1
|
Meyer zu Schwabedissen A, Vergarajauregui S, Bertog M, Amann K, Engel FB, Daniel C. Protease-activated receptor 2 deficient mice develop less angiotensin II induced left ventricular hypertrophy but more cardiac fibrosis. PLoS One 2024; 19:e0310095. [PMID: 39637045 PMCID: PMC11620577 DOI: 10.1371/journal.pone.0310095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/25/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II. METHODS Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps. At the end, hearts were collected for analysis of left ventricular hypertrophy (LVH), myocardial capillary supply, fibrosis and localization of PAR2 expression using histological, immunohistological and mRNA expression analysis techniques. In addition, rat cardiac fibroblasts were treated with angiotensin II and PAR2 was inhibited by a blocking antibody and the PAR2 inhibitor AZ3451. RESULTS Cardiac PAR2 mRNA expression was downregulated by 40±20% in wt mice treated with AngII compared to untreated controls. Four weeks after AngII treatment, LVH was significantly increased in AngII-treated wt mice compared to similarly treated PAR2-deficient animals as determined by relative heart weight, left ventricular cross-sectional area, and analysis of ventricular lumen area determined on sections. Treatment of wt mice resulted in an approximately 3-fold increase in cardiac expression of FGF23, which was 50% lower in PAR2-deficient animals compared to wt animals and therefore no longer significantly different from expression levels in untreated control mice. In contrast, cardiac interstitial fibrosis was significantly higher in PAR2-deficient mice compared to similar treated wt controls, as assessed by Sirius Red staining (>3-fold) and collagen IV staining (>2-fold). Additional experiments with isolated cardiac fibroblasts showed induction of pro-fibrotic genes when treated with PAR2 inhibitors. CONCLUSION In angiotensin II-induced cardiac injury, PAR2 deficiency has an ambivalent effect, enhancing fibrosis on the one hand, but reducing LVH on the other.
Collapse
Affiliation(s)
- Albrecht Meyer zu Schwabedissen
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silvia Vergarajauregui
- Department of Nephropathology, Institute of Pathology and Department of Cardiology, Experimental Renal and Cardiovascular Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B. Engel
- Department of Nephropathology, Institute of Pathology and Department of Cardiology, Experimental Renal and Cardiovascular Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Georgieva TG, Darmoul D, Chen H, Cui H, Rice PFS, Barton JK, Besselsen DG, Ignatenko NA. Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene. Cancers (Basel) 2024; 16:3842. [PMID: 39594797 PMCID: PMC11592602 DOI: 10.3390/cancers16223842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal tract of Apc-mutant multiple intestinal neoplasia (ApcMin/+) mice revealed up to four-fold induction of Klk6 mRNA levels in adenomas relative to its level in the adjacent mucosa. METHODS AND RESULTS The presence of KLK6 protein in the adenomatous areas was confirmed by immunohistochemistry and optical coherence tomography/laser-induced fluorescence (OCT/LIF) imaging. To assess the contribution of the KLK6 expression on the Apc-mutant intestinal and colon tumorigenesis, we engineered a mouse with floxed alleles of the Klk6 gene (Klk6lox/lox) and crossed it with a mouse expressing the truncated APC protein under control of the intestinal tract-specific human CDX2P9.5-NLS Cre transgene (CPC;Apcfl/fl;Klk6+/+). We found that CPC;Apcfl/fl mice with disrupted Klk6 gene expression (CPC;Apcfl/fl;Klk6fl/fl) had a significantly smaller average size of the small intestinal and colon crypts (p < 0.001 and p = 0.04, respectively) and developed a significantly fewer adenomas (p = 0.01). Moreover, a decrease in high-grade adenomas (p = 0.03) and adenomas with a diameter above 2 mm (p < 0.0001) was noted in CPC;Apcfl/fl;Klk6fl/fl mice. Further molecular analysis showed that Klk6 gene inactivation in the small intestine and colon tissues of CPC;Apcfl/fl;Klk6fl/fl mice resulted in a significant suppression of transforming growth factor β2 (TGF-β2) protein (p ≤ 0.02) and mitogen-activated protein kinase (MAPK) phosphorylation (p ≤ 0.01). CONCLUSIONS These findings demonstrate the oncogenic role of KLK6 in the mutant Apc-mediated intestinal tumorigenesis and suggest the utility of KLK6 for early diagnosis of colorectal tumors.
Collapse
Affiliation(s)
- Teodora G. Georgieva
- Genetically Engineered Mouse Models Core, The University of Arizona Bio5 Institute, Tucson, AZ 85721-0240, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Dalila Darmoul
- Institut de Biologie Paris-Seine, Sorbonne Université, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, 75005 Paris, France;
| | - Hwudaurw Chen
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Haiyan Cui
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Photini F. S. Rice
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0240, USA; (P.F.S.R.); (J.K.B.)
| | - Jennifer K. Barton
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0240, USA; (P.F.S.R.); (J.K.B.)
| | - David G. Besselsen
- University Animal Care, The University of Arizona, Tucson, AZ 85721-0101, USA;
| | - Natalia A. Ignatenko
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724-5024, USA
| |
Collapse
|
3
|
Ding SY, Yang YX, Liu C, Quan XY, Zhao ZH, Jin CH. Synthesis and biological evaluation of sulfonamide derivatives containing imidazole moiety as ALK5 inhibitors. Mol Divers 2024:10.1007/s11030-024-10973-y. [PMID: 39212874 DOI: 10.1007/s11030-024-10973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 μM) and 15a (IC50 = 0.130 μM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 μM, and effectively inhibited TGF-β1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.
Collapse
Affiliation(s)
- Shu-Yan Ding
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xu-Yin Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zi-Han Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
4
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Yang YX, Guo J, Liu C, Nan JX, Wu YL, Jin CH. Synthesis of amide derivatives containing the imidazole moiety and evaluation of their anti-cardiac fibrosis activity. Arch Pharm (Weinheim) 2024; 357:e2400131. [PMID: 38678538 DOI: 10.1002/ardp.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-β-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| |
Collapse
|
6
|
Church C, Fay CX, Kriukov E, Liu H, Cannon A, Baldwin LA, Crossman DK, Korf B, Wallace MR, Gross AM, Widemann BC, Kesterson RA, Baranov P, Wallis D. snRNA-seq of human cutaneous neurofibromas before and after selumetinib treatment implicates role of altered Schwann cell states, inter-cellular signaling, and extracellular matrix in treatment response. Acta Neuropathol Commun 2024; 12:102. [PMID: 38907342 PMCID: PMC11191180 DOI: 10.1186/s40478-024-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.
Collapse
Affiliation(s)
- Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Emil Kriukov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley Cannon
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lauren Ashley Baldwin
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert A Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Xia Y, Luo Q, Gao Q, Huang C, Chen P, Zou Y, Chen X, Liu W, Chen Z. SIRT1 activation ameliorates rhesus monkey liver fibrosis by inhibiting the TGF-β/smad signaling pathway. Chem Biol Interact 2024; 394:110979. [PMID: 38555046 DOI: 10.1016/j.cbi.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
TGF-β/Smad signaling pathway plays an important role in the pathogenesis and progression of liver fibrosis. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent enzyme and responsible for deacetylating the proteins. Increasing numbers of reports have shown that the molecular mechanism of SIRT1 as an effective therapeutic target for liver fibrosis but the transformation is not very clear. In the present study, liver fibrotic tissues were screened by staining with Masson, hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) for histopathological observation from the liver biopsy of seventy-seven rhesus monkey, which fixed with 4% paraformaldehyde (PFA) after treatment with high-fat diet (HFD) for two years. And the liver function was further determined by serum biochemical tests. The mRNA levels and protein expression of rat hepatic stellate (HSC-T6) cells were determined after treatment with Resveratrol (RSV) and Nicotinamide (NAM), respectively. The results showed that with the increasing of hepatic fibrosis in rhesus monkeys, the liver function impaired, and the transforming growth factor-β1 (TGF-β1), p-Smad3 (p-Smad3) and alpha-smooth muscle actin (α-SMA) was up-regulated, while SIRT1 and Smad7 were down-regulated. Moreover, when stimulated the HSC-T6 with RSV to activate SIRT1 for 6, 12, and 24 h, the results showed that RSV promoted the expression of smad7, while the expression of TGF-β1, p-Smad3 and α-SMA were inhibited. In contrast, when the cells stimulated with NAM to inhibit SIRT1 for 6, 12, and 24 h, the Smad7 expression was decreased, while TGF-β1, p-Smad3, and α-SMA expressions were increased. These results indicate that SIRT1 acts as an important protective factor for liver fibrosis, which may be attributed to inhibiting the signaling pathway of TGF-β/Smad in hepatic fibrosis of the rhesus monkey.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China
| | - Qi Gao
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Zou
- Wanzhou District Livestock Industry Development Center, Chongqing, 404120, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China.
| |
Collapse
|
8
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Sun J, Yang R, Fu J, Huo D, Qu X, Tan C, Chen H, Wang X. TGFβ1-induced hedgehog signaling suppresses the immune response of brain microvascular endothelial cells elicited by meningitic Escherichia coli. Cell Commun Signal 2024; 22:123. [PMID: 38360663 PMCID: PMC10868028 DOI: 10.1186/s12964-023-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFβ1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT In this work, we showed that exogenous TGFβ1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION Our work revealed the effect of TGFβ1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.
Collapse
Affiliation(s)
- Jinrui Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
10
|
Huang F, Lai J, Qian L, Hong W, Li LC. Differentiation of Uc-MSCs into insulin secreting islet-like clusters by trypsin through TGF-beta signaling pathway. Differentiation 2024; 135:100744. [PMID: 38128465 DOI: 10.1016/j.diff.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet β cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-β signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-β signaling pathway using specific inhibitor of LY2109761 (TβRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-β signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.
Collapse
Affiliation(s)
- Feirong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiashuang Lai
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lixia Qian
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wanjin Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, 138673, Singapore.
| | - Liang-Cheng Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
11
|
Tanabe S, Boonstra E, Hong T, Quader S, Ono R, Cabral H, Aoyagi K, Yokozaki H, Perkins EJ, Sasaki H. Molecular Networks of Platinum Drugs and Their Interaction with microRNAs in Cancer. Genes (Basel) 2023; 14:2073. [PMID: 38003016 PMCID: PMC10671144 DOI: 10.3390/genes14112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Eger Boonstra
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
12
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
14
|
Xu P, Zhan H, Zhang R, Xu XJ, Zhang Y, Le Y, Bi JG. Early growth response factor 1 upregulates pro-fibrotic genes through activation of TGF-β1/Smad pathway via transcriptional regulation of PAR1 in high-glucose treated HK-2 cells. Mol Cell Endocrinol 2023; 572:111953. [PMID: 37172885 DOI: 10.1016/j.mce.2023.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Tubulointerstitial fibrosis (TIF) makes a key role in diabetic kidney disease (DKD). In this study, we revealed that the expressions of Egr1 and protease-activated receptor 1 (PAR1) were increased in renal tissues of DKD rats. In vitro experiments demonstrated that both Egr1 overexpression and high glucose (HG) condition could promote the expressions of PAR1, fibronectin (FN) and collagen I (COL I). Furthermore, HG stimulation enhanced the binding capacity of Egr1 to PAR1 promoter. Both HG condition and Egr1 upregulation could increase, and thrombin inhibitor did not affect activity of TGF-β1/Smad pathway via PAR1. Collectively, Egr1 is involved in TIF of DKD partly through activating TGF-β1/Smad pathway via transcriptional regulation of PAR1 in HG treated HK-2 cells.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Hui Zhan
- Department of Pharmacy, Shenzhen, 518020, Guangdong, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Xiu-Jun Xu
- Shenzhen Municipal Health Commission Office, Shenzhen, 518020, Guangdong, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Ying Le
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Jian-Gang Bi
- Department of Hepatobiliary Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
15
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
16
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
17
|
Rahman MDH, Biswas P, Dey D, Hannan MA, Sahabuddin M, Araf Y, Kwon Y, Emran TB, Ali MS, Uddin MJ. An In-Silico Identification of Potential Flavonoids against Kidney Fibrosis Targeting TGFβR-1. Life (Basel) 2022; 12:1764. [PMID: 36362919 PMCID: PMC9694304 DOI: 10.3390/life12111764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Fibrosis is a hallmark of progressive kidney diseases. The overexpression of profibrotic cytokine, namely transforming growth factor β (TGF-β) due to excessive inflammation and tissue damage, induces kidney fibrosis. The inhibition of TGF-β signaling is markedly limited in experimental disease models. Targeting TGF-β signaling, therefore, offers a prospective strategy for the management of kidney fibrosis. Presently, the marketed drugs have numerous side effects, but plant-derived compounds are relatively safer and more cost-effective. In this study, TGFβR-1 was targeted to identify the lead compounds among flavonoids using various computational approaches, such as ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analysis, molecular docking, and molecular dynamics simulation. ADME/T screening identified a total of 31 flavonoids with drug-like properties of 31 compounds, a total of 5 compounds showed a higher binding affinity to TGFβR-1, with Epicatechin, Fisetin, and Luteolin ranking at the top three (-13.58, -13.17, and -10.50 kcal/mol, respectively), which are comparable to the control drug linagliptin (-9.074 kcal/mol). The compounds also exhibited outstanding protein-ligand interactions. The molecular dynamic simulations revealed a stable interaction of these compounds with the binding site of TGFβR-1. These findings indicate that flavonoids, particularly Epicatechin, Fisetin, and Luteolin, may compete with the ligand-binding site of TGFβR-1, suggesting that these compounds can be further evaluated for the development of potential therapeutics against kidney fibrosis. Further, in-vitro and in-vivo studies are recommended to support the current findings.
Collapse
Affiliation(s)
- MD. Hasanur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dipta Dey
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sahabuddin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Qian Y, Li Q, Chen L, Sun J, Cao K, Mei Z, Lu X. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate M1 Microglial Activation in Brain Injury of Mice With Subarachnoid Hemorrhage via microRNA-140-5p Delivery. Int J Neuropsychopharmacol 2022; 25:328-338. [PMID: 35015859 PMCID: PMC9017768 DOI: 10.1093/ijnp/pyab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND It is documented that mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs) to modulate subarachnoid hemorrhage (SAH) development. miR-140-5p expression has been detected in MSC-derived EVs, while the mechanism of MSC-derived EVs containing miR-140-5p in SAH remains unknown. We aim to fill this void by establishing SAH mouse models and extracting MSCs and MSC-EVs. METHODS After ALK5 was silenced in SAH mice, neurological function was evaluated, neuron apoptosis was detected by TdT-mediated dUTP-biotin nick end labeling with NeuN staining, and expression of serum inflammatory factors (interleukin-6, interleukin-1β, and tumor necrosis factor-α) was determined by enzyme-linked immunosorbent assay. The effect of ALK5 on NOX2 expression was assessed by western-blot analysis. Targeting the relationship between miR-140-5p and ALK5 was evaluated by dual luciferase assay. Following extraction of MSCs and MSC-EVs, EVs and miR-140-5p were labeled by PKH67 and Cy3, respectively, to identify the transferring of miR-140-5p by MSC-EVs. SAH mice were treated with EVs from miR-140-5p mimic/inhibitor-transfected MSCs to detect effects of MSC-EV-miR-140-5p on brain injury and microglial polarization. RESULTS ALK5 silencing increased the neurological score and reduced neuron apoptosis and neuroinflammation in SAH mice. ALK5 silencing inhibited M1 microglia activation by inactivating NOX2. ALK5 was a target gene of miR-140-5p. MSC-derived EVs contained miR-140-5p and transferred miR-140-5p into microglia. MSC-EV-delivered miR-140-3p reduced ALK5 expression to contribute to repression of brain injury and M1 microglia activation in SAH mice. CONCLUSIONS MSC-derived EVs transferred miR-140-5p into microglia to downregulate ALK5 and NOX2, thus inhibiting M1 microglia activation in SAH mice.
Collapse
Affiliation(s)
- Yu Qian
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Qiaoyu Li
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Lulu Chen
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, P.R. China
| | - Jinyu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kan Cao
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Zhaojun Mei
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Xinyu Lu
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| |
Collapse
|
19
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
20
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
21
|
New evidence of direct oral anticoagulation therapy on cardiac valve calcifications, renal preservation and inflammatory modulation. Int J Cardiol 2021; 345:90-97. [PMID: 34688719 DOI: 10.1016/j.ijcard.2021.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Rivaroxaban is a direct inhibitor of activated Factor X (FXa), an anti-inflammatory protein exerting a protective effect on the cardiac valve and vascular endothelium. We compare the effect of Warfarin and Rivaroxaban on inflammation biomarkers and their contribution to heart valve calcification progression and renal preservation in a population of atrial fibrillation (AF) patients with chronic kidney disease (CKD) stage 3b - 4. METHODS This was an observational, multicenter, prospective study enrolling 347 consecutive CKD stage 3b - 4 patients newly diagnosed with AF: 247 were treated with Rivaroxaban and 100 with Warfarin. Every 12 months, we measured creatinine levels and cardiac valve calcification via standard trans-thoracic echocardiogram, while plasma levels of inflammatory mediators were quantified by ELISA at baseline and after 24 months. RESULTS Over a follow-up of 24 months, long-term treatment with Rivaroxaban was associated with a significative reduction of cytokines. Patients treated with Rivaroxaban experienced a more frequent stabilization/regression of valve calcifications comparing with patients treated with Warfarin. Rivaroxaban use was related with an improvement in kidney function in 87.4% of patients, while in those treated with Warfarin was reported a worsening of renal clearance in 98% of cases. Patients taking Rivaroxaban experienced lower adverse events (3.2% vs 49%, p-value <0.001). CONCLUSIONS Our findings suggest that Rivaroxaban compared to Warfarin is associated with lower levels of serum markers of inflammation. The inhibition of FXa may exert an anti-inflammatory effect contributing to reduce the risk of cardiac valve calcification progression and worsening of renal function.
Collapse
|
22
|
Jaffar J, McMillan L, Wilson N, Panousis C, Hardy C, Cho HJ, Symons K, Glaspole I, Westall G, Wong M. Coagulation Factor-XII induces interleukin-6 by primary lung fibroblasts: A role in idiopathic pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 322:L258-L272. [PMID: 34873957 DOI: 10.1152/ajplung.00165.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The mechanisms driving idiopathic pulmonary fibrosis (IPF) remain undefined, however it is postulated that coagulation imbalances may play a role. The impact of blood-derived clotting factors, including factor XII (FXII) has not been investigated in the context of IPF. Methods Plasma levels of FXII were measured by ELISA in patients with IPF and age-matched healthy donors. Expression of FXII in human lung tissue was quantified using multiplex immunohistochemistry and western blotting. Mechanistic investigation of FXII activity was assessed in vitro on primary lung fibroblasts using qPCR and specific receptor/FXII inhibition. The functional outcome of FXII on fibroblast migration was examined by high-content image analysis. Findings Compared to 35 healthy donors, plasma levels of FXII were not higher in IPF (n=27, p>0·05). Tissue FXII was elevated in IPF (n=11) and increased numbers of FXII+ cells were found in IPF (n=8) lung tissue compared to non-diseased controls (n=6, p<0·0001). Activated FXII induced IL6 mRNA and IL-6 protein in fibroblasts that was blocked by anti-FXII antibody, CSL312. FXII-induced IL-6 production via PAR-1 and NF-kB. FXII induced migration of fibroblasts in a concentration-dependent manner. Interpretation FXII is normally confined to the circulation but leaks from damaged vessels into the lung interstitium in IPF where it 1) induces IL-6 production and 2) enhances migration of resident fibroblasts, critical events that drive chronic inflammation and therefore, contribute to fibrotic disease progression. Targeting FXII-induced fibroblastic processes in IPF may ameliorate pulmonary fibrosis. Funding National Health and Medical Research Council CRE in Lung Fibrosis and CSL Ltd.
Collapse
Affiliation(s)
- Jade Jaffar
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | | | | | | | | | - Hyun Jung Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Australia
| | - Karen Symons
- Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Ian Glaspole
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Glen Westall
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Mae Wong
- CSL Limited, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Xu J, Zhang S, Wu T, Fang X, Zhao L. Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophys Chem 2021; 281:106731. [PMID: 34864228 DOI: 10.1016/j.bpc.2021.106731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
Quercetin glycoside derivatives (QGDs) are a class of common compounds with a wide range of biological activities, such as antitumor activities. However, their molecular targets associated with biological activities have not been investigated. In this study, four common QGDs with mutual bioconversion were selected, and studied in the large-scale reverse docking experiments. Network pharmacology analysis showed that most of the four QGDs can bind several potential protein targets that were closely related to breast cancer disease. Among them, a druggable protein, transforming growth factor beta receptor I (TGFBR1/ALK5) was screened via high docking scores for the four QGDs. This protein has been proven to be an important target for the treatment of breast cancer by regulating the proliferation and migration of cancer cells in the past. Subsequently, the molecular dynamics (MD) simulation and MM/GBSA calculation demonstrated that all QGDs could thermodynamically bind with TGFBR1, indicating that TGFBR1 might be one of the potential protein targets of QGDs. Finally, the cytotoxicity test and wound-healing migration assay displayed that isoquercetin, which can perform best in MD experiment, might be a promising agent in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Jiahui Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
24
|
Lucchesi A, Napolitano R, Bochicchio MT, Giordano G, Napolitano M. Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The "Circulating Wound" Model. Int J Mol Sci 2021; 22:ijms222111343. [PMID: 34768772 PMCID: PMC8583863 DOI: 10.3390/ijms222111343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Current cytoreductive and antithrombotic strategies in MPNs are mostly based on cell counts and on patient's demographic and clinical history. Despite the numerous studies conducted on platelet function and on the role of plasma factors, an accurate and reliable method to dynamically quantify the hypercoagulability states of these conditions is not yet part of clinical practice. Starting from our experience, and after having sifted through the literature, we propose an in-depth narrative report on the contribution of the clonal platelets of MPNs-rich in tissue factor (TF)-in promoting a perpetual procoagulant mechanism. The whole process results in an unbalanced generation of thrombin and is self-maintained by Protease Activated Receptors (PARs). We chose to define this model as a "circulating wound", as it indisputably links the coagulation, inflammation, and fibrotic progression of the disease, in analogy with what happens in some solid tumours. The platelet contribution to thrombin generation results in triggering a vicious circle supported by the PARs/TGF-beta axis. PAR antagonists could therefore be a good option for target therapy, both to contain the risk of vascular events and to slow the progression of the disease towards end-stage forms. Both the new and old strategies, however, will require tools capable of measuring procoagulant or prohaemorrhagic states in a more extensive and dynamic way to favour a less empirical management of MPNs and their potential clinical complications.
Collapse
MESH Headings
- Animals
- Biological Assay
- Blood Platelets/metabolism
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/drug therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Models, Biological
- Receptors, Fibrinogen/metabolism
- Thrombin/antagonists & inhibitors
- Thrombin/biosynthesis
- Thrombophilia/physiopathology
Collapse
Affiliation(s)
- Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
- Correspondence:
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Giulio Giordano
- Internal Medicine Division, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy;
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties and Infectious Disease Unit, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| |
Collapse
|
25
|
Amri J, Alaee M, Babaei R, Salemi Z, Meshkani R, Ghazavi A, Akbari A, Salehi M. Biochanin-A has antidiabetic, antihyperlipidemic, antioxidant, and protective effects on diabetic nephropathy via suppression of TGF-β1 and PAR-2 genes expression in kidney tissues of STZ-induced diabetic rats. Biotechnol Appl Biochem 2021; 69:2112-2121. [PMID: 34652037 DOI: 10.1002/bab.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
One of the major complications of diabetes is diabetic nephropathy, and often many patients suffer from diabetic nephropathy. That is why it is important to find the mechanisms that cause nephropathy and its treatment. This study was designed to examine the antidiabetic effects of biochanin A (BCA) and evaluate its effects on oxidative stress markers and the expression of transforming growth factor-β1 (TGF-β1) and protease-activated receptors-2 (PAR-2) genes in the kidney of type 1 diabetic rats. After induction of diabetes using streptozotocin (STZ), 55 mg/kg bw dose, rats were randomly divided into four groups with six rats in each group as follows: normal group: normal control receiving normal saline and a single dose of citrate buffer daily; diabetic control group: diabetic control receiving 0.5% dimethyl sulfoxide daily; diabetic+BCA (10 mg/kg) group: diabetic rats receiving biochanin A at a dose of 10 mg/kg bw daily; diabetic+BCA (15 mg/kg) group: diabetic rats receiving biochanin A at a dose of 15 mg/kg bw daily. TGF-β1 and PAR-2 gene expression was assessed by real-time. Spectrophotometric methods were used to measure biochemical factors: fast blood glucose (FBG), urea, creatinine, albumin, lipids profiles malondialdehyde (MDA), and superoxide dismutase (SOD). The course of treatment in this study was 42 days. The results showed that in the diabetic control group, FBG, serum urea, creatinine, expression of TGF-β1 and PAR-2 genes, and the levels of MDA in kidney tissue significantly increased and SOD activity in kidney tissue and serum albumin significantly decreased compared to the normal group (p < 0.001). The results showed that administration of biochanin A (10 and 15 mg/kg) after 42 days significantly reduced the expression of TGF-β1 and PAR-2 genes and FBG, urea, creatinine in serum compared to the diabetic control group (p < 0.001), also significantly increased serum albumin compared to the diabetic control group (p < 0.001). The level of MDA and SOD activity in the tissues of diabetic rats that used biochanin A (10 and 15 mg/kg) was significantly reduced and increased, respectively, compared to the diabetic control group (p < 0.001). Also, the result showed that in the diabetic control group lipids profiles significantly is disturbed compared to the normal group (p < 0.001), the results also showed that biochanin A (10 and 15 mg/kg) administration could significantly improved the lipids profile compared to the control diabetic group (p < 0.001). It is noteworthy that it was found that the beneficial effects of the biochanin A were dose dependent. In conclusion, administration of biochanin A for 42 days has beneficial effect and improves diabetes and nephropathy in diabetic rats. So probably biochanin A can be used as an adjunct therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Jamal Amri
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Alaee
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Babaei
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Salemi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahmad Akbari
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
26
|
Ahmed IA, Jaffa MA, Moussa M, Hatem D, El-Achkar GA, Al Sayegh R, Karam M, Hamade E, Habib A, Jaffa AA. Plasma Kallikrein as a Modulator of Liver Injury/Remodeling. Front Pharmacol 2021; 12:715111. [PMID: 34566641 PMCID: PMC8458624 DOI: 10.3389/fphar.2021.715111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin–galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3–10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Duaa Hatem
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Section of Pharmacology, Department of Bioethics and Safety, Catholic University, Rome, Italy
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
27
|
Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood 2021; 137:1641-1651. [PMID: 33529332 DOI: 10.1182/blood.2020009405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/- mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/- mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and β3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-β signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223-deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.
Collapse
|
28
|
Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells 2021; 10:cells10071794. [PMID: 34359963 PMCID: PMC8304203 DOI: 10.3390/cells10071794] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.
Collapse
|
29
|
Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021; 9:674786. [PMID: 34055744 PMCID: PMC8161198 DOI: 10.3389/fchem.2021.674786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic liver damage and leading to cirrhosis, liver cancer, and liver failure. To date, there is no effective and specific therapy for patients with hepatic fibrosis. As a result of their various advantages such as biocompatibility, imaging contrast ability, improved tissue penetration, and superparamagnetic properties, magnetic nanoparticles have a great potential for diagnosis and therapy in various liver diseases including fibrosis. In this review, we focus on the molecular mechanisms and important factors for hepatic fibrosis and on potential magnetic nanoparticles-based therapeutics. New strategies for the diagnosis of liver fibrosis are also discussed, with a summary of the challenges and perspectives in the translational application of magnetic nanoparticles from bench to bedside.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh, Iran
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
| | | | | | | | - Ondrej Šauša
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Huseyn Abiyev
- Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Taras Kavetskyy
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
30
|
Schweickert PG, Yang Y, White EE, Cresswell GM, Elzey BD, Ratliff TL, Arumugam P, Antoniak S, Mackman N, Flick MJ, Konieczny SF. Thrombin-PAR1 signaling in pancreatic cancer promotes an immunosuppressive microenvironment. J Thromb Haemost 2021; 19:161-172. [PMID: 33064371 PMCID: PMC7790967 DOI: 10.1111/jth.15115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Essentials Elimination of PDAC tumor cell PAR1 increased cytotoxic T cells and reduced tumor macrophages. PAR1KO PDAC cells are preferentially eliminated from growing tumors. Thrombin-PAR1 signaling in PDAC tumor cells drives an immunosuppressive gene signature. Csf2 and Ptgs2 are thrombin-PAR1 downstream immune suppressor genes in PDAC tumor cells. ABSTRACT: Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prothrombotic state and a lack of host antitumor immune responsiveness. Linking these two key features, we previously demonstrated that tumor-derived coagulation activity promotes immune evasion. Specifically, thrombin-protease-activated receptor-1 (PAR1) signaling in mouse PDAC cells drives tumor growth by evading cytotoxic CD8a+ cells. Methods Syngeneic mixed cell tumor growth, transcriptional analyses, and functional tests of immunosuppressive response genes were used to identify cellular and molecular immune evasion mechanisms mediated by thrombin-PAR-1 signaling in mouse PDAC tumor cells. Results Elimination of tumor cell PAR1 in syngeneic graft studies increased cytotoxic T lymphocyte (CTL) infiltration and decreased tumor-associated macrophages in the tumor microenvironment. Co-injection of PAR1-expressing and PAR1-knockout (PAR-1KO ) tumor cells into immunocompetent mice resulted in preferential elimination of PAR-1KO cells from developing tumors, suggesting that PAR1-dependent immune evasion is not reliant on CTL exclusion. Transcriptomics analyses revealed no PAR1-dependent changes in the expression of immune checkpoint proteins and no difference in major histocompatibility complex-I cell surface expression. Importantly, thrombin-PAR1 signaling in PDAC cells upregulated genes linked to immunosuppression, including Csf2 and Ptgs2. Functional analyses confirmed that both Csf2 and Ptgs2 are critical for PDAC syngeneic graft tumor growth and overexpression of each factor partially restored tumor growth of PAR1KO cells in immunocompetent mice. Conclusions Our results provide novel insight into the mechanisms of a previously unrecognized pathway coupling coagulation to PDAC immune evasion by identifying PAR1-dependent changes in the tumor microenvironment, a PAR1-driven immunosuppressive gene signature, and Csf2 and Ptgs2 as critical PAR1 downstream targets.
Collapse
Affiliation(s)
- Patrick G. Schweickert
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Yi Yang
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Emily E. White
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Gregory M. Cresswell
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Bennett D. Elzey
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Timothy L. Ratliff
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Paritha Arumugam
- Cincinnati Children’s Hospital Medical Center,
Division of Pulmonary Biology, Cincinnati, Ohio, USA
| | - Silvio Antoniak
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- University of North Carolina, Department of Medicine and
the UNC Blood Research Center, Chapel Hill, North Carolina, USA
| | - Matthew J. Flick
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Stephen F. Konieczny
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
31
|
Lee SY, Wu ST, Liang YJ, Su MJ, Huang CW, Jao YH, Ku HC. Soluble Dipeptidyl Peptidase-4 Induces Fibroblast Activation Through Proteinase-Activated Receptor-2. Front Pharmacol 2020; 11:552818. [PMID: 33117158 PMCID: PMC7561399 DOI: 10.3389/fphar.2020.552818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts are the chief secretory cells of the extracellular matrix (ECM) responsible for basal deposition and degradation of the ECM under normal conditions. During stress, fibroblasts undergo continuous activation, which is defined as the differentiation of fibroblasts into myofibroblasts, a cell type with an elevated capacity for secreting ECM proteins. Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed transmembrane glycoprotein and exerts effects that are both dependent and independent of its enzymatic activity. DPP4 has been demonstrated to define fibroblast populations in human skin biopsies of systemic sclerosis. Shedding of DPP4 from different tissues into the circulation appears to be involved in the pathogenesis of the diseases. The mechanism underlying soluble DPP4–induced dermal fibrosis has not been clearly determined. The effects of DPP4 on murine 3T3 fibroblasts and human dermal fibroblasts were evaluated by measuring the expression of fibrotic proteins, such as α-SMA and collagen. Soluble DPP4 stimulated the activation of fibroblasts in a dose-dependent manner by activating nuclear factor-kappa B (NF-κB) and suppressor of mothers against decapentaplegic (SMAD) signaling. Blocking proteinase-activated receptor-2 (PAR2) abrogated the DPP4-induced activation of NF-κB and SMAD and expression of fibrosis-associated proteins in fibroblasts. Linagliptin, a clinically available DPP4 inhibitor, was observed to abrogate the soluble DPP4–induced expression of fibrotic proteins. This study demonstrated the mechanism underlying soluble DPP4, which activated NF-κB and SMAD signaling through PAR2, leading to fibroblast activation. Our data extend the current view of soluble DPP4. Elevated levels of circulating soluble DPP4 may contribute to one of the mediators that induce dermal fibrosis in patients.
Collapse
Affiliation(s)
- Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Jen Liang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Jai Su
- College of Medicine, Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hsuan Jao
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
32
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
33
|
Kanazawa N, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Shibata T. Therapeutic Potential of Thrombomodulin in Renal Fibrosis of Nephrotoxic Serum Nephritis in Wistar-Kyoto Rats. Kidney Blood Press Res 2020; 45:391-406. [PMID: 32146474 DOI: 10.1159/000506286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. METHODS Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. RESULTS Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. CONCLUSIONS Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.
Collapse
Affiliation(s)
- Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan,
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Wang T, Liu X, Wang J. Up-regulation of Wnt5a inhibits proliferation and migration of hepatocellular carcinoma cells. J Cancer Res Ther 2020; 15:904-908. [PMID: 31436250 DOI: 10.4103/jcrt.jcrt_886_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives Increasing evidence suggests that Wnt5a plays an important role in tumorigenesis. In particular, its expression is downregulated in hepatocellular carcinoma (HCC). The aim of this study was to explore the effect of Wnt5a overexpression on HCC cells. Materials and Methods We transfected the human HCC cell line SMMC-7721 with pcDNA3.1-Wnt5a overexpression vectors or empty pcDNA3.1 vectors. The expression of Wnt5a in transfected SMMC-7721 cells was confirmed by the western blot. Cell proliferation was examined by the colony formation test and cell cycle assay in vitro. The effect of Wnt5a overexpression on cell migration was studied using a scratch assay. In vivo tumorigenesis was assessed using a mouse xenograft model. Results Wnt5a overexpression inhibited SMMC-7721 cell proliferation with a significant reduction in S-phase cells and an enrichment of G1-phase cells, a lower colony formation rate, and decreased tumor volumes in the xenograft model compared with those that of control tumors. The in vitro scratch assay revealed that Wnt5a overexpression diminished the capacity of cell migration, which may be mediated by the change in phosphorylated β-catenin and E-cadherin expression. Conclusion Wnt5a may act as a tumor suppressor in HCC, partly through the β-catenin/E-cadherin signaling pathway.
Collapse
Affiliation(s)
- Tianxiao Wang
- School of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohong Liu
- Department of Pathology, No. 960 Hospital of People' Liberation Army, Jinan, China
| | - Jun Wang
- Department of Oncology, No. 960 Hospital of People' Liberation Army; Department of Cancer Immunotherapy, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
35
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
36
|
Levada K, Omelyanchik A, Rodionova V, Weiskirchen R, Bartneck M. Magnetic-Assisted Treatment of Liver Fibrosis. Cells 2019; 8:E1279. [PMID: 31635053 PMCID: PMC6830324 DOI: 10.3390/cells8101279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury can be induced by viruses, toxins, cellular activation, and metabolic dysregulation and can lead to liver fibrosis. Hepatic fibrosis still remains a major burden on the global health systems. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered the main cause of liver fibrosis. Hepatic stellate cells are key targets in antifibrotic treatment, but selective engagement of these cells is an unresolved issue. Current strategies for antifibrotic drugs, which are at the critical stage 3 clinical trials, target metabolic regulation, immune cell activation, and cell death. Here, we report on the critical factors for liver fibrosis, and on prospective novel drugs, which might soon enter the market. Apart from the current clinical trials, novel perspectives for anti-fibrotic treatment may arise from magnetic particles and controlled magnetic forces in various different fields. Magnetic-assisted techniques can, for instance, enable cell engineering and cell therapy to fight cancer, might enable to control the shape or orientation of single cells or tissues mechanically. Furthermore, magnetic forces may improve localized drug delivery mediated by magnetism-induced conformational changes, and they may also enhance non-invasive imaging applications.
Collapse
Affiliation(s)
- Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
- National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, D-52074 Aachen, Germany.
| |
Collapse
|
37
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 2019; 38:5396-5412. [PMID: 30923343 PMCID: PMC6609469 DOI: 10.1038/s41388-019-0796-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival and migration; however its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-β). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-β-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-β-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac Guanine nucleotide Exchange-Factors (Rac-GEFs) were also up-regulated in TGF-β-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-β-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.
Collapse
|
39
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
40
|
CAFs and TGF-β Signaling Activation by Mast Cells Contribute to Resistance to Gemcitabine/Nabpaclitaxel in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11030330. [PMID: 30866547 PMCID: PMC6468868 DOI: 10.3390/cancers11030330] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023] Open
Abstract
Tumor⁻stroma interactions are of key importance for pancreatic ductal adenocarcinoma (PDAC) progression. Our aim was to investigate whether cancer associated fibroblasts (CAFs) and mast cells (MC) affected the sensitivity of PDAC cells to gemcitabine/nabpaclitaxel (GEM/NAB). For this purpose, the combination cytotoxicity and the effect on tumor invasion and angiogenesis were evaluated with or without a conditioned medium from the mast cell line HMC-1 (human mast cell line-1 cells) and CAFs. Beside the clinical outcome of a homogenous population of PDAC patients, receiving GEM/NAB, was correlated to the circulating levels of mast cell tryptase and to a panel of inflammatory and immunosuppressive cytokines. CAFs neither affected drugs' cytotoxicity nor the inhibition of angiogenesis, but promoted tumor cell invasion. The MC instead, caused resistance to drugs by reducing apoptosis, by activating the TGF-β signalling and by promoting tumor invasion. Indeed, the inhibition of TβRI serine/threonine kinase activity by galunisertib restored drugs cytotoxicity. Moreover, MC induced the release of TGF-β1, and increased expression of PAR-2, ERK1/2 and Akt activation. Accordingly, TGF-β1, tryptase and other pro-inflammatory and immunosuppressive cytokines increased in the unresponsive patients. In conclusion, MC play a pivotal role in the resistance to GEM/NAB. A correlation between high level of circulating pro-inflammatory/ immunosuppressive cytokines and unresponsiveness was found in PDAC patients.
Collapse
|
41
|
Zhao LM, Guo Z, Xue YJ, Min JZ, Zhu WJ, Li XY, Piao HR, Jin CH. Synthesis and Evaluation of 3-Substituted-4-(quinoxalin-6-yl) Pyrazoles as TGF-β Type I Receptor Kinase Inhibitors. Molecules 2018; 23:molecules23123369. [PMID: 30572609 PMCID: PMC6320941 DOI: 10.3390/molecules23123369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
The transforming growth factor-β (TGF-β), in which overexpression has been associated with various diseases, has become an attractive molecular target for the treatment of cancers. Thirty-two quinoxaline-derivatives of 3-substituted-4-(quinoxalin-6-yl) pyrazoles 14a–d, 15a–d, 16a–d, 17a–d, 18a–d, 19a–d, 25a, 25b, 25d, 26a, 26b, 26d, 27b, and 27d were synthesized and evaluated for their activin TGF-β type I receptor kinase and p38α mitogen activated protein (MAP) kinase inhibitory activity in enzymatic assays. Among these compounds, the most active compound 19b inhibited TGF-β type I receptor kinase phosphorylation with an IC50 value of 0.28 µM, with 98% inhibition at 10 µM. Compound 19b also had good selectivity index of >35 against p38α MAP kinase, with 9.0-fold more selective than clinical candidate, compound 3 (LY-2157299). A molecular docking study was performed to identify the mechanism of action of the synthesized compounds and their good binding interactions were observed. ADMET prediction of good active compounds showed that these ones possess good pharmacokinetics and drug-likeness behavior.
Collapse
Affiliation(s)
- Li-Min Zhao
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Zhen Guo
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Yi-Jie Xue
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Jun Zhe Min
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Wen-Jing Zhu
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Xiang-Yu Li
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Hu-Ri Piao
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Cheng Hua Jin
- College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| |
Collapse
|
42
|
Li Y, Zhong W, Zhu M, Hu S, Su X. Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway. Onco Targets Ther 2018; 11:6589-6597. [PMID: 30323631 PMCID: PMC6178944 DOI: 10.2147/ott.s177514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bladder cancer is the most common malignant tumor of the urinary tract. We aimed to explore the biological role and molecular mechanism of Nodal in bladder cancer. Materials and methods The expression of Nodal in bladder cancer tissues and cells was determined by quantitative real-time polymerase chain reaction. The effect of silencing of Nodal on cell proliferation, clone formation, and migration and invasion was evaluated by MTT cell proliferation assay, colony formation, and transwell assays, respectively. Western blot analysis was employed to detect the expression of proliferation- and invasion-related proteins and proteins involved in ALK/Smad signaling. Results We found that the expression of Nodal was significantly increased in bladder cancer tissues and cell lines. Downregulation of Nodal effectively weakened cell proliferation, clone formation, and cell migration and invasion abilities. The protein expression levels of CDC6, E-cadherin, MMP-2, and MMP-9 were also altered by downregulation of Nodal. Knockdown of Nodal also blocked the expression of ALK4, ALK7, Smad2, and Smad4, which are involved in ALK/Smad signaling. Additionally, the ALK4/7 receptor blocker SB431542 reversed the promotive effects of Nodal overexpression on bladder cancer cell proliferation, migration, and invasion. Conclusion Our study indicated that Nodal functions as an oncogene by regulating cell proliferation, migration, and invasion in bladder cancer via the ALK/Smad signaling pathway, thereby providing novel insights into its role in bladder cancer treatment.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Wen Zhong
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China
| | - Min Zhu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Shengguo Hu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Xiaokang Su
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| |
Collapse
|