1
|
Varga V, Smeller L, Várdai R, Kocsis B, Zsoldos I, Cruciani S, Pala R, Hornyák I. Water-Insoluble, Thermostable, Crosslinked Gelatin Matrix for Soft Tissue Implant Development. Int J Mol Sci 2024; 25:4336. [PMID: 38673921 PMCID: PMC11050114 DOI: 10.3390/ijms25084336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this present study, the material science background of crosslinked gelatin (GEL) was investigated. The aim was to assess the optimal reaction parameters for the production of a water-insoluble crosslinked gelatin matrix suitable for heat sterilization. Matrices were subjected to enzymatic degradation assessments, and their ability to withstand heat sterilization was evaluated. The impact of different crosslinkers on matrix properties was analyzed. It was found that matrices crosslinked with butanediol diglycidyl ether (BDDE) and poly(ethylene glycol) diglycidyl ether (PEGDE) were resistant to enzymatic degradation and heat sterilization. Additionally, at 1 v/v % crosslinker concentration, the crosslinked weight was lower than the starting weight, suggesting simultaneous degradation and crosslinking. The crosslinked weight and swelling ratio were optimal in the case of the matrices that were crosslinked with 3% and 5% v/v BDDE and PEGDE. FTIR analysis confirmed crosslinking, and the reduction of free primary amino groups indicated effective crosslinking even at a 1% v/v crosslinker concentration. Moreover, stress-strain and compression characteristics of the 5% v/v BDDE crosslinked matrix were comparable to native gelatin. Based on material science measurements, the crosslinked matrices may be promising candidates for scaffold development, including properties such as resistance to enzymatic degradation and heat sterilization.
Collapse
Affiliation(s)
- Viktória Varga
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
| | - Róbert Várdai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, 1111 Budapest, Hungary
| | - Bence Kocsis
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - Ibolya Zsoldos
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (R.P.)
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (R.P.)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Department of Materials Science and Technology, University of Győr, 9026 Győr, Hungary; (B.K.); (I.Z.)
| |
Collapse
|
2
|
Asakura T, Naito A. Bombyx mori Silk Fibroin and Model Peptides Incorporating Arg-Gly-Asp Motifs and Their Application in Wound Dressings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18594-18604. [PMID: 38060376 DOI: 10.1021/acs.langmuir.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Skin plays an important role in protecting the human body from the environment, dehydration, and infection. Burns, wounds, and disease cause the skin to lose its role, but tissue-engineered skin substitutes offer the opportunity to restore skin loss. Silk fibroin from Bombyx mori (SF) has proven to be an excellent wound dressing material. In this study, we aim to develop an excellent wound dressing material by introducing three-residue sequence Arg-Gly-Asp (RGD), which is the most well-known adhesion site of fibronectin, in the films of SF and the model peptide. Its usefulness as a wound dressing material was evaluated both in vitro and in vivo. First, we showed that the flexible structures of the RGD sequence are still maintained in SF with a rigid antiparallel β-sheet structure using NMR in association with excellent wound dressings of SF containing RGD. Then, in in vitro experiments, two types of normal cells derived from human skin, normal human neonatal epidermal keratinocytes and normal human neonatal dermal fibroblasts, were used to evaluate the cell adhesion. On the other hand, in in vivo experiments, the study was conducted using a rat model of a whole skin layer defect wound. The results showed that the high-functionalized SF developed here has the potential to play a significant role in the field of wound dressings.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Wanwong S, Sangkhun W, Jiamboonsri P, Butburee T. Electrospun silk nanofiber loaded with Ag-doped TiO 2 with high-reactive facet as multifunctional air filter. RSC Adv 2023; 13:25729-25737. [PMID: 37649664 PMCID: PMC10464597 DOI: 10.1039/d3ra04621d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Particulate matter (PM) and volatile organic compounds (VOCs) are air pollution that can cause high risk to public health. To protect individuals from air pollution exposure, fibrous filters have been widely employed. In this work, we develop silk nanofibers, which are loaded with Ag-doped TiO2 nanoparticles with exposed (001) (assigned as Ag-TiO2-silk), via electrospinning method and utilized them as multifunctional air filters that can efficiently reduce PM2.5, organic pollutants and microbials. The results showed that Ag-TiO2-silk with a loading of 1 wt% (1%Ag-TiO2-silk) exhibited the best performance among various different Ag-doped samples, as it performed the best as an air filter, which had the highest PM2.5 removal efficiency of 99.04 ± 1.70% with low pressure drop of 34.3 Pa, and also exhibited the highest photodegradation efficiency of formaldehyde. In addition, the Ag-TiO2-silk demonstrated antibacterial activity. These properties make silk composite nanofibers attractive for multifunctional and environmentally-friendly air filter application.
Collapse
Affiliation(s)
- Sompit Wanwong
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod Thailand
| | - Weradesh Sangkhun
- Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod Thailand
| | - Pimsumon Jiamboonsri
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park Pathum Thani 12120 Thailand
| |
Collapse
|
4
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Recombinant Spider Silk Fiber with High Dimensional Stability in Water and Its NMR Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238479. [PMID: 36500566 PMCID: PMC9739919 DOI: 10.3390/molecules27238479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.
Collapse
|
6
|
Beena M, Ameer JM, Kasoju N. Optically Clear Silk Fibroin Films with Tunable Properties for Potential Corneal Tissue Engineering Applications: A Process-Property-Function Relationship Study. ACS OMEGA 2022; 7:29634-29646. [PMID: 36061739 PMCID: PMC9434766 DOI: 10.1021/acsomega.2c01579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Owing to the shortage of donor corneas and issues associated with conventional corneal transplantation, corneal tissue engineering has emerged as a promising therapeutic alternative. Biocompatibility and other attractive features make silk fibroin a biomaterial of choice for corneal tissue engineering applications. The current study presents three modes of silk fibroin film fabrication by solvent casting with popular solvents, viz. aqueous (aq), formic acid (FA), and hexafluoroisopropanol (HFIP), followed by three standard modes of postfabrication annealing with water vapor, methanol vapor, and steam, and systematic characterization studies including corneal cell culture in vitro. The results indicated that silk fibroin films made from aq, FA, and HFIP solvents had surface roughness (Rq) of 1.39, 0.32, and 0.13, contact angles of 73°, 85°, and 89°, water uptake% of 58, 29, and 27%, swelling ratios of 1.58, 1.3, and 1.28, and water vapor transmission% of 39, 26, and 22%, respectively. The degradation rate was in the order of aq > HF > FA, whereas the tensile strength was in the order of aq < HF < FA. Further, the results of the annealing process indicated notable changes in morpho-topographical, physical, degradation, and tensile properties. However, the films showed no detectable changes in chemical composition and remained optically clear with >90% transmission in the visible range, irrespective of fabrication and postfabrication processing conditions. The films were noncytotoxic against L929 cells and were cytocompatible with rabbit cornea-derived SIRC cells in vitro. The study demonstrated the potential of fine-tuning various properties of silk fibroin films by varying the fabrication and postfabrication processing conditions.
Collapse
Affiliation(s)
- Maya Beena
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Jimna Mohamed Ameer
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|
7
|
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23158706. [PMID: 35955840 PMCID: PMC9369158 DOI: 10.3390/ijms23158706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids (ILs) show a bright application prospect in the field of biomedicine and energy materials due to their unique recyclable, modifiability, structure of cation and anion adjustability, as well as excellent physical and chemical properties. Dissolving silk fibroin (SF), from different species silkworm cocoons, with ILs is considered an effective new way to obtain biomaterials with highly enhanced/tailored properties, which can significantly overcome the shortcomings of traditional preparation methods, such as the cumbersome, time-consuming and the organic toxicity caused by manufacture. In this paper, the basic structure and properties of SF and the preparation methods of traditional regenerated SF solution are first introduced. Then, the dissolving mechanism and main influencing factors of ILs for SF are expounded, and the fabrication methods, material structure and properties of SF blending with natural biological protein, inorganic matter, synthetic polymer, carbon nanotube and graphene oxide in the ILs solution system are introduced. Additionally, our work summarizes the biomedicine and tissue engineering applications of silk-based materials dissolved through various ILs. Finally, according to the deficiency of ILs for dissolving SF at a high melting point and expensive cost, their further study and future development trend are prospected.
Collapse
|
8
|
Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 2022; 16:100381. [PMID: 36017107 PMCID: PMC9395666 DOI: 10.1016/j.mtbio.2022.100381] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022]
Abstract
Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.
Collapse
|
9
|
Sangkert S, Juncheed K, Meesane J. Osteoconductive Silk Fibroin Binders for Bone Repair in Alveolar Cleft Palate: Fabrication, Structure, Properties, and In Vitro Testing. J Funct Biomater 2022; 13:jfb13020080. [PMID: 35735935 PMCID: PMC9224859 DOI: 10.3390/jfb13020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoconductive silk fibroin (SF) binders were fabricated for the bone repair of an alveolar cleft defect. Binders were prefigureared by mixing different ratios of a mixture of random coils and SF aggregation with SF fibrils: 100:0 (SFB100), 75:25 (SFB75), 50:50 (SFB50), 25:75 (SFB25), and 0:100 (SFB0). The gelation, molecular organization, structures, topography, and morphology of the binders were characterized and observed. Their physical, mechanical, and biological properties were tested. The SF binders showed gelation via self-assembly of SF aggregation and fibrillation. SFB75, SFB50, and SFB25 had molecular formation via the amide groups and showed more structural stability than SFB100. The morphology of SFB0 demonstrated the largest pore size. SFB0 showed a lowest hydrophilicity. SFB100 showed the highest SF release. SFB25 had the highest maximum load. SFB50 exhibited the lowest elongation at break. Binders with SF fibrils showed more cell viability and higher cell proliferation, ALP activity, calcium deposition, and protein synthesis than without SF fibrils. Finally, the results were deduced: SFB25 demonstrated suitable performance that is promising for the bone repair of an alveolar cleft defect.
Collapse
|
10
|
Asakura T, Matsuda H, Naito A, Abe Y. Formylation of Recombinant Spider Silk in Formic Acid and Wet Spinning Studied Using Nuclear Magnetic Resonance and Infrared Spectroscopies. ACS Biomater Sci Eng 2022; 8:2390-2402. [PMID: 35532754 DOI: 10.1021/acsbiomaterials.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported wet spinning of recombinant spider silk protein (RSSP) and formylation of RSSP in formic acid (FA). First, FA was selected as the spinning solvent and the detailed spinning condition was determined. Next, the mechanical property was compared between the RSSP fiber spun after allowing the spinning solution dissolved in FA to stand for 2 days and the fiber spun immediately after being dissolved in FA for 4 h. The tensile strength of the former fiber was lower than the strength of the latter fiber. This difference can be explained by the difference in the degree of formylation as follows. FA is a known formylating agent, although most researchers who prepared silk fiber by wet spinning with FA have not pointed out about formylation. The formylation of the Ser OH group was confirmed by 13C solution nuclear magnetic resonance (NMR), and the time course of formylation of the RSSP film prepared from the FA solution was tracked by Fourier transform infrared spectroscopy. The 13C solid-state NMR spectra were also compared between two kinds of the formylated RSSP fibers and indicated that the packing state was tighter for the latter fiber than the former one, which could explain higher tensile strength of the latter fiber in the dry state. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the RSSP sample decomposed gradually with storage time in FA and the decomposition has begun partly even at 2 h after dissolution in FA. The decomposition by formylation seems to have no significant effect on the backbone structure of the RSSP fiber, although the packing of the fiber becomes loose as a whole. Finally, preliminary trial of deformylation of the formylated RSSP fiber was performed.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yunoske Abe
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| |
Collapse
|
11
|
Cai B, Mazahreh J, Ma Q, Wang F, Hu X. Ultrasound-assisted fabrication of biopolymer materials: A review. Int J Biol Macromol 2022; 209:1613-1628. [PMID: 35452704 DOI: 10.1016/j.ijbiomac.2022.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop technologies that can physically manipulate the structure of biocompatible and green polymer materials in order to tune their performance in an efficient, repeatable, easy-to-operate, chemical-free, non-contact, and highly controllable manner. Ultrasound technology produces a cavitation effect that promotes the generation of free radicals, the fracture of chemical chain segments and a rapid change of morphology. The cavitation effects are accompanied by thermal, chemical, and biological effects that interact with the material being studied. With its high efficiency, cleanliness, and reusability applications, ultrasound has a vast range of opportunity within the field of natural polymer-based materials. This work expounds the basic principle of ultrasonic cavitation and analyzes the influence that ultrasonic strength, temperature, frequency and induced liquid surface tension on the physical and chemical properties of biopolymer materials. The mechanism and the influence that ultrasonic modification has on materials is discussed, with highlighted details on the agglomeration, degradation, morphology, structure, and the mechanical properties of these novel materials from naturally derived polymers.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Janine Mazahreh
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qingyu Ma
- School of Computer and Electrical Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
12
|
Parekh N, C K B, Kane K, Panicker A, Nisal A, Wangikar P, Agawane S. Superior processability of Antheraea mylitta silk with cryo-milling: Performance in bone tissue regeneration. Int J Biol Macromol 2022; 213:155-165. [PMID: 35609838 DOI: 10.1016/j.ijbiomac.2022.05.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
Non-mulberry silk polymers have a promising future in biomedical applications. However, the dissolution of non-mulberry silk fiber is a still challenge and this poor processability has limited the use of this material. Here, we report a unique protocol to process the Antheraea mylitta (AM) silk fiber. We have shown that the cryo-milling of silk fiber reduces the beta sheet content by more than 10% and results in an SF powder that completely dissolves in routine solvents like trifluoroacetic acid (TFA) within few hours to form highly concentrated solutions (~20 wt%). Further, these solutions can be processed using conventional processing techniques such as electrospinning to form 3D scaffolds. Bombyx mori (BM) silk was used as a control sample in the study. In-vitro studies were also performed to monitor cell adhesion and proliferation and hMSCs differentiation into osteogenic lineage. Finally, the osteogenic potential of the scaffolds was also evaluated by a 4-week implantation study in rat calvarial model. The in-vitro and in-vivo results show that the processing techniques do not affect the biocompatibility of the material and the AM scaffolds support bone regeneration. Our results, thus, show that cryo-milling facilitates enhanced processability of non-mulberry silk and therefore expands its potential in biomedical applications.
Collapse
Affiliation(s)
- Nimisha Parekh
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bijosh C K
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
| | - Kartiki Kane
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
| | - Alaka Panicker
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India
| | - Anuya Nisal
- Polymer Science and Engineering Division, CSIR-NCL, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pralhad Wangikar
- PRADO, Preclinical Research and Development Organization Pvt. Ltd., Pune 410506, India
| | - Sachin Agawane
- Biochemical Science Division, CSIR-NCL, Pune 411008, India
| |
Collapse
|
13
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
14
|
Presence of β-Turn Structure in Recombinant Spider Silk Dissolved in Formic Acid Revealed with NMR. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020511. [PMID: 35056828 PMCID: PMC8778467 DOI: 10.3390/molecules27020511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022]
Abstract
Spider dragline silk is a biopolymer with excellent mechanical properties. The development of recombinant spider silk protein (RSP)-based materials with these properties is desirable. Formic acid (FA) is a spinning solvent for regenerated Bombyx mori silk fiber with excellent mechanical properties. To use FA as a spinning solvent for RSP with the sequence of major ampullate spider silk protein from Araneus diadematus, we determined the conformation of RSP in FA using solution NMR to determine the role of FA as a spinning solvent. We assigned 1H, 13C, and 15N chemical shifts to 32-residue repetitive sequences, including polyAla and Gly-rich regions of RSP. Chemical shift evaluation revealed that RSP is in mainly random coil conformation with partially type II β-turn structure in the Gly-Pro-Gly-X motifs of the Gly-rich region in FA, which was confirmed by the 15N NOE data. In addition, formylation at the Ser OH groups occurred in FA. Furthermore, we evaluated the conformation of the as-cast film of RSP dissolved in FA using solid-state NMR and found that β-sheet structure was predominantly formed.
Collapse
|
15
|
Jao D, Hu X, Beachley V. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing. ACS APPLIED BIO MATERIALS 2021; 4:8192-8204. [DOI: 10.1021/acsabm.1c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Cai B, Gu H, Wang F, Printon K, Gu Z, Hu X. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties. ULTRASONICS SONOCHEMISTRY 2021; 79:105800. [PMID: 34673337 PMCID: PMC8560629 DOI: 10.1016/j.ultsonch.2021.105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Printon
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
17
|
Santos FV, Yoshioka SA, Branciforti MC. Large‐area thin films of silk fibroin prepared by two methods with formic acid as solvent and glycerol as plasticizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francisco Vieira Santos
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| | | | - Marcia Cristina Branciforti
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| |
Collapse
|
18
|
Abbas WA, Shaheen BS, Ghanem LG, Badawy IM, Abodouh MM, Abdou SM, Zada S, Allam NK. Cost-Effective Face Mask Filter Based on Hybrid Composite Nanofibrous Layers with High Filtration Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7492-7502. [PMID: 34101479 DOI: 10.1021/acs.langmuir.1c00926] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the main protective measures against COVID-19's spread is the use of face masks. It is therefore of the utmost importance for face masks to be high functioning in terms of their filtration ability and comfort. Notwithstanding the prevalence of the commercial polypropylene face masks, its effectiveness is under contention, leaving vast room for improvement. During the pandemic, the use of at least one mask per day for each individual results in a massive number of masks that need to be safely disposed of. Fabricating biodegradable filters of high efficiency not only can protect individuals and save the environment but also can be sewed on reusable/washable cloth masks to reduce expenses. Wearing surgical masks for long periods of time, especially in hot regions, causes discomfort by irritating sensitive facial skin and warmed inhaled air. Herein, we demonstrate the fabrication of novel electrospun composites layers as face mask filters for protection against pathogens and tiny particulates. The combinatorial filter layers are made by integrating TiO2 nanotubes as fillers into chitosan/poly(vinyl alcohol) polymeric electrospun nanofibers as the outer layer. The other two filler-free layers, chitosan/poly(vinyl alcohol) and silk/poly(vinyl alcohol) as the middle and inner composite layers, respectively, were used for controlled protection, contamination prevention, and comfort for prolonged usage. The ASTM standards evaluation tests were adopted to evaluate the efficacy of the assembled filter, revealing high filtration efficiency compared to that of commercial surgical masks. The TiO2/Cs/PVA outer layer significantly reduced Staphylococcus aureus bacteria by 44.8% compared to the control, revealing the dual effect of TiO2 and chitosan toward the infectious bacterial colonies. Additionally, molecular dynamics calculations were used to assess the mechanical properties of the filter layers.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basamat S Shaheen
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Loujain G Ghanem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim M Badawy
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed M Abodouh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shrouk M Abdou
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Suher Zada
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
19
|
Bast L, Klockars KW, Greca LG, Rojas OJ, Tardy BL, Bruns N. Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules 2021; 22:2067-2080. [PMID: 33899466 PMCID: PMC8154265 DOI: 10.1021/acs.biomac.1c00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) can spontaneously self-assemble into chiral nematic (cn) structures, similar to natural cholesteric organizations. The latter display highly dissipative fracture propagation mechanisms given their "brick" (particles) and "mortar" (soft matrix) architecture. Unfortunately, CNCs in liquid media have strong supramolecular interactions with most macromolecules, leading to aggregated suspensions. Herein, we describe a method to prepare nanocomposite materials from chiral nematic CNCs (cn-CNCs) with strongly interacting secondary components. Films of cn-CNCs were infiltrated at various loadings with strongly interacting silk proteins and bovine serum albumin. For comparison and to determine the molecular weight range of macromolecules that can infiltrate cn-CNC films, they were also infiltrated with a range of poly(ethylene glycol) polymers that do not interact strongly with CNCs. The extent and impact of infiltration were evaluated by studying the optical reflection properties of the resulting hybrid materials (UV-vis spectroscopy), while fracture dissipation mechanisms were observed via electron microscopy. We propose that infiltration of cn-CNCs enables the introduction of virtually any secondary phase for nanocomposite formation that is otherwise not possible using simple mixing or other conventional approaches.
Collapse
Affiliation(s)
- Livia
K. Bast
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Konrad W. Klockars
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Luiz G. Greca
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
- Departments
of Chemical and Biological Engineering, Chemistry, and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 00076 Aalto, Finland
| | - Nico Bruns
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
20
|
Wang HY, Zhang YQ, Wei ZG. Dissolution and processing of silk fibroin for materials science. Crit Rev Biotechnol 2021; 41:406-424. [PMID: 33749463 DOI: 10.1080/07388551.2020.1853030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent decades, silk fibroin (SF) from silkworm Bombyx mori has been extensively researched and applied in several fields, including: cosmetics, biomedicine and biomaterials. The dissolution and regeneration of SF fibers is the key and prerequisite step for the application of silk protein-based materials. Various solvents and dissolving systems have been reported to dissolve SF fibers. However, the dissolution process directly affects the characteristics of SF and particularly impacts the mechanical properties of the resulting silk biomaterials in subsequent processing. The purpose of this review is to summarize the common solvents, the dissolution methods for silk protein, the properties of the resulting SF protein. The suitable use of SF dissolved in the corresponding solvent was also briefly introduced. Recent applications of SF in various biomaterials are also discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Microroughness induced biomimetic coating for biodegradation control of magnesium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111811. [PMID: 33579455 DOI: 10.1016/j.msec.2020.111811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
Herein we explore a combination of anodization induced micro-roughness and biomimetic coating on pure magnesium (Mg) metal at different applied voltages to control adhesion, biodegradation, and corrosion performance in simulated body fluid solution. The anodic film was fabricated using two different potentials, 3 and 5 V, respectively, to create microroughness on the Mg surface. The microroughened Mg surface was subsequently coated with a biomimetic silk thin film; and the characteristics of the treated Mg-substrates were evaluated using various spectroscopic, microscopic, immersion, and electrochemical techniques. A number of independent measurements, including hydrogen evolution, weight loss and electrochemical methods were employed to assess the corrosion characteristics. The silk-coated anodized samples revealed dramatically reduced degradation rate in terms of volume of hydrogen gas generation and weight loss compared to the respective anodized but uncoated, which revealed that optimized biomimetic silk-coated Mg surface (anodized at 5 V and subsequently biomimetic silk-coated ANMg5V) exhibited the best corrosion performance among all other tested samples. The ANMg5V Silk showed the highest polarization resistance (46.12 kΩ·cm2), protection efficiency (>0.99) and lowest corrosion rate (only 0.017 mm/year) relative to untreated Mg (8.457 mm/year), and anodized Mg (1.039 for anodized at 3 V and 0.986 for anodized at 5 V) surface due to the formation of a pore-free dense biomimetic protective film over Mg surface. The results of the cytotoxicity test confirm that silk-coated samples are significantly less cytotoxic compared to bare and anodized Mg samples. With enhanced corrosion resistance and cytocompatibility, silk-coated Mg could be a potential material for clinical applications.
Collapse
|
22
|
Wang F, Liu H, Li Y, Li Y, Ma Q, Zhang J, Hu X. Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology. ACS APPLIED BIO MATERIALS 2020; 3:8795-8807. [PMID: 35019555 DOI: 10.1021/acsabm.0c01157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polylactide (PLA) and silk fibroin (SF) are biocompatible green macromolecular materials with tunable structures and properties. In this study, microporous PLA/SF composites were fabricated under different pressures by a green solid solvent-free foaming technology. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric (TG) analysis, and Fourier transform infrared (FTIR) spectroscopy were used to analyze the morphology, structure, and mechanical properties of the PLA/SF scaffolds. The crystalline, mobile amorphous phases and rigid amorphous phases in PLA/SF composites were calculated to further understand their structure-property relations. It was found that an increase in pore density and a decrease in pore size can be achieved by increasing the saturation pressure during the foaming process. In addition, changes in the microcellular structure provided PLA/SF scaffolds with better thermal stability, tunable biodegradation rates, and mechanical properties. FTIR and XRD analysis indicated strong hydrogen bonds were formed between PLA and SF molecules, which can be tuned by changing the foaming pressure. The composite scaffolds have good cell compatibility and are conducive to cell adhesion and growth, suggesting that PLA/SF microporous scaffolds could be used as three-dimensional (3-D) biomaterials with a wide range of applications.
Collapse
Affiliation(s)
- Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yingying Li
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yajuan Li
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Qingyu Ma
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
23
|
Kopp A, Schunck L, Gosau M, Smeets R, Burg S, Fuest S, Kröger N, Zinser M, Krohn S, Behbahani M, Köpf M, Lauts L, Rutkowski R. Influence of the Casting Concentration on the Mechanical and Optical Properties of FA/CaCl 2-Derived Silk Fibroin Membranes. Int J Mol Sci 2020; 21:E6704. [PMID: 32933171 PMCID: PMC7555014 DOI: 10.3390/ijms21186704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.
Collapse
Affiliation(s)
- Alexander Kopp
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Laura Schunck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 52074 Cologne, Germany; (N.K.); (M.Z.)
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 52074 Cologne, Germany; (N.K.); (M.Z.)
| | - Sebastian Krohn
- Polyclinic for Dental Prosthetics, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Mehdi Behbahani
- University of Applied Sciences, FH Aachen, 52428 Jülich, Germany;
| | - Marius Köpf
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Lisa Lauts
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| |
Collapse
|
24
|
Gough CR, Rivera-Galletti A, Cowan DA, Salas-de la Cruz D, Hu X. Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules 2020; 25:E3362. [PMID: 32722182 PMCID: PMC7435976 DOI: 10.3390/molecules25153362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Darrel A. Cowan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - David Salas-de la Cruz
- Department of Chemistry, and Center for Computational and Integrative Biology, Camden, NJ 08102, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
25
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
26
|
Xue Y, Wang F, Torculas M, Lofland S, Hu X. Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly. ACS Biomater Sci Eng 2019; 5:6361-6373. [PMID: 33417811 DOI: 10.1021/acsbiomaterials.9b00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flexible and water-insoluble regenerated silk materials have caught considerable interest due to their mechanical properties and numerous potential applications in medical fields. In this study, regenerated Mori (China), Thai, Eri, Muga, and Tussah silk films were prepared by a formic acid-calcium chloride (FA) method, and their structures, morphologies, and other physical properties were comparatively studied through Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray scattering (WAXS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). FTIR results demonstrated that the secondary structures of those five types of silk films are different from those of their respective natural silk fibers, whose structures are dominated by stacked rigid intermolecular β-sheet crystals. Instead, intramolecular β-sheet structures were found to dominate these silk films made by FA method, as confirmed by WAXS. We propose that silk I-like structures with intramolecular β-sheets lead to water insolubility and mechanical flexibility. This comparative study offers a new pathway to understanding the tunable properties of silk-based biomaterials.
Collapse
Affiliation(s)
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
| | | | | | | |
Collapse
|
27
|
Díez-Pascual AM. Synthesis and Applications of Biopolymer Composites. Int J Mol Sci 2019; 20:E2321. [PMID: 31083389 PMCID: PMC6539042 DOI: 10.3390/ijms20092321] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been a growing demand for a clean and pollution-free environment and an evident target to minimizing fossil fuel [...].
Collapse
Affiliation(s)
- Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|