1
|
Qiu T, Xiang S, Zhou J, Yang M, Lan Y, Zhang X, Gong X, Zhang Z, Ji Y. Sirolimus for kaposiform hemangioendothelioma: Potential mechanisms of action and resistance. Int J Cancer 2024. [PMID: 39369447 DOI: 10.1002/ijc.35207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Kaposiform hemangioendotheliomas (KHEs) are vascular tumors that are considered borderline or locally aggressive and may lead to lethal outcomes. Traditional therapies, such as surgery and embolization, may be insufficient or technically impossible for patients with KHE. Sirolimus (or rapamycin), a specific inhibitor of mechanistic target of rapamycin, has recently been demonstrated to be very useful in the treatment of KHEs. Here, we highlight recent substantial progress regarding the effects of sirolimus on KHEs and discuss the potential mechanisms of action of sirolimus in treating this disease. The prevention of platelet activation and inflammation, along with antiangiogenic effects, the inhibition of lymphangiogenesis, the attenuation of fibrosis, or a combination of all these effects, may be responsible for the therapeutic effects of sirolimus. In addition, the mechanism of sirolimus resistance in some KHE patients is discussed. Finally, we review the somatic mutations that have recently been identified in KEH lesions, and discuss the potential of novel therapeutic targets based on these further understandings of the cellular and molecular pathogenesis of KHE.
Collapse
Affiliation(s)
- Tong Qiu
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Min Yang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Xuepeng Zhang
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Duan H, Li J, Ma J, Chen T, Zhang H, Shang G. Global research development of chondrosarcoma from 2003 to 2022: a bibliometric analysis. Front Pharmacol 2024; 15:1431958. [PMID: 39156101 PMCID: PMC11327078 DOI: 10.3389/fphar.2024.1431958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Chondrosarcomas are common primary malignant bone tumors; however, comprehensive bibliometric analysis in this field has not yet been conducted. Therefore, this study aimed to explore the research hotspots and trends in the field of chondrosarcoma through bibliometric analysis to help researchers understand the current status and direction of research in the field. Methods Articles and reviews related to chondrosarcoma published between 2003 and 2022 were retrieved from the Web of Science. Countries, institutions, authors, journals, references, and keywords in this field were visualized and analyzed using CtieSpace and VOSviewer software. Results Between 2003 and 2022, 4,149 relevant articles were found. The number of articles published on chondrosarcoma has increased significantly annually, mainly from 569 institutions in China and the United States, and 81 in other countries. In total, 904 authors participated in the publication of studies related to chondrosarcomas. Over the past 20 years, articles on chondrosarcoma have been published in 958 academic journals, with Skeletal Radiology having the highest number of publications. Furthermore, keywords such as "gene expression," "radiotherapy," "experience," and "apoptosis" have been popular in recent years. Conclusion Over the past 20 years, the global trend in chondrosarcoma research has primarily been clinical research, with basic research as a supplement. In the future, communication and exchange between countries and institutions should be strengthened. Further, the future main research hotspots in the field of chondrosarcoma include mutated genes and signaling pathways, precision surgical treatment, proton therapy, radiation therapy, chemotherapy, immunotherapy, and other aspects.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Li Y, Xu C, Qian X, Wang G, Han C, Hua H, Dong M, Chen J, Yu H, Zhang R, Feng X, Yang Z, Pan Y. Myeloid PTEN loss affects the therapeutic response by promoting stress granule assembly and impairing phagocytosis by macrophages in breast cancer. Cell Death Discov 2024; 10:344. [PMID: 39080255 PMCID: PMC11289284 DOI: 10.1038/s41420-024-02094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Breast cancer (BRCA) has become the most common type of cancer in women. Improving the therapeutic response remains a challenge. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a classic tumour suppressor with emerging new functions discovered in recent years, and myeloid PTEN loss has been reported to impair antitumour immunity. In this study, we revealed a novel mechanism by which myeloid PTEN potentially affects antitumour immunity in BRCA. We detected accelerated stress granule (SG) assembly under oxidative stress in PTEN-deficient bone marrow-derived macrophages (BMDMs) through the EGR1-promoted upregulation of TIAL1 transcription. PI3K/AKT/mTOR (PAM) pathway activation also promoted SG formation. ATP consumption during SG assembly in BMDMs impaired the phagocytic ability of 4T1 cells, potentially contributing to the disruption of antitumour immunity. In a BRCA neoadjuvant cohort, we observed a poorer response in myeloid PTENlow patients with G3BP1 aggregating as SGs in CD68+ cells, a finding that was consistent with the observation in our study that PTEN-deficient macrophages tended to more readily assemble SGs with impaired phagocytosis. Our results revealed the unconventional impact of SGs on BMDMs and might provide new perspectives on drug resistance and therapeutic strategies for the treatment of BRCA patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chao Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaojun Qian
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Gang Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chaoqiang Han
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Hua
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Menghao Dong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jian Chen
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rutong Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaoxi Feng
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhenye Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yueyin Pan
- Department of Clinical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Zhou W, Li X, Yang X, Ye B. The In Vitro Promoting Angiogenesis Roles of Exosomes Derived from the Protoscoleces of Echinococcus multilocularis. J Microbiol Biotechnol 2024; 34:1410-1418. [PMID: 38858095 PMCID: PMC11294651 DOI: 10.4014/jmb.2403.03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Alveolar echinococcosis (AE) is a persistent parasite condition that causes the formation of tumor-like growths. It is a challenge to treat the disease. These growths need neovascularization to get their oxygen and nutrients, and the disease is prolonged and severe. Considerable research has been conducted on exosomes and their interactions with Echinococcus multilocularis in the context of immunological evasion by the host. However, the extent of their involvement in angiogenesis needs to be conducted. The primary objective of this investigation was to preliminarily explore the effect of exosomes produced from E. multilocularis protoscoleces (PSC-exo) on angiogenesis, to elucidate the mechanism of their roles in the regulation of the downstream pathway of VEGFA activation, and to provide ideas for the development of novel treatments for AE. The study evaluated the impact of PSC-exo increases proliferation, migration, invasion, and tube formation of HUVECs at concentrations of up to 50 μg/ml. In addition, the study sought to validate the findings in vivo. This effect involved increased VEGFA expression at gene and protein levels and AKT/mTOR pathway activation. PSC-exo are crucial in promoting angiogenesis through VEGFA upregulation and AKT/mTOR signaling. This research contributes to our knowledge of neovascularization in AE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang Li
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinqi Yang
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Ye
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Kim HS, Cho JY. Exosome proteomes reveal glycolysis-related enzyme enrichment in primary canine mammary gland tumor compared to metastases. Proteome Sci 2024; 22:4. [PMID: 38419074 PMCID: PMC10900604 DOI: 10.1186/s12953-023-00226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Numerous evidence has highlighted the differences between primary tumors and metastases. Nonetheless, the differences in exosomal proteins derived from primary tumor and metastases remain elusive. Here, we aimed to identify differentially expressed exosomal proteins from primary canine mammary gland tumor and metastases to understand how they shape their own tumor microenvironment. METHODS We clearly distinguished primary canine mammary gland tumors (CHMp) from metastases (CHMm) and profiled the proteins within their secreted exosomes using LC-MS/MS. Moreover, the abundance of glycolysis enzymes (GPI, LDHA) in CHMp exosome was verified with Western blotting, To broaden the scope, we extended to human colorectal cancer-derived exosomes (SW480 vs. SW620) for comparison. RESULTS We identified significant differences in 87 and 65 proteins derived from CHMp and CHMm, respectively. Notably, glycolysis enzymes (GPI, LDHA, LDHB, TPI1, and ALDOA) showed specific enrichment in exosomes from the primary tumor. CONCLUSION We observed significant differences in the cellular proteome between primary tumors and metastases, and intriguingly, we identified a parallel heterogeneity the protein composition of exosomes. Specifically, we reported that glycolysis enzymes were significantly enriched in CHMp exosomes compared to CHMm exosomes. We further demonstrated that this quantitative difference in glycolysis enzymes persisted across primary and metastases, extending to human colorectal cancer-derived exosomes (SW480 vs. SW620). Our findings of the specific enrichment of glycolysis enzymes in primary tumor-derived exosomes contribute to a better understanding of tumor microenvironment modulation and heterogeneity between primary tumors and metastases.
Collapse
Affiliation(s)
- Hui-Su Kim
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Gwanak-ro1, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Gwanak-ro1, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Zhou H, Jiang B, Qian Y, Ke C. The Mechanistic Target of Rapamycin Complex 1 Pathway Contributes to the Anti-Tumor Effect of Granulocyte-Macrophage-Colony-Stimulating Factor-Producing T Helper Cells in Mouse Colorectal Cancer. Immunol Invest 2024; 53:261-280. [PMID: 38050895 DOI: 10.1080/08820139.2023.2290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
INTRODUCTION The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC. METHODS Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays. RESULTS ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect. CONCLUSION mTORC1 is essential for the anti-CRC activity of ThGM cells.
Collapse
Affiliation(s)
- Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Yuyuan Qian
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
8
|
Zuhair R, Eastwood M, Jones M, Cross A, Hester J, Issa F, Ginty F, Sailem H. Decoding mTOR signalling heterogeneity in the tumour microenvironment using multiplexed imaging and graph convolutional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573693. [PMID: 38234756 PMCID: PMC10793449 DOI: 10.1101/2023.12.30.573693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Evaluating the contribution of the tumour microenvironment (TME) in tumour progression has proven a complex challenge due to the intricate interactions within the TME. Multiplexed imaging is an emerging technology that allows concurrent assessment of multiple of these components simultaneously. Here we utilise a highly multiplexed dataset of 61 markers across 746 colorectal tumours to investigate how complex mTOR signalling in different tissue compartments influences patient prognosis. We found that the signalling of mTOR pathway can have heterogeneous activation patterns in tumour and immune compartments which correlate with patient prognosis. Using graph neural networks, we determined the most predictive features of mTOR activity in immune cells and identified relevant cellular subpopulations. We validated our observations using spatial transcriptomics data analysis in an independent patient cohort. Our work provides a framework for studying complex cell signalling and reveals important insights for developing mTOR-based therapies.
Collapse
|
9
|
He Y, Wang X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput Biol Med 2023; 167:107591. [PMID: 37875043 DOI: 10.1016/j.compbiomed.2023.107591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Despite immune checkpoint inhibitors (ICIs) have shown the greatest success in melanoma treatment, only a subset of melanoma patients responds well to ICIs. Thus, identifying predictive biomarkers for immunotherapy response is crucial. In this study, we took complementary advantages of immunotherapy data and The Cancer Genome Atlas (TCGA) multi-omics data to explore the predictive biomarkers for the response to immunotherapy in melanoma. We first predicted responsive and non-responsive melanomas in the TCGA skin cutaneous melanoma (SKCM) cohort based on both somatic mutation and transcriptome datasets which involved immunotherapy data for melanoma. This method identified 170 responsive and 56 non-responsive melanomas in TCGA-SKCM. Based on the TCGA-SKCM data, we performed a comprehensive comparison of multi-omics molecular features between responsive and non-responsive melanomas. We identified the molecular features significantly associated with immunotherapy response in melanoma at the genome, transcriptome, epigenome, and proteome levels, respectively. Our analysis confirmed certain immunotherapy response-associated biomarkers, such as tumor mutation burden (TMB), copy number alteration (CNA), intratumor heterogeneity (ITH), PD-L1 expression, and tumor immunity. Moreover, we identified some novel molecular features associated with immunotherapy response: (1) the activation of mast cells and dendritic cells correlating negatively with immunotherapy response; (2) the enrichment of many oncogenic pathways correlating positively with immunotherapy response, such as JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, and VEGF pathways; and (3) a number of microRNAs and proteins whose expression correlates with immunotherapy response. In addition, the mTOR signaling pathway has a negative association with immunotherapy response. The novel biomarkers have potential predictive values in immunotherapy response and warrant further investigation.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
10
|
Kroh A, Walter J, Fragoulis A, Möckel D, Lammers T, Kiessling F, Andruszkow J, Preisinger C, Egbert M, Jiao L, Eickhoff RM, Heise D, Berndt N, Cramer T, Neumann UP, Egners A, Ulmer TF. Hepatocellular loss of mTOR aggravates tumor burden in nonalcoholic steatohepatitis-related HCC. Neoplasia 2023; 46:100945. [PMID: 37976569 PMCID: PMC10685311 DOI: 10.1016/j.neo.2023.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.
Collapse
Affiliation(s)
- Andreas Kroh
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany.
| | - Jeanette Walter
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital Aachen, Germany
| | - Diana Möckel
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Julia Andruszkow
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF) Aachen, Medical School, RWTH Aachen University Hospital, Aachen, Germany
| | - Maren Egbert
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Long Jiao
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Roman M Eickhoff
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Daniel Heise
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antje Egners
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Tom Florian Ulmer
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
11
|
Ma H, Jiang S, Yuan Y, Li J, Li Y, Lv Y, Du T, Guan J, Jiang X, Tian L, Zheng Q, Yang L, Li Q. RUNX1 promotes proliferation and migration in non-small cell lung cancer cell lines via the mTOR pathway. FASEB J 2023; 37:e23195. [PMID: 37801076 DOI: 10.1096/fj.202300687rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
RUNX1, a member of the RUNX family of metazoan transcription factors, participates in the regulation of differentiation, proliferation, and other processes involved in growth and development. It also functions in the occurrence and development of tumors. However, the role and mechanism of action of RUNX1 in non-small cell lung cancer (NSCLC) are not yet clear. We used a bioinformatics approach as well as in vitro and in vivo assays to evaluate the role of RUNX1 in NSCLC as the molecular mechanisms underlying its effects. Using the TCGA, GEO, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan-Meier databases, we screened the differentially expressed genes (DEGs) and found that RUNX1 was highly expressed in lung cancer and was associated with a poor prognosis. Immunohistochemical staining based on tissue chips from 110 samples showed that the expression of RUNX1 in lung cancer tissues was higher than that in adjacent normal tissues and was positively correlated with lymph node metastasis and TNM staging. In vitro experiments, we found that RUNX1 overexpression promoted cell proliferation and migration functions and affected downstream functional proteins by regulating the activity of the mTOR pathway, as confirmed by an analysis using the mTOR pathway inhibitor rapamycin. In addition, RUNX1 affected PD-L1 expression via the mTOR pathway. These results indicate that RUNX1 is a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Huan Ma
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Siyu Jiang
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Yinan Yuan
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Ji Li
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Yanping Lv
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Tengjiao Du
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Jingqian Guan
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Tian
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, Basic Medicine College, China Medical University, Shenyang, China
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
13
|
Sooi K, Walsh R, Kumarakulasinghe N, Wong A, Ngoi N. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:656-673. [PMID: 37842236 PMCID: PMC10571060 DOI: 10.20517/cdr.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Immunotherapy has become integral in cancer therapeutics over the past two decades and is now part of standard-of-care treatment in multiple cancer types. While various biomarkers and pathway alterations such as dMMR, CDK12, and AR-V7 have been identified in advanced prostate cancer to predict immunotherapy responsiveness, the vast majority of prostate cancer remain intrinsically immune-resistant, as evidenced by low response rates to anti-PD(L)1 monotherapy. Since regulatory approval of the vaccine therapy sipuleucel-T in the biomarker-unselected population, there has not been much success with immunotherapy treatment in advanced prostate cancer. Researchers have looked at various strategies to overcome immune resistance, including the identification of more biomarkers and the combination of immunotherapy with existing effective prostate cancer treatments. On the horizon, novel drugs using bispecific T-cell engager (BiTE) and chimeric antigen receptors (CAR) technology are being explored and have shown promising early efficacy in this disease. Here we discuss the features of the tumour microenvironment that predispose to immune resistance and rational strategies to enhance antitumour responsiveness in advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
14
|
Ramalingam S, Shantha S, Muralitharan S, Sudhakar U, Thamizhchelvan H, Parvathi VD. Role of tissue markers associated with tumor microenvironment in the progression and immune suppression of oral squamous cell carcinoma. Med Oncol 2023; 40:303. [PMID: 37731058 DOI: 10.1007/s12032-023-02169-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Head and neck cancers (HNC) continues to dominate major cancers contributing to mortality worldwide. Squamous cell carcinoma is the major type of HNC. Oral Squamous Cell Carcinoma grouped under HNC is a malignant tumor occurring in the oral cavity. The primary risk factors of OSCC are tobacco, alcohol consumption, etc. This review focuses on modulations, mechanisms, growth and differentiation of oral squamous cell carcinoma. Cancer cell surrounds itself with a group of elements forming a favorable environment known as tumor microenvironment (TME). It consists of numerous cells which includes immune cells, blood cells and acellular components that are responsible for the progression, immunosuppression, metastasis and angiogenesis of cancer. This review highlights the most important tissue biomarkers (mTOR, CAF, FOXp3, CD163, CD33, CD34) that are associated with TME cells. mTOR remains as the primary regulator responsible in cancer and its importance towards immune-suppression is highlighted. Tumor-associated macrophages associated with cancer development and its relationship with immunomodulatory mechanism and Tregs, which are potential blockers of immune response and its mechanism and aberrations are discussed. Cancer-associated fibroblasts that are a part of TME and their role in evading the immune response and myeloid derived suppressor cells that have slight control over the immune response and their mechanism in the tumor progression is further explained. These markers have been emphasised as therapeutic targets and are currently in different stages of clinical trials.
Collapse
Affiliation(s)
- Suganya Ramalingam
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Sivaramakrishnan Shantha
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Susruthan Muralitharan
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
- Susrutha Diagnostics, Chennai, India
| | - Uma Sudhakar
- Department of Periodontics, Department of Dental Sciences, Tamil Nadu Dr. M.G.R. Medical University, Guindy, Chennai, 600032, India
| | - Harikrishnan Thamizhchelvan
- Department of Oral Pathology, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| |
Collapse
|
15
|
Ciołczyk-Wierzbicka D, Krawczyk A, Zarzycka M, Zemanek G, Wierzbicki K. Three generations of mTOR kinase inhibitors in the activation of the apoptosis process in melanoma cells. J Cell Commun Signal 2023; 17:975-989. [PMID: 37097377 PMCID: PMC10409930 DOI: 10.1007/s12079-023-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Many signaling pathways are involved in the mammalian target of rapamycin (mTOR), and this serine/threonine kinase regulates the most important cellular processes such as cell proliferation, autophagy, and apoptosis. The subject of this research was the effect of protein kinase inhibitors involved in the AKT, MEK, and mTOR kinase signaling pathways on the expression of pro-survival proteins, activity of caspase-3, proliferation, and induction of apoptosis in melanoma cells. The following inhibitors were used: protein kinase inhibitors such as AKT-MK-2206, MEK-AS-703026, mTOR-everolimus and Torkinib, as well as dual PI3K and mTOR inhibitor-BEZ-235 and Omipalisib, and mTOR1/2-OSI-027 inhibitor in single-mode and their combinations with MEK1/2 kinase inhibitor AS-703026. The obtained results confirm the synergistic effect of nanomolar concentrations of mTOR inhibitors, especially the dual PI3K and mTOR inhibitors (Omipalisib, BEZ-235) in combination with the MAP kinase inhibitor (AS-703026) in the activation of caspase 3, induction of apoptosis, and inhibition of proliferation in melanoma cell lines. Our previous and current studies confirm the importance of the mTOR signal transduction pathway in the neoplastic transformation process. Melanoma is a case of a very heterogeneous neoplasm, which causes great difficulties in treating this neoplasm in an advanced stage, and the standard approach to this topic does not bring the expected results. There is a need for research on the search for new therapeutic strategies aimed at particular groups of patients. Effect of three generations of mTOR kinase inhibitors on caspase-3 activity, apoptosis and proliferation in melanoma cell lines.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Agnieszka Krawczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University, John Paul II Hospital, Ul. Prądnicka 80, 31-202, Kraków, Poland
| |
Collapse
|
16
|
Chen E, Mo Y, Yi J, Liu J, Luo T, Li Z, Lin Z, Hu Y, Zou Z, Liu J. A novel hepatocellular carcinoma-specific mTORC1-related signature for anticipating prognosis and immunotherapy. Aging (Albany NY) 2023; 15:7933-7955. [PMID: 37589508 PMCID: PMC10497017 DOI: 10.18632/aging.204862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Tumor oncogenesis, cancer metastasis, and immune evasion were substantially impacted by the mammalian target of the rapamycin complex 1 (mTORC1) pathway. However, in hepatocellular carcinoma (HCC), no mTORC1 signaling-based gene signature has ever been published. mTORC1 scores were computed employing a single sample gene set enrichment analysis based on databases including the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). The PAG1, LHFPL2, and FABP5 expression levels were obtained to construct a mTORC1 pathway-related model. In two databases, the overall survival (OS) rate was shorter for high-mTORC1 score patients compared to those with low scores. The activation of TFs in the group with high risk was enhanced, such as the HIF-1 pathway. Additionally, it was discovered that a high mTORC1 score was linked to an immune exclusion phenotype and enhanced immunosuppressive cell infiltration. Notably, it was discovered that high-mTORC1 scores patients had poorer immunotherapeutic results and might not gain benefit from immunotherapy. When compared to the low HCC metastatic cell lines, the high HCC metastatic cell lines have overexpressed levels of PAG1, LHFPL2, and FABP5 expression. The expression of PAG1, LHFPL2, and FABP5 was inhibited by the MAPK and mTORC1 pathway inhibitors. Our study identified mTORC1 score signature can aid in the development of individualized immunotherapy protocols and predict the HCC patients' prognoses.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ting Luo
- Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zheng Li
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yibing Hu
- Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
18
|
Halim F, Azhar Y, Suwarman S, Wahjoepramono EJ, Hernowo B. Positive p53 Expression Is Associated with Primary Endocrine Therapy Resistance in Locally Advanced Stage Luminal B HER2-Negative Breast Cancer Patients: A Cross-Sectional Study in Indonesia. Diagnostics (Basel) 2023; 13:diagnostics13111838. [PMID: 37296690 DOI: 10.3390/diagnostics13111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Luminal B HER2-negative breast cancer (BC) is the most common type in Indonesian BC patients, and frequently manifests with locally advanced staging. Recurrence often occurs within two years of the endocrine therapy course (primary endocrine therapy (ET) resistance). p53 mutation often exists in luminal B HER2-negative BC, but its application as an ET resistance predictor in those populations is still limited. The primary purpose of this research is to evaluate p53 expression and its association with primary ET resistance in luminal B HER2-negative BC. This cross-sectional study compiled 67 luminal B HER2-negative patients' clinical data during their pre-treatment period until they completed a two-year course of endocrine therapy. They were divided into two groups: 29 patients with primary ET resistance and 38 without primary ET resistance. Pre-treatment paraffin blocks from each patient were retrieved, and the p53 expression difference between the two groups was analyzed. Positive p53 expression was significantly higher in patients with primary ET resistance [odds ratio (OR) of 11.78 (95% CI: 3.72-37.37, p-value < 0.0001)]. We conclude that p53 expression could be a beneficial marker for primary ET resistance in locally advanced luminal B HER2-negative BC.
Collapse
Affiliation(s)
- Freda Halim
- Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Department of Surgery, Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Banten, Indonesia
| | - Yohana Azhar
- Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Department of Surgery, Oncology, Head and Neck Division, Hasan Sadikin Hospital, Bandung 40161, West Java, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| | - Eka Julianta Wahjoepramono
- Department of Neurosurgery, Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Banten, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| |
Collapse
|
19
|
Tan X, Li Y, Hou Z, Zhang M, Li L, Wei J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp Cell Res 2023:113647. [PMID: 37225011 DOI: 10.1016/j.yexcr.2023.113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yan Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, 440(#) Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zhihui Hou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Mingwei Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Li Li
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China; Department of Pathology, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Junmin Wei
- Department of Oncology, Cancer Center, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
20
|
Zhang H, Ma L, Kim E, Yi J, Huang H, Kim H, Raza MA, Park S, Jang S, Kim K, Kim SH, Lee Y, Kim E, Ryoo ZY, Kim MO. Rhein Induces Oral Cancer Cell Apoptosis and ROS via Suppresse AKT/mTOR Signaling Pathway In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24108507. [PMID: 37239855 DOI: 10.3390/ijms24108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lei Ma
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyung National University, Anseong 17579, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Muhammad Atif Raza
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kirim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Republic of Korea
| | - Youngkyun Lee
- School of Dentistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunkyong Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
21
|
Rebuzzi SE, Brunelli M, Galuppini F, Vellone VG, Signori A, Catalano F, Damassi A, Gaggero G, Rescigno P, Maruzzo M, Merler S, Vignani F, Cavo A, Basso U, Milella M, Panepinto O, Mencoboni M, Sbaraglia M, Dei Tos AP, Murianni V, Cremante M, Llaja Obispo MA, Maffezzoli M, Banna GL, Buti S, Fornarini G. Characterization of Tumor and Immune Tumor Microenvironment of Primary Tumors and Metastatic Sites in Advanced Renal Cell Carcinoma Patients Based on Response to Nivolumab Immunotherapy: Preliminary Results from the Meet-URO 18 Study. Cancers (Basel) 2023; 15:cancers15082394. [PMID: 37190322 DOI: 10.3390/cancers15082394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Prognostic and predictive factors for patients with metastatic renal cell carcinoma (mRCC) treated with immunotherapy are highly warranted, and the immune tumor microenvironment (I-TME) is under investigation. METHODS The Meet-URO 18 was a multicentric retrospective study assessing the I-TME in mRCC patients treated with ≥2nd-line nivolumab, dichotomized into responders and non-responders according to progression-free survival (≥12 months and ≤3 months, respectively). The primary objective was to identify differential immunohistochemical (IHC) patterns between the two groups. Lymphocyte infiltration and the expressions of different proteins on tumor cells (CD56, CD15, CD68, and ph-mTOR) were analyzed. The expression of PD-L1 was also assessed. RESULTS A total of 116 tumor tissue samples from 84 patients (59% were primary tumors and 41% were metastases) were evaluated. Samples from responders (N = 55) were significantly associated with lower expression of CD4+ T lymphocytes and higher levels of ph-mTOR and CD56+ compared with samples from non-responders (N = 61). Responders also showed a higher CD3+ expression (p = 0.059) and CD8+/CD4+ ratio (p = 0.084). Non-responders were significantly associated with a higher percentage of clear cell histology and grading. CONCLUSIONS Differential IHC patterns between the tumors in patients who were responders and non-responders to nivolumab were identified. Further investigation with genomic analyses is planned.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, 17100 Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy
| | - Matteo Brunelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37124 Verona, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | | | - Alessio Signori
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, 16132 Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Damassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Gaggero
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Rescigno
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Sara Merler
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | - Alessia Cavo
- Oncology Unit, Villa Scassi Hospital, 16149 Genoa, Italy
| | - Umberto Basso
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Olimpia Panepinto
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | | | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
22
|
Mao C, Wang Y, Xu Z, Wang X, Fang B, Chen H. Luteolin-Zn Complex Inhibits Invasion and Migration of M2-Like TAMs via the Downregulation of AMPK/mTOR and PI3K/Akt/mTOR Signaling Pathway Under Hypoxia. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231167996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Purpose: The high mortality rate of malignant tumors is often attributable to the loss of surgical opportunities due to late diagnosis when invasion and metastasis have significantly affected the patient. A hypoxic microenvironment can promote the progression of malignant tumors. This study explored the invasion resistance and migration ability of luteolin-Zn complexes. Methods: We created a low-oxygen environment using a 3-atmosphere incubator. The appropriate drug concentration was determined using the CCK8 experiment. We determined its role in cell invasion and migration through scratch and transwell experiments. Western blotting, polymerase chain reaction, and cellular immunity experiments were used to study the mechanism and its impact on the secretion of invasion and migration factors. Results: Our results indicated that the luteolin-Zn complex significantly reduced MMP2, MMP9, N-Ca, and HIF-1ɑ expression. It also upregulated TIMP1 and E-Ca expression. Moreover, its capabilities may be achieved by regulating the AMPK/mTOR and PI3K/Akt/mTOR signaling pathways. Conclusions: The luteolin-Zn complex was highly resistant to the invasion and migration of M2-like tumor-related macrophages. This may exert a unique influence on mTOR by integrating various signals. This study suggests that the luteolin-Zn complex has a strong anticancer effect under hypoxic conditions.
Collapse
Affiliation(s)
- Chenyang Mao
- Department of Hepatobiliary Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Yongling Wang
- Department of Ultrasonography, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Zhenhua Xu
- Sanya Rehabilitation Center of Joint Support Forces, Hainan, China
| | | | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Haihua Chen
- Department of Hepatopancreatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Linhai, China
| |
Collapse
|
23
|
Reccia I, Pai M, Kumar J, Spalding D, Frilling A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:1861. [PMID: 36980746 PMCID: PMC10047148 DOI: 10.3390/cancers15061861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tumour heterogeneity is a common phenomenon in neuroendocrine neoplasms (NENs) and a significant cause of treatment failure and disease progression. Genetic and epigenetic instability, along with proliferation of cancer stem cells and alterations in the tumour microenvironment, manifest as intra-tumoural variability in tumour biology in primary tumours and metastases. This may change over time, especially under selective pressure during treatment. The gastroenteropancreatic (GEP) tract is the most common site for NENs, and their diagnosis and treatment depends on the specific characteristics of the disease, in particular proliferation activity, expression of somatostatin receptors and grading. Somatostatin receptor expression has a major role in the diagnosis and treatment of GEP-NENs, while Ki-67 is also a valuable prognostic marker. Intra- and inter-tumour heterogeneity in GEP-NENS, however, may lead to inaccurate assessment of the disease and affect the reliability of the available diagnostic, prognostic and predictive tests. In this review, we summarise the current available evidence of the impact of tumour heterogeneity on tumour diagnosis and treatment of GEP-NENs. Understanding and accurately measuring tumour heterogeneity could better inform clinical decision making in NENs.
Collapse
Affiliation(s)
- Isabella Reccia
- General Surgical and Oncology Unit, Policlinico San Pietro, Via Carlo Forlanini, 24036 Ponte San Pietro, Italy
| | - Madhava Pai
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Jayant Kumar
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Duncan Spalding
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Andrea Frilling
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
24
|
Luo Q, Chai X, Xin X, Ouyang W, Deng F. Maternal hyperglycemia inhibits pulmonary vasculogenesis during mouse fetal lung development by promoting GβL Ubiquitination-dependent mammalian target of Rapamycin assembly. Diabetol Metab Syndr 2023; 15:49. [PMID: 36927703 PMCID: PMC10021989 DOI: 10.1186/s13098-022-00974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/24/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with retarded lung development and poor lung health in offspring. Mammalian target of rapamycin (mTOR) is a key regulator of vasculogenesis and angiogenesis. The aim of this study was to investigate the role mTOR plays in pulmonary vasculogenesis during fetal lung development under maternal hyperglycemia. METHODS First, GDM was induced via streptozotocin injection in pregnant C57BL/6 mice before the radial alveolar count (RAC) in the fetal lungs was assessed using hematoxylin and eosin staining. The angiogenic ability of the cultured primary mouse fetal lung endothelial cells (MFLECs) was then assessed using the tube formation assay technique, while western blot and real-time polymerase chain reaction were performed to determine the expression of mTOR, regulatory-associated protein of mTOR (Raptor), rapamycin-insensitive companion of mTOR (Rictor), stress-activated protein kinase interacting protein 1 (Sin1), G protein beta subunit-like protein (GβL), Akt, tumor necrosis receptor associated factor-2 (TRAF2), and OTU deubiquitinase 7B (OTUD7B) in both the fetal lung tissues and the cultured MFLECs. Immunoprecipitation assays were conducted to evaluate the status of GβL-ubiquitination and the association between GβL and mTOR, Raptor, Rictor, and Sin1 in the cultured MFLECs. RESULTS The GDM fetal lungs exhibited a decreased RAC and reduced expression of von Willebrand factor, CD31, and microvessel density. The high glucose level reduced the tube formation ability in the MFLECs, with the mTOR, p-mTOR, p-Raptor, and TRAF2 expression upregulated and the p-Rictor, p-Sin1, p-Akt, and OTUD7B expression downregulated in both the GDM fetal lungs and the high-glucose-treated MFLECs. Meanwhile, GβL-ubiquitination was upregulated in the high-glucose-treated MFLECs along with an increased GβL/Raptor association and decreased GβL/Rictor and GβL/Sin1 association. Furthermore, TRAF2 knockdown inhibited the high-glucose-induced GβL-ubiquitination and GβL/Raptor association and restored the tube formation ability of the MFLECs. CONCLUSION Maternal hyperglycemia inhibits pulmonary vasculogenesis during fetal lung development by promoting GβL-ubiquitination-dependent mTORC1 assembly.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinqun Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Xin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weixiang Ouyang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feitao Deng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Renal clear cell carcinoma-derived CXCL5 drives tumor-associated fibroblast formation and facilitates cancer progression. Pathol Res Pract 2023; 244:154319. [PMID: 36889175 DOI: 10.1016/j.prp.2023.154319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC, ccRCC) is one of the most common and aggressive subtypes of urinary system cancer. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) exacerbate the malignant phenotype of KIRC. It is necessary to explore further how KIRC induces normal fibroblasts (NFs) into CAFs. METHODS The transcriptome data of KIRC was obtained from The Cancer Genome Atlas (TCGA), and the hub-genes and their corresponding functions in the co-expression module were obtained through differential analysis, enrichment analysis, and weighted correlation network analysis (WGCNA) analysis. RT-PCR, western-blot, and Elisa assays were used to detect the expression of CXCL5 (C-X-C Motif Chemokine Ligand 5) in KIRC cells and medium. Western-blot and immunofluorescence were used to demonstrate the transformation of NFs to CAF-like cells and relevant pathways. Human umbilical vein endothelial cells (huvec) were seeded within collagen gel to represent the neo-vascular network. Transwell, scrape, colony formation, and CCK-8 assays were performed to reveal the feedback effect of KIRC cells. RESULTS Bioinformatics analysis showed that CXCL5 was a core gene in differential expression genes (DEGs) and was associated with extracellular matrix (ECM), which was associated with CAFs. KIRC-derived CXCL5 promoted the conversion of NFs to CAF-like cells. It included morphological and corresponding molecular marker changes. Activation of the JAK/STAT3 pathway was involved in this process. Corresponding, CAFs cells could secrete vascular endothelial growth factor (VEGF), which induced angiogenesis. CXCL5 promoted KIRC invasion and proliferation. CONCLUSIONS Our research suggested that KIRC-derived CXCL5 could induce NFs to become CAFs-like cells that promote angiogenesis in the TME. The positive feedback of CXCL5 promoted its own invasive growth. The intercellular communication with CXCL5 as the core might be the critical node in the occurrence and development of KIRC.
Collapse
|
26
|
Tlemsani C, Larousserie F, De Percin S, Audard V, Hadjadj D, Chen J, Biau D, Anract P, Terris B, Goldwasser F, Pasmant E, Boudou-Rouquette P. Biology and Management of High-Grade Chondrosarcoma: An Update on Targets and Treatment Options. Int J Mol Sci 2023; 24:1361. [PMID: 36674874 PMCID: PMC9862566 DOI: 10.3390/ijms24021361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
This review provides an overview of histopathology, clinical presentation, molecular pathways, and potential new systemic treatments of high-grade chondrosarcomas (CS), including grade 2−3 conventional, dedifferentiated, and mesenchymal CS. The diagnosis of CS combines radiological and histological data in conjunction with patient clinical presentations. Conventional CS is the most frequent subtype of CS (85%) and represents about 25% of primary bone tumors in adults; they can be categorized according to their bone location into central, peripheral, and periosteal chondrosarcomas. Central and peripheral CS differ at the molecular level with either IDH1/2 mutations or EXT1/2 mutations, respectively. CDKN2A/B deletions are also frequent in conventional CS, as well as COL2A1 mutations. Dedifferentiated CS develops when low-grade conventional CS transforms into a high-grade sarcoma and most frequently exhibits features of osteosarcoma, fibrosarcoma, or undifferentiated pleomorphic sarcoma. Their molecular characteristics are similar to conventional CS. Mesenchymal CS is a totally different pathological entity exhibiting recurrent translocations. Their clinical presentation and management are different too. The standard treatment of CSs is wide en-bloc resection. CS are relatively radiotherapy resistant; therefore, doses >60 Gy are needed in an attempt to achieve local control in unresectable tumors. Chemotherapy is possibly effective in mesenchymal chondrosarcoma and is of uncertain value in dedifferentiated chondrosarcoma. Due to resistance to standard anticancer agents, the prognosis is poor in patients with metastatic or unresectable chondrosarcomas. Recently, the refined characterization of the molecular profile, as well as the development of new treatments, allow new therapeutic options for these rare tumors. The efficiency of IDH1 inhibitors in other malignancies suggests that these inhibitors will be part of IDH1/2 mutated conventional CS management soon. Other treatment approaches, such as PIK3-AKT-mTOR inhibitors, cell cycle inhibitors, and epigenetic or immune modulators based on improving our understanding of CS molecular biology, are emerging.
Collapse
Affiliation(s)
- Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
- INSERM U1016-CNRS UMR8104, Cochin Institute, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Frédérique Larousserie
- Department of Pathology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Sixtine De Percin
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Virginie Audard
- Department of Pathology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Djihad Hadjadj
- INSERM U1016-CNRS UMR8104, Cochin Institute, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Jeanne Chen
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - David Biau
- Department of Orthopedic Surgery, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Philippe Anract
- Department of Orthopedic Surgery, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Benoit Terris
- Department of Pathology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Eric Pasmant
- INSERM U1016-CNRS UMR8104, Cochin Institute, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
- Department of Genetics, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
- INSERM U1016-CNRS UMR8104, Cochin Institute, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, 75014 Paris, France
| |
Collapse
|
27
|
Devarasou S, Kang M, Kwon TY, Cho Y, Shin JH. Fibrous Matrix Architecture-Dependent Activation of Fibroblasts with a Cancer-Associated Fibroblast-like Phenotype. ACS Biomater Sci Eng 2023; 9:280-291. [PMID: 36573928 DOI: 10.1021/acsbiomaterials.2c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most prevalent cell types within the tumor microenvironment (TME). While several physicochemical cues from the TME, including growth factors, cytokines, and ECM specificity, have been identified as essential factors for CAF activation, the precise mechanism of how the ECM architecture regulates CAF initiation remains elusive. Using a gelatin-based electrospun fiber mesh, we examined the effect of matrix fiber density on CAF activation induced by MCF-7 conditioned media (CM). A less dense (3D) gelatin mesh matrix facilitated better activation of dermal fibroblasts into a CAF-like phenotype in the CM than a highly dense (3D) gelatin mesh matrix. In addition, it was discovered that CAF activation on the less dense (LD) matrix is dependent on the cell size-related AKT/mTOR signaling cascade, accompanied by an increase in intracellular tension within the well-spread fibroblasts.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Monge C, Stoppa I, Ferraris C, Bozza A, Battaglia L, Cangemi L, Miglio G, Pizzimenti S, Clemente N, Gigliotti CL, Boggio E, Dianzani U, Dianzani C. Parenteral Nanoemulsions Loaded with Combined Immuno- and Chemo-Therapy for Melanoma Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234233. [PMID: 36500861 PMCID: PMC9740980 DOI: 10.3390/nano12234233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid®, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc. The inhibition of tumor growth in subcutaneous melanoma mouse models has been achieved using sub-therapeutic drug doses, which is most likely the result of the nanoemulsion's targeting properties. If translated to the human setting, this approach should therefore allow therapeutic efficacy to be achieved without increasing the risk of toxic effects.
Collapse
Affiliation(s)
- Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10124 Torino, Italy
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Corso Giuseppe Mazzini 18, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
29
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
30
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Li H, Liu P, Li D, Wang Z, Ding Z, Zhou M, Chen X, Miao M, Ding J, Lin W, Liu Y, Zha X. STAT3/miR-130b-3p/MBNL1 feedback loop regulated by mTORC1 signaling promotes angiogenesis and tumor growth. J Exp Clin Cancer Res 2022; 41:297. [PMID: 36217202 PMCID: PMC9552455 DOI: 10.1186/s13046-022-02513-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrantly activated mammalian target of rapamycin complex 1 (mTORC1) plays a vital role in tumor angiogenesis, but its precise mechanisms are still unclear. METHODS Micro-RNA-130b-3p (miR-130b-3p) expression in mTORC1-activated and control cells was examined by quantitative real-time PCR (qRT-PCR). MiR-130b-3p levels and their correlation with mTORC1 activity were evaluated by analyzing publicly available databases and in-house head and neck squamous cell carcinoma (HNSCC) tissues. The role of miR-130b-3p in mTORC1-mediated angiogenesis and tumor growth was examined using tube formation assay, chicken chorioallantoic membrane assay, cell line - derived xenograft models, and an HNSCC patient-derived xenograft (PDX) model. The regulatory mechanisms among signal transducer and activator of transcription 3 (STAT3), miR-130b-3p, and muscleblind-like protein 1 (MBNL1) were investigated via bioinformatics analyses, qRT-PCR, western blot, RNA immunoprecipitation, immunofluorescence, luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS Elevated miR-130b-3p enhanced the angiogenic and tumorigenic abilities of mTORC1-activated cells both in vitro and in vivo. STAT3, a downstream effector of mTORC1, transactivated miR-130b-3p by direct binding promoter of the miR-130b gene. MBNL1 was identified as a direct target of miR-130b-3p. MBNL1 depletion rescued the compromised angiogenesis and tumor growth caused by miR-130b-3p inhibition. MiR-130b-3p levels were significantly upregulated and positively correlated with mTORC1 signaling in multiple cancers. MiR-130b-3p inhibition attenuated tumor angiogenesis and growth in an HNSCC PDX model. MBNL1 feedback inhibited STAT3 activation in mTORC1-activated cells. CONCLUSIONS The STAT3/miR-130b-3p/MBNL1 feedback loop plays a vital role in mTORC1-mediated angiogenesis and tumor progression. This pathway could be targeted for therapeutic intervention of mTORC1-related cancers.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ping Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng Zhou
- Department of Pharmacy, Genertec Universal Medical Maanshan Shiqiye Hospital, Maanshan, 243000, Anhui Province, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Junli Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
32
|
Cuellar-Vite L, Weber-Bonk KL, Abdul-Karim FW, Booth CN, Keri RA. Focal Adhesion Kinase Provides a Collateral Vulnerability That Can Be Leveraged to Improve mTORC1 Inhibitor Efficacy. Cancers (Basel) 2022; 14:3374. [PMID: 35884439 PMCID: PMC9323520 DOI: 10.3390/cancers14143374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The PI3K/AKT/mTORC1 pathway is a major therapeutic target for many cancers, particularly breast cancer. Everolimus is an mTORC1 inhibitor used in metastatic estrogen receptor-positive (ER+) and epidermal growth factor receptor 2-negative (HER2-) breast cancer. However, mTORC1 inhibitors have limited efficacy in other breast cancer subtypes. We sought to discover collateral sensitivities to mTORC1 inhibition that could be exploited to improve therapeutic response. Using a mouse model of breast cancer that is intrinsically resistant to mTORC1 inhibition, we found that rapamycin alters the expression of numerous extracellular matrix genes, suggesting a potential role for integrins/FAK in controlling mTORC1-inhibitor efficacy. FAK activation was also inversely correlated with rapamycin response in breast cancer cell lines. Supporting its potential utility in patients, FAK activation was observed in >50% of human breast cancers. While blocking FAK in mouse models of breast cancer that are highly responsive to rapamycin had no impact on tumor growth, FAK inhibition sensitized rapamycin-resistant tumors to mTORC1 inhibition. These data reveal an innate dependency on FAK when mTORC1 signaling is lost in tumors that are resistant to mTORC1 inhibitors. They also suggest a precision medicine approach to improving mTORC1 inhibitor efficacy in resistant cancers by suppressing FAK signaling.
Collapse
Affiliation(s)
- Leslie Cuellar-Vite
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Fadi W. Abdul-Karim
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Christine N. Booth
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Ruth A. Keri
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of General Medical Sciences-Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Chida K, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi K, Nakamura Y, Kuboki Y, Kotani D, Kojima T, Bando H, Mishima S, Kuwata T, Sakamoto N, Watanabe J, Mano H, Ikeda M, Shitara K, Endo I, Nakatsura T, Yoshino T. Transcriptomic Profiling of MSI-H/dMMR Gastrointestinal Tumors to Identify Determinants of Responsiveness to Anti-PD-1 Therapy. Clin Cancer Res 2022; 28:2110-2117. [PMID: 35254400 PMCID: PMC9365358 DOI: 10.1158/1078-0432.ccr-22-0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Transcriptomic profiling was performed for microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) gastrointestinal tumors to determine the predictors of response to PD-1 blockade. EXPERIMENTAL DESIGN Thirty-six patients with MSI-H/dMMR gastrointestinal tumors, including gastric cancer, colorectal cancer, cholangiocarcinoma, small intestine cancer, and pancreatic cancer, being treated with PD-1 blockade were analyzed. We conducted the transcriptomic analysis of gastrointestinal tumors using RNA sequencing data, including the consensus molecular subtypes (CMS) of colorectal cancer. RESULTS Gene set enrichment analysis (GSEA) demonstrated that non-responders had upregulations of epithelial-mesenchymal transition, angiogenesis, hypoxia, mTORC1, TNF-α, KRAS, Wnt/β-catenin, TGF-β, and various metabolism-related signaling pathways. Meanwhile, the IFNγ pathway was enriched in responders. On the basis of the leading-edge analysis of GSEA, VEGF-A was significantly correlated with enriched pathways in non-responders. Patients with high VEGF-A expression, compared with those with low expression, had significantly shorter progression-free survival [PFS; median 4.8 months vs. not reached (NR), P = 0.032] and overall survival (median 11.1 months vs. NR, P = 0.045). Among 13 patients with colorectal cancer evaluable for CMS classification, the objective response rate was 100%, 0%, 0%, and 16.7% in CMS1, CMS2, CMS3, and CMS4, respectively. Patients with CMS1 had significantly longer PFS (NR vs. 4.8 months, P = 0.017) than those with CMS2, CMS3, or CMS4. CONCLUSIONS Several transcriptomic features, including CMS classification and related genes, were associated with response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. These findings can help develop predictive biomarkers or combination immunotherapies.
Collapse
Affiliation(s)
- Keigo Chida
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihito Kawazoe
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan.,Corresponding Author: Akihito Kawazoe, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan. Phone: 81-47-133-1111; Fax: 81-47-134-6928; E-mail:
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,General Medicinal Education and Research Center, Teikyo University, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazumasa Takenouchi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | | | - Daisuke Kotani
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takashi Kojima
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hideaki Bando
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Saori Mishima
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jun Watanabe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masafumi Ikeda
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kohei Shitara
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | |
Collapse
|
34
|
Chen Y, Dang J, Lin X, Wang M, Liu Y, Chen J, Chen Y, Luo X, Hu Z, Weng W, Shi X, Bi X, Lu Y, Pan Y. RA Fibroblast-Like Synoviocytes Derived Extracellular Vesicles Promote Angiogenesis by miRNA-1972 Targeting p53/mTOR Signaling in Vascular Endotheliocyte. Front Immunol 2022; 13:793855. [PMID: 35350778 PMCID: PMC8957937 DOI: 10.3389/fimmu.2022.793855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/10/2022] [Indexed: 01/20/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory in joints. Invasive pannus is a characteristic pathological feature of RA. RA fibroblast-like synoviocytes (FLSs) are showed tumor-like biological characters that facilitate pannus generation. Importantly, it has been documented that extracellular vesicle (EVs) derived microRNAs have a vital role of angiogenesis in various immune inflammatory diseases. However, whether RA FLSs derived EVs can facilitate angiogenesis and the underlying mechanism is undefined. Herein, we aim to investigate the key role of RA FLSs derived EVs on angiogenesis in endothelial cells (ECs). We indicate that RA FLSs derived EVs promote ECs angiogenesis by enhancing migration and tube formation of ECs in vitro. Also, we confirm that RA FLSs derived EVs can significantly facilitate ECs angiogenesis with a matrigel angiogenesis mice model. In terms of the mechanisms, both RNAs and proteins in EVs play roles in promoting ECs angiogenesis, but the RNA parts are more fundamental in this process. By combining microRNA sequencing and qPCR results, miR-1972 is identified to facilitate ECs angiogenesis. The blockage of miR-1972 significantly abrogated the angiogenesis stimulative ability of RA FLSs derived EVs in ECs, while the overexpression of miR-1972 reversed the effect in ECs. Specifically, the p53 level is decreased, and the phosphorylated mTOR is upregulated in miR-1972 overexpressed ECs, indicating that miR-1972 expedites angiogenesis through p53/mTOR pathway. Collectively, RA FLSs derived EVs can promote ECs angiogenesis via miR-1972 targeted p53/mTOR signaling, targeting on RA FLSs derived EVs or miR-1972 provides a promising strategy for the treatment of patients with RA.
Collapse
Affiliation(s)
- Yixiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Rheumatology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaorong Lin
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Manli Wang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingrong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuoyu Hu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhen Weng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Park J, Cho HG, Park J, Lee G, Kim HS, Paeng K, Song S, Park G, Ock CY, Chae YK. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:701-711. [PMID: 35339231 DOI: 10.1016/j.ajpath.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment can be classified into three immune phenotypes: inflamed, immune excluded, and immune-desert. Immunotherapy efficacy has been shown to vary by phenotype; yet, the mechanisms are poorly understood and demand further investigation. This study unveils the mechanisms using an artificial intelligence-powered software called Lunit SCOPE. Artificial intelligence was used to classify 965 samples of non-small-cell lung carcinoma from The Cancer Genome Atlas into the three immune phenotypes. The immune and mutational profiles that shape each phenotype using xCell, gene set enrichment analysis with RNA-sequencing data, and cBioportal were described. In the inflamed subtype, which showed higher cytolytic score, the enriched pathways were generally associated with immune response and immune-related cell types were highly expressed. In the immune excluded subtype, enriched glycolysis, fatty acid, and cholesterol metabolism pathways were observed. The KRAS mutation, BRAF mutation, and MET splicing variant were mostly observed in the inflamed subtype. The two prominent mutations found in the immune excluded subtype were EGFR and PIK3CA mutations. This study is the first to report the distinct immunologic and mutational landscapes of immune phenotypes, and demonstrates the biological relevance of the classification. In light of these findings, the study offers insights into potential treatment options tailored to each immune phenotype.
Collapse
Affiliation(s)
- Jonghanne Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hyung-Gyo Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jewel Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Grace Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hye Sung Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.
| |
Collapse
|
36
|
Wei L, Wei Q, Yang X, Zhou P. CMTM6 knockdown prevents glioma progression by inactivating the mTOR pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:181. [PMID: 35280358 PMCID: PMC8908166 DOI: 10.21037/atm-21-6894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
Background Gliomas in the adult brain are complicated and aggressive with a poor prognosis. Gene therapy is a recent alternative glioma treatment. We sought to explore the mechanism of chemokine-like factor (CKLF) MARVEL transmembrane domain-containing 6 (CMTM6) in glioma. Methods The Cancer Genome Atlas database reports that CMTM6 is expressed in tumors and glioma tissue. CMTM6 expression in glioma tissues and cells was detected and its relationship with clinical pathology was analyzed. Short hairpin ribonucleic acid-CMTM6 lentivirus was transfected into U87 and U251 cells to evaluate malignant glioma cells. Using the biological website (https://string-db.org/cgi/input.pl?Sessionid) and reference retrieval, the pathway that interacted with CMTM6 and related to glioma was identified. The level of the mammalian target of rapamycin pathway-related proteins was detected. Functional rescue experiments were performed using the combination of mTOR activator MHY1485 and the knockdown CMTM6. The growth of xenograft tumors was observed and Ki67-positive expression was determined. Results CMTM6 upregulation in gliomas was associated with a poor prognosis. CMTM6 expression was notably higher in gliomas. After the knockdown of CMTM6, the proliferation, invasion, and migration of U87 and U251 cells were inhibited, and the apoptosis rate was increased. Knocking down CMTM6 inactivated the mTOR pathway. The activation of mTOR pathway reversed the inhibitory effects of CMTM6 knockdown on glioma cell behaviors. CMTM6 knockdown reduced tumor volume, body mass, and Ki67-positive expression. Conclusions The knockdown of CMTM6 inhibited the activation of mTOR pathway and prevented the malignant episodes of glioma cells.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Wei
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaojun Yang
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
37
|
Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, Rostamzadeh D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol 2022; 12:774103. [PMID: 35250965 PMCID: PMC8894239 DOI: 10.3389/fimmu.2021.774103] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, which plays a pivotal role in regulating numerous cellular functions including cell growth, proliferation, survival, and metabolism by integrating a variety of extracellular and intracellular signals in the tumor microenvironment (TME). Dysregulation of the mTOR pathway is frequently reported in many types of human tumors, and targeting the PI3K/Akt/mTOR signaling pathway has been considered an attractive potential therapeutic target in cancer. The PI3K/Akt/mTOR signaling transduction pathway is important not only in the development and progression of cancers but also for its critical regulatory role in the tumor microenvironment. Immunologically, mTOR is emerging as a key regulator of immune responses. The mTOR signaling pathway plays an essential regulatory role in the differentiation and function of both innate and adaptive immune cells. Considering the central role of mTOR in metabolic and translational reprogramming, it can affect tumor-associated immune cells to undergo phenotypic and functional reprogramming in TME. The mTOR-mediated inflammatory response can also promote the recruitment of immune cells to TME, resulting in exerting the anti-tumor functions or promoting cancer cell growth, progression, and metastasis. Thus, deregulated mTOR signaling in cancer can modulate the TME, thereby affecting the tumor immune microenvironment. Here, we review the current knowledge regarding the crucial role of the PI3K/Akt/mTOR pathway in controlling and shaping the immune responses in TME.
Collapse
Affiliation(s)
- Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Abbasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| |
Collapse
|
38
|
Arend RC, Scalise CB, Gordon ER, Davis AM, Foxall ME, Johnston BE, Crossman DK, Cooper SJ. Metabolic alterations and WNT signaling impact immune response in HGSOC. Clin Cancer Res 2022; 28:1433-1445. [PMID: 35031546 DOI: 10.1158/1078-0432.ccr-21-2984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Our study used transcriptomic and metabolomic strategies to determine the molecular profiles of HGSOC patient samples derived from primary tumor and ascites cells. These data identified clinically relevant heterogeneity among and within patients and highlighted global and patient-specific cellular responses to neoadjuvant chemotherapy (NACT). EXPERIMENTAL DESIGN Tissue from 61 treatment naïve patients with HGSOC were collected. In addition, 11 benign, 32 ascites, and 18 post-NACT samples (matched to the individual patient's pre-NACT sample) were collected. RNA-sequencing (RNA-seq) was performed on all samples collected. Two-dimensional spatial proteomic data was collected for two pairs of pre-and post-NACT. Untargeted metabolomics data using GCxGC-MS was generated for 30 treatment-naive tissues. Consensus clustering, analysis of differential expression, pathway enrichment, and survival analyses were performed. RESULTS Treatment-naïve HGSOC tissues had distinct transcriptomic and metabolomic profiles. The mesenchymal subtype harbored a metabolomic profile distinct from the other subtypes. Compared to primary tumor tissue, ascites showed significant changes in immune response and signaling pathways. NACT caused significant alterations in gene expression and WNT activity, and this corresponded to altered immune response. Overall, WNT signaling levels were inversely correlated with immune cell infiltration in HGSOC tissues and WNT signaling post-NACT was inversely correlated with progression-free survival. CONCLUSIONS Our study concluded that HGSOC is a heterogenous disease at baseline and growing molecular differences can be observed between primary tumor and ascites cells or within tumors in response to treatment. Our data reveal potential exploratory biomarkers relevant for treatment selection and predicting patient outcomes that warrant further research.
Collapse
Affiliation(s)
- Rebecca C Arend
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | - Allison M Davis
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | | | - Sara J Cooper
- S. Cooper Lab, HudsonAlpha Institute for Biotechnology
| |
Collapse
|
39
|
Yamaguchi S, Zhang D, Katayama A, Kurooka N, Sugawara R, Albuayjan HHH, Nakatsuka A, Eguchi J, Wada J. Adipocyte-Specific Inhibition of Mir221/222 Ameliorates Diet-Induced Obesity Through Targeting Ddit4. Front Endocrinol (Lausanne) 2022; 12:750261. [PMID: 35046889 PMCID: PMC8762293 DOI: 10.3389/fendo.2021.750261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs expressed in adipocytes are involved in transcriptional regulation of target mRNAs in obesity, but miRNAs critically involved in this process is not well characterized. Here, we identified upregulation of miR-221-3p and miR-222-3p in the white adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir221 and Mir222 are paralogous genes and share the common seed sequence and Mir221/222AdipoKO mice fed with HFHS chow demonstrated resistance to the development of obesity compared with Mir221/222flox/y . Ddit4 is a direct target of Mir221 and Mir222, and the upregulation of Ddit4 in Mir221/222AdipoKO was associated with the suppression of TSC2 (tuberous sclerosis complex 2)/mammalian target of rapamycin complex 1 (mTORC1)/S6K (ribosomal protein S6 kinase) pathway. The overexpression of miR-222-3p linked to enhanced adipogenesis, and it may be a potential candidate for miRNA-based therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
40
|
Wang Z, Zhang M, Wu Y, Yu Y, Zheng Q, Li J. CKS2 Overexpression Correlates with Prognosis and Immune Cell Infiltration in Lung Adenocarcinoma: A Comprehensive Study based on Bioinformatics and Experiments. J Cancer 2021; 12:6964-6978. [PMID: 34729099 PMCID: PMC8558665 DOI: 10.7150/jca.63625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Cyclin-dependent kinase regulatory subunit 2 (CKS2) plays a vital role in regulation of the cell cycle and cancer progression. However, the role of CKS2 in lung adenocarcinoma (LUAD) remains unkonwn. Here, we examined the prognostic value and biological functions of CKS2 in LUAD by using omics data of 1,235 LUAD samples from TCGA, GEO, and our own cohort as well as data of in vitro experiments. Methods: Kaplan-Meier was conducted to evaluate the prognostic value of CKS2 expression. The association between CKS2 expression level and tumor immune infiltration was explored using the single-sample Gene Set Enrichment Analysis (ssGSEA) and TIMER database. Functional enrichment analyses were performed to annotate the biological functions of CKS2 in LUAD. Furthermore, a series of in vitro experiments and immunohistochemistry were performed for validation. Results: CKS2 overexpression was correlated with the advanced stage, TP53 status, PD-L1 expression, and DNA hypomethylation. Moreover, patients with LUAD and high CKS2 expression exhibited poor overall survival. Functional enrichment analysis indicated that CKS2 was involved in cell division, cell cycle, DNA replication. Experiments in vitro indicated that CKS2 knockdown decreased the invasion and proliferation of LUAD cells and facilitated their apoptosis. ssGSEA and TIMER analysis revealed a negative correlation between CKS2 expression and the immune cell infiltration. Conclusions: In summary, High CKS2 expression was associated with poor prognosis and low levels of infiltrating immune cells in LUAD as well as with malignant phenotypes. Therefore, CKS2 may be a promising prognostic biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Zhiping Wang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Mengyan Zhang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yahua Wu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yilin Yu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Qunhao Zheng
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jiancheng Li
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Identification of Immune-Related Risk Signatures for the Prognostic Prediction in Oral Squamous Cell Carcinoma. J Immunol Res 2021; 2021:6203759. [PMID: 34497859 PMCID: PMC8420972 DOI: 10.1155/2021/6203759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which remains a major cause of morbidity and mortality in patients with head and neck cancers. However, the critical immune-related signatures and their prognostic values have rarely been investigated. Materials and Methods Gene differential analysis was used to measure the differences of gene expression between the groups. Correlation analysis was used to assess the association between the gene expression levels and immune-related risk score/DNA methylation levels. The gene set enrichment analysis (GSEA) was used to identify the pathways or cell types enriched by those identified differentially expressed genes (DEGs). Results In this study, we identified four immune-related gene signatures, including CTSG, TNFRSF4, LCORL, and PLAU, that were significantly associated with the overall survival in OSCC patients from the Cancer Genome Atlas (TCGA) OSCC cohort. Moreover, these four immune-related signatures were differentially expressed between the OSCC and nontumor tissues. The two groups (high and low risk) stratified by the immune-related risk scores had significantly different OS and mortality rates. The gene expression patterns and prognostic values of these immune-related signatures were also verified in two independent validation cohorts. Furthermore, the downregulated genes in the high-risk group (which were also upregulated in the low-risk group) were significantly enriched in the cell type-specific signatures of type 2 T helper cell (Th2), plasmacytoid dendritic cell (pDC), and memory B cell. In contrast, the upregulated genes in the high-score group were enriched in growth factor receptor-related signaling pathways, such as the VEGFA-VEGFR2 signaling pathway, PI3K-Akt signaling pathway, focal adhesion-PI3K-Akt-mTOR signaling pathway, and PDGF pathway, suggesting that those pathways were inversely correlated with immune cell infiltration. Conclusion In summary, the immune-related signatures had the potential for predicting the risk of OSCC patients. Moreover, the present study also improved our understanding of the association between the growth factor receptor pathways and immune cell infiltration in OSCC.
Collapse
|
42
|
Zheng Z, Zhang J, Jiang J, He Y, Zhang W, Mo X, Kang X, Xu Q, Wang B, Huang Y. Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J Immunother Cancer 2021; 8:jitc-2019-000207. [PMID: 32817393 PMCID: PMC7437977 DOI: 10.1136/jitc-2019-000207] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) treatment is undermined by the suppressive tumor immune microenvironment (TIME). Seek for effective methods for brain TIME modulation is a pressing need. However, there are two major challenges against achieving the goal: first, to screen the effective drugs with TIME-remodeling functions and, second, to develop a brain targeting system for delivering the drugs. METHODS In this study, an α7 nicotinic acetylcholine receptors (nAChRs)-binding peptide DCDX was used to modify the codelivery liposomes to achieve a 'three-birds-one-stone' delivery strategy, that is, multi-targeting the glioma vessel endothelium, glioma cells, and tumor-associated macrophages that all overexpressed α7 nAChRs. A brain-targeted liposomal honokiol and disulfiram/copper codelivery system (CDX-LIPO) was developed for combination therapy via regulating mTOR (mammalian target of rapamycin) pathway for remodeling tumor metabolism and TIME. Honokiol can yield a synergistic effect with disulfiram/copper for anti-GBM. RESULTS It was demonstrated that CDX-LIPO remarkably triggered tumor cell autophagy and induced immunogenic cell death, and meanwhile, activated the tumor-infiltrating macrophage and dendritic cells, and primed T and NK (natural killer) cells, resulting in antitumor immunity and tumor regression. Moreover, CDX-LIPO promoted M1-macrophage polarization and facilitated mTOR-mediated reprogramming of glucose metabolism in glioma. CONCLUSION This study developed a potential combinatory therapeutic strategy by regulation of TIME and a 'three-birds-one-stone'-like glioma-targeting drug delivery system.
Collapse
Affiliation(s)
- Zening Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,Shanghai University of Traditional Chinese Medicine School of Pharmacy, Shanghai, China
| | - Jizong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Wenyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Mo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China .,NMPA Key Laboratory for Quality Research and Evaluation of PharmaceuticalExcipients, Shanghai, China.,Zhongshan Branch, the Institute of Drug Research and Development, ChineseAcademy of Sciences, Zhongshan, China
| |
Collapse
|
43
|
Grega T, Vojtechova G, Gregova M, Zavoral M, Suchanek S. Pathophysiological Characteristics Linking Type 2 Diabetes Mellitus and Colorectal Neoplasia. Physiol Res 2021; 70:509-522. [PMID: 34062073 DOI: 10.33549/physiolres.934631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A substantial body of literature has provided evidence that type 2 diabetes mellitus (T2DM) and colorectal neoplasia share several common factors. Both diseases are among the leading causes of death worldwide and have an increasing incidence. In addition to usual risk factors such as sedentary lifestyle, obesity, and family history, common pathophysiological mechanisms involved in the development of these diseases have been identified. These include changes in glucose metabolism associated with adipose tissue dysfunction including insulin resistance resulting to hyperinsulinemia and chronic hyperglycemia. In addition to altered glucose metabolism, abdominal obesity has been associated with accented carcinogenesis with chronic subclinical inflammation. An increasing number of studies have recently described the role of the gut microbiota in metabolic diseases including T2DM and the development of colorectal cancer (CRC). Due to the interconnectedness of different pathophysiological processes, it is not entirely clear which factor is crucial in the development of carcinogenesis in patients with T2DM. The aim of this work is to review the current knowledge on the pathophysiological mechanisms of colorectal neoplasia development in individuals with T2DM. Here, we review the potential pathophysiological processes involved in the onset and progression of colorectal neoplasia in patients with T2DM. Uncovering common pathophysiological characteristics is essential for understanding the nature of these diseases and may lead to effective treatment and prevention.
Collapse
Affiliation(s)
- T Grega
- Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Military University Hospital in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
44
|
Turkez H, Tozlu OO, Arslan ME, Mardinoglu A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem Int 2021; 150:105168. [PMID: 34450218 DOI: 10.1016/j.neuint.2021.105168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
45
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
46
|
Parkes EE, Humphries MP, Gilmore E, Sidi FA, Bingham V, Phyu SM, Craig S, Graham C, Miller J, Griffin D, Salto-Tellez M, Madden SF, Kennedy RD, Bakhoum SF, McQuaid S, Buckley NE. The clinical and molecular significance associated with STING signaling in breast cancer. NPJ Breast Cancer 2021; 7:81. [PMID: 34172750 PMCID: PMC8233333 DOI: 10.1038/s41523-021-00283-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
STING signaling in cancer is a crucial component of response to immunotherapy and other anti-cancer treatments. Currently, there is no robust method of measuring STING activation in cancer. Here, we describe an immunohistochemistry-based assay with digital pathology assessment of STING in tumor cells. Using this novel approach in estrogen receptor-positive (ER+) and ER- breast cancer, we identify perinuclear-localized expression of STING (pnSTING) in ER+ cases as an independent predictor of good prognosis, associated with immune cell infiltration and upregulation of immune checkpoints. Tumors with low pnSTING are immunosuppressed with increased infiltration of "M2"-polarized macrophages. In ER- disease, pnSTING does not appear to have a significant prognostic role with STING uncoupled from interferon responses. Importantly, a gene signature defining low pnSTING expression is predictive of poor prognosis in independent ER+ datasets. Low pnSTING is associated with chromosomal instability, MYC amplification and mTOR signaling, suggesting novel therapeutic approaches for this subgroup.
Collapse
Affiliation(s)
- Eileen E Parkes
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK.
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Elaine Gilmore
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Fatima A Sidi
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Victoria Bingham
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Su M Phyu
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Stephanie Craig
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Catherine Graham
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Joseph Miller
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Daryl Griffin
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
- Integrated Pathology Programme, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Stephen F Madden
- Data Science Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland, UK
| | - Richard D Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen McQuaid
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
- Northern Ireland Biobank, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Despite significant progress, patients with metastatic prostate cancer continue to have poor prognosis. Immunotherapy has revolutionized cancer care for many tumor types but has a limited role in the treatment of prostate cancer. This review discusses the promise of immunotherapy in prostate cancer treatment with an emphasis on emerging therapeutic targets. RECENT FINDINGS Most prostate tumors have low tumor mutational burden and lack immunogenicity, representing significant hurdles to induction of anti-tumor immunity. However, recent research centered on deciphering key mechanisms of immune resistance in the prostate tumor microenvironment has led to the discovery of a range of new treatment targets. These discoveries are currently being translated into innovative immunotherapy clinical trials for patients with prostate cancer. Recent progress includes early evidence of activity for these novel approaches and the identification of potential predictive biomarkers of response. Novel treatment strategies using new antigen-directed therapies, drugs targeting the immunosuppressive tumor microenvironment, and combination immunotherapy therapies show great potential and are currently in clinical development. In addition, a deeper understanding of predictors of response and resistance to immunotherapy in prostate cancer is allowing for a more personalized approach to therapy.
Collapse
|
48
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
49
|
Cacchione A, Lodi M, Carai A, Miele E, Tartaglia M, Megaro G, Del Baldo G, Alessi I, Colafati GS, Carboni A, Boccuto L, Diomedi Camassei F, Catanzaro G, Po A, Ferretti E, Pedace L, Pizzi S, Folgiero V, Pezzullo M, Corsetti T, Secco DE, Cefalo MG, Locatelli F, Mastronuzzi A. Upfront treatment with mTOR inhibitor everolimus in pediatric low-grade gliomas: A single-center experience. Int J Cancer 2021; 148:2522-2534. [PMID: 33320972 DOI: 10.1002/ijc.33438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Pediatric low-grade gliomas (pLGGs) are the most frequent brain tumor in children. Adjuvant treatment, consisting in chemotherapy and radiotherapy, is often necessary if a complete surgical resection cannot be obtained. Traditional treatment approaches result in a significant long-term morbidity, with a detrimental impact on quality of life. Dysregulation of the mitogen-activated protein kinase (MAPK) pathway is the molecular hallmark of pLGGs and hyperactivation of the downstream mammalian target of rapamycin (mTOR) pathway is frequently observed. We report clinical and radiological results of front-line treatment with everolimus in 10 consecutive patients diagnosed with m-TOR positive pLGGs at the Bambino Gesù Children's Hospital in Rome, Italy. Median duration of treatment was 19 months (range from 13-60). Brain magnetic resonance imaging showed stable disease in 7 patients, partial response in 1 and disease progression in 2. Therapy-related adverse events were always reversible after dose reduction or temporary treatment interruption. To the best of our knowledge, this is the first report of everolimus treatment for chemo- and radiotherapy-naïve children with pLGG. Our results provide preliminary support, despite low sample size, for the use of everolimus as target therapy in pLGG showing lack of progression with a manageable toxicity profile.
Collapse
Affiliation(s)
- Antonella Cacchione
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariachiara Lodi
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomina Megaro
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iside Alessi
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessia Carboni
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, South Carolina, USA
- JC Self Research Institute of the Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Lucia Pedace
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Folgiero
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Corsetti
- Hospital Pharmacy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Domitilla Elena Secco
- PsD of Department of Paediatric Haematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Sapienza University of Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
50
|
Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|