furtado St., 60.430-350, Fortaleza, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals, Fazenda Experimental Lageado, São Paulo State University, José Barbosa de Barros St. 1780, 18610-307, Botucatu, SP, Brazil
| | - Helena Serra Azul Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| |
Collapse
|
15
|
Kallash M, Mahan JD. Mechanisms and management of edema in pediatric nephrotic syndrome. Pediatr Nephrol 2021; 36:1719-1730. [PMID: 33216218 DOI: 10.1007/s00467-020-04779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Edema is the abnormal accumulation of fluid in the interstitial compartment of tissues within the body. In nephrotic syndrome, edema is often seen in dependent areas such as the legs, but it can progress to cause significant accumulation in other areas leading to pulmonary edema, ascites, and/or anasarca. In this review, we focus on mechanisms and management of edema in children with nephrotic syndrome. We review the common mechanisms of edema, its burden in pediatric patients, and then present our approach and algorithm for management of edema in pediatric patients. The extensive body of experience accumulated over the last 5 decades means that there are many options, and clinicians may choose among these options based on their experience and careful monitoring of responses in individual patients.
Collapse
Affiliation(s)
- Mahmoud Kallash
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA. .,The Ohio State University College of Medicine, Columbus, OH, USA.
| | - John D Mahan
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA.,The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
16
|
Brignone J, Assersen KB, Jensen M, Jensen BL, Kloster B, Jønler M, Lund L. Protection of kidney function and tissue integrity by pharmacologic use of natriuretic peptides and neprilysin inhibitors. Pflugers Arch 2021; 473:595-610. [PMID: 33844072 DOI: 10.1007/s00424-021-02555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
With variable potencies atrial-, brain-type and c-type natriuretic peptides (NP)s, best documented for ANP and its analogues, promote sodium and water excretion, renal blood flow, lipolysis, lower blood pressure, and suppress renin and aldosterone secretion through interaction predominantly with cGMP-coupled NPR-A receptor. Infusion of especially ANP and its analogues up to 50 ng/kg/min in patients with high risk of acute kidney injury (cardiac vascular bypass surgery, intraabdominal surgery, direct kidney surgery) protects kidney function (GFR, plasma flow, medullary flow, albuminuria, renal replacement therapy, tissue injury) at short term and also long term and likely additively with the diuretic furosemide. This documents a pharmacologic potential for the pathway. Neprilysin (NEP, neutral endopeptidase) degrades NPs, in particular ANP, and angiotensin II. The drug LCZ696, a mixture of the neprilysin inhibitor sacubitril and the ANGII-AT1 receptor blocker valsartan, was FDA approved in 2015 and marketed as Entresto®. In preclinical studies of kidney injury, LCZ696 and NPs lowered plasma creatinine, countered hypoxia and oxidative stress, suppressed proinflammatory cytokines, and inhibited fibrosis. Few randomized clinical studies exist and were designed with primary cardiac outcomes. The studies showed that LCZ696/entresto stabilized and improved glomerular filtration rate in patients with chronic kidney disease. LCZ696 is safe to use concerning kidney function and stabilizes or increases GFR. In perspective, combined AT1 and neprilysin inhibition is a promising approach for long-term renal protection in addition to AT1 receptor blockers in acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Juan Brignone
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Kasper Bostlund Assersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Brian Kloster
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Jønler
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Lund
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
17
|
Spannella F, Giulietti F, Filipponi A, Sarzani R. Effect of sacubitril/valsartan on renal function: a systematic review and meta-analysis of randomized controlled trials. ESC Heart Fail 2020; 7:3487-3496. [PMID: 32960491 PMCID: PMC7754726 DOI: 10.1002/ehf2.13002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
A worsening renal function is prevalent among patients with cardiovascular disease, especially heart failure (HF). Sacubitril/valsartan appears to prevent worsening of renal function and progression of chronic kidney disease (CKD) as compared with renin-angiotensin system (RAS) inhibitors alone in HF patients. It is unclear whether these advantages are present in HF patients only, or can be extended to other categories of patients, in which this drug was studied. We performed a systematic review and meta-analysis to assess the consistency of effect size regarding renal outcome across randomized controlled trials (RCTs) that compared sacubitril/valsartan with RAS inhibitors in patients with or without HF. We searched Medline (PubMed), Scopus, and Thomson Reuters Web of Science databases until June 2020. We took into account RCTs that compared sacubitril/valsartan with a RAS inhibitor and reported data regarding renal function. We used random-effects models to obtain summary odds ratio (OR) with 95% confidence interval (CI). We extracted hazard ratios for renal outcomes, glomerular filtration rate slopes or rates of renal adverse events. Sensitivity analyses were performed by moderator analysis and random-effects meta-regression. The search revealed 10 RCTs (published between 2012 and 2019) on 16 456 subjects. Sacubitril/valsartan resulted in a lower risk of renal dysfunction as compared with RAS inhibitors alone [k = 10; pooled OR = 0.70 (95% CI 0.57-0.85); P < 0.001], with a moderate inconsistency between studies [Q(9) = 15.18; P = 0.086; I2 = 40.73%]. A stronger association was found in studies including older patients (k = 10; β = -0.047730; P = 0.020) or HF patients with preserved ejection fraction [pooled OR = 0.53 (0.41-0.68) vs. 0.76 (0.57-1.01) for studies on HF patients with reduced ejection fraction; P for comparison = 0.065]. The effect size did not change with different comparators (angiotensin-converting enzyme inhibitors vs. angiotensin II type 1 receptor blockers, P = 0.279). No significant association was found when the analysis was restricted to studies on non-HF patients [k = 3; pooled OR = 0.86 (0.61-1.22); P = 0.403] and studies with high risk of bias [k = 3; pooled OR = 0.34 (0.08-1.44); P = 0.143]. Our findings support the role of sacubitril/valsartan on preservation of renal function, especially in older patients and HF patients with preserved ejection fraction. However, evidence is currently limited to HF patients, while the renal outcome of sacubitril/valsartan therapy outside the HF setting needs to be further investigated.
Collapse
Affiliation(s)
- Francesco Spannella
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Federico Giulietti
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Andrea Filipponi
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| | - Riccardo Sarzani
- Internal Medicine and GeriatricsIRCCS INRCAVia della Montagnola 81AnconaItaly
- Department of Clinical and Molecular SciencesUniversity ‘Politecnica delle Marche’Via Tronto 10/aAnconaItaly
| |
Collapse
|
18
|
Klein O, Haeckel A, Reimer U, Nebrich G, Schellenberger E. Multiplex enzyme activity imaging by MALDI-IMS of substrate library conversions. Sci Rep 2020; 10:15522. [PMID: 32968143 PMCID: PMC7511933 DOI: 10.1038/s41598-020-72436-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
Enzymes are fundamental to biological processes and involved in most pathologies. Here we demonstrate the concept of simultaneously mapping multiple enzyme activities (EA) by applying enzyme substrate libraries to tissue sections and analyzing their conversion by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). To that end, we spray-applied a solution of 20 naturally derived peptides that are known substrates for proteases, kinases, and phosphatases to zinc-fixed paraffin tissue sections of mouse kidneys. After enzyme conversion for 5 to 120 min at 37 °C and matrix application, the tissue sections were imaged by MALDI-IMS. We could image incubation time-dependently 16 of the applied substrates with differing signal intensities and 12 masses of expected products. Utilizing inherent enzyme amplification, EA-IMS can become a powerful tool to locally study multiple, potentially even lowly expressed, enzyme activities, networks, and their pharmaceutical modulation. Differences in the substrate detectability highlight the need for future optimizations.
Collapse
Affiliation(s)
- Oliver Klein
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Akvile Haeckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstraße 5, 12489, Berlin, Germany
| | - Grit Nebrich
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
19
|
Špiranec Spes K, Chen W, Krebes L, Völker K, Abeßer M, Eder Negrin P, Cellini A, Nickel A, Nikolaev VO, Hofmann F, Schuh K, Schweda F, Kuhn M. Heart-Microcirculation Connection: Effects of ANP (Atrial Natriuretic Peptide) on Pericytes Participate in the Acute and Chronic Regulation of Arterial Blood Pressure. Hypertension 2020; 76:1637-1648. [PMID: 32951468 DOI: 10.1161/hypertensionaha.120.15772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac ANP (atrial natriuretic peptide) moderates arterial blood pressure. The mechanisms mediating its hypotensive effects are complex and involve inhibition of the renin-angiotensin-aldosterone system, increased natriuresis, endothelial permeability, and vasodilatation. The contribution of the direct vasodilating effects of ANP to blood pressure homeostasis is controversial because variable levels of the ANP receptor, GC-A (guanylyl cyclase-A), are expressed among vascular beds. Here, we show that ANP stimulates GC-A/cyclic GMP signaling in cultured microvascular pericytes and thereby the phosphorylation of the regulatory subunit of myosin phosphatase 1 by cGMP-dependent protein kinase I. Moreover, ANP prevents the calcium and contractile responses of pericytes to endothelin-1 as well as microvascular constrictions. In mice with conditional inactivation (knock-out) of GC-A in microcirculatory pericytes, such vasodilating effects of ANP on precapillary arterioles and capillaries were fully abolished. Concordantly, these mice have increased blood pressure despite preserved renal excretory function. Furthermore, acute intravascular volume expansion, which caused release of cardiac ANP, did not affect blood pressure of control mice but provoked hypertensive reactions in pericyte GC-A knock-out littermates. We conclude that GC-A/cGMP-dependent modulation of pericytes and microcirculatory tone contributes to the acute and chronic moderation of arterial blood pressure by ANP. Graphic Abstract A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Katarina Špiranec Spes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Wen Chen
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany.,The Affiliated Haimen Hospital, Nantong University, Jiangsu, China (W.C.)
| | - Lisa Krebes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Katharina Völker
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Marco Abeßer
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Petra Eder Negrin
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Antonella Cellini
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, TU Munich, Germany (F.H.)
| | - Kai Schuh
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (F.S.)
| | - Michaela Kuhn
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| |
Collapse
|
20
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Dass B, Beaver TM, Shimada M, Alquadan KF, Koratala A, Singhania G, Singh A, Ejaz AA. Natriuretic peptides in acute kidney injury - A sojourn on parallel tracks? Eur J Intern Med 2020; 71:39-44. [PMID: 31812538 DOI: 10.1016/j.ejim.2019.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The focus of this review was to elicit the mechanistic logic of the experimental and clinical study designs of natriuretic peptides (NP) in acute kidney injury (AKI) and to understand their respective outcomes. METHODS Online search of PubMed and manual review of articles. Randomized trials, observational and physiologic studies of NPs and AKI were extracted. Rationale, design and study outcomes were analyzed. RESULTS In experimental models of AKI, infusion of NP prevented post-ischemic fall in renal blood flow (RBF) or improvement in RBF, GFR, diuresis and natriuresis and demonstrated anti-inflammatory properties. NPs were most effective in the early stages of AKI, also in established phase of AKI but their effectiveness were limited to the time of infusion. Hypotension was a major side-effect. Based on these observations, preliminary clinical studies were performed which demonstrated improved urine output, RBF and GFR and reduced need for dialysis. However, randomized, controlled trials failed to demonstrate improvement in dialysis-free survival in different cohorts and study designs. Although NPs reduced the incidence of AKI in the postoperative period in cardiac surgery, it was not associated with improved long-term survival. In contrast to randomized trials, meta-analysis reported favorable results. CONCLUSIONS Reasons for the divergence of experimental and clinical outcomes of NPs in AKI are discussed in this review article.
Collapse
Affiliation(s)
- Bhagwan Dass
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA
| | - Thomas M Beaver
- Division of Cardiovascular Surgery, University of Florida, Gainesville, USA
| | - Michiko Shimada
- Division of Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kawther F Alquadan
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA
| | - Abhilash Koratala
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA
| | - Girish Singhania
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA
| | - Amardeep Singh
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA
| | - A Ahsan Ejaz
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610, USA.
| |
Collapse
|
22
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
23
|
Chen Y, Burnett JC. The Kidney, Bone Marrow, and Heart Connection in Acute Kidney Injury: Role of Galecin-3. JACC Basic Transl Sci 2019; 4:733-735. [PMID: 31713546 PMCID: PMC6834947 DOI: 10.1016/j.jacbts.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Domondon M, Nikiforova AB, DeLeon-Pennell KY, Ilatovskaya DV. Regulation of mitochondria function by natriuretic peptides. Am J Physiol Renal Physiol 2019; 317:F1164-F1168. [PMID: 31509010 DOI: 10.1152/ajprenal.00384.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) are well known to promote renal Na+ excretion, counteracting the effects of the renin-angiotensin-aldosterone system. Thus, NPs serve as a key component in the maintenance of blood pressure, influencing fluid retention capabilities via osmoregulation. Recently, NPs have been shown to affect lipolysis and enhance lipid oxidation and mitochondrial respiration. Here, we provide an overview of current knowledge about the relationship between NPs and mitochondria-mediated processes such as reactive oxygen species production, Ca2+ signaling, and apoptosis. Establishing a clear physiological and mechanistic connection between NPs and mitochondria in the cardiovascular system will open new avenues of research aimed at understanding and potentially using it as a therapeutic target from a completely new angle.
Collapse
Affiliation(s)
- Mark Domondon
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina
| | - Anna B Nikiforova
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
26
|
Chen Y, Harty GJ, Zheng Y, Iyer SR, Sugihara S, Sangaralingham SJ, Ichiki T, Grande JP, Lee HC, Wang XL, Burnett JC. CRRL269. Circ Res 2019; 124:1462-1472. [PMID: 30929579 PMCID: PMC6512967 DOI: 10.1161/circresaha.118.314164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Acute kidney injury (AKI) has a high prevalence and mortality in critically ill patients. It is also a powerful risk factor for heart failure incidence driven by hemodynamic changes and neurohormonal activation. However, no drugs have been approved by the Food and Drug Administration. Endogenous pGC-A (particulate guanylyl cyclase A receptor) activators were reported to preserve renal function and improve mortality in AKI patients, although hypotension accompanied by pGC-A activators have limited their therapeutic potential. OBJECTIVE We investigated the therapeutic potential of a nonhypotensive pGC-A activator/designer natriuretic peptide, CRRL269, in a short-term, large animal model of ischemia-induced AKI and also investigated the potential of uCNP (urinary C-type natriuretic peptide) as a biomarker for AKI. METHODS AND RESULTS We first showed that CRRL269 stimulated cGMP generation, suppressed plasma angiotensin II, and reduced cardiac filling pressures without lowering blood pressure in the AKI canine model. We also demonstrated that CRRL269 preserved glomerular filtration rate, increased renal blood flow, and promoted diuresis and natriuresis. Further, CRRL269 reduced kidney injury and apoptosis as evidenced by ex vivo histology and tissue apoptosis analysis. We also showed, compared with native pGC-A activators, that CRRL269 is a more potent inhibitor of apoptosis in renal cells and induced less decreases in intracellular Ca2+ concentration in vascular smooth muscle cells. The renal antiapoptotic effects were at least mediated by cGMP/PKG pathway. Further, CRRL269 inhibited proapoptotic genes expression using a polymerase chain reaction gene array. Additionally, we demonstrated that AKI increased uCNP levels. CONCLUSIONS Our study supports developing CRRL269 as a novel renocardiac protective agent for AKI treatment.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Gail J. Harty
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Shinobu Sugihara
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Xiao Li Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Malek V, Sharma N, Sankrityayan H, Gaikwad AB. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy. Life Sci 2019; 221:159-167. [PMID: 30769114 DOI: 10.1016/j.lfs.2019.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/16/2023]
Abstract
AIMS Renin-angiotensin system (RAS) and natriuretic peptides system (NPS) perturbations govern the development of diabetic nephropathy (DN). Hence, in search of a novel therapy against DN, present study targeted both, NPS and RAS simultaneously using a neprilysin inhibitor (NEPi) in combination with either angiotensin receptor blocker (ARB) or angiotensin-converting enzyme 2 (ACE2) activator. METHODS We induced diabetes in male Wistar rats by a single dose of streptozotocin (55 mg/kg, i.p.). After four weeks, we treated diabetic rats with thiorphan, telmisartan or diminazene aceturate (Dize) 0.1, 10, 5 mg/kg/day, p.o. alone as monotherapy, or both thiorphan/telmisartan or thiorphan/Dize as combination therapy, for four weeks. Then, plasma and urine biochemistry were performed, and kidneys from all the groups were collected and processed separately for histopathology, ELISA and Western blotting. KEY FINDINGS Proposed combination therapies attenuated metabolic perturbations, prevented renal functional decline, and normalised adverse alterations in renal ACE, ACE2, Ang-II, Ang-(1-7), neprilysin and cGMP levels in diabetic rats. Histopathological evaluation revealed a significant reduction in glomerular and tubulointerstitial fibrosis by combination therapies. Importantly, combination therapies inhibited inflammatory, profibrotic and apoptotic signalling, way better than respective monotherapies, in preventing DN. CONCLUSION Renoprotective potential of thiorphan (NEPi)/telmisartan (ARB) and thiorphan/Dize (ACE2 activator) combination therapies against the development of DN is primarily attributed to normalisation of RAS and NPS components and inhibition of pathological signalling related to inflammation, fibrosis, and apoptosis. Hence, we can conclude that NEPi/ARB and NEPi/ACE2 activator combination therapies might be new therapeutic strategies in preventing DN.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|