1
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Liu S, Liu R, Chen P, Chu B, Gao S, Yan L, Gou Y, Tian T, Wen S, Zhao C, Sun S. Genome-wide identification and expression analysis of the U-box gene family related to biotic and abiotic stresses in Coffea canephora L. BMC Genomics 2024; 25:916. [PMID: 39354340 PMCID: PMC11443674 DOI: 10.1186/s12864-024-10745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Plant U-box genes play an important role in the regulation of plant hormone signal transduction, stress tolerance, and pathogen resistance; however, their functions in coffee (Coffea canephora L.) remain largely unexplored. In this study, we identified 47 CcPUB genes in the C. canephora L. genome, clustering them into nine groups via phylogenetic tree. The CcPUB genes were unevenly distributed across the 11 chromosomes of C. canephora L., with the majority (11) on chromosome 2 and none on chromosome 8. The cis-acting elements analysis showed that CcPUB genes were involved in abiotic and biotic stresses, phytohormone responsive, and plant growth and development. RNA-seq data revealed diverse expression patterns of CcPUB genes across leaves, stems, and fruits tissues. qRT-PCR analyses under dehydration, low temperature, SA, and Colletotrichum stresses showed significant up-regulation of CcPUB2, CcPUB24, CcPUB34, and CcPUB40 in leaves. Furthermore, subcellular localization showed CcPUB2 and CcPUB34 were located in the plasma membrane and nucleus, and CcPUB24 and CcPUB40 were located in the nucleus. This study provides valuable insights into the roles of PUB genes in stress responses and phytohormone signaling in C. canephora L., and provided basis for functional characterization of PUB genes in C. canephora L.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Pengyun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bo Chu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Lin Yan
- Key Laboratory of Genetic Resource Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, 571533, China
| | - Yafeng Gou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Siwei Wen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China.
| |
Collapse
|
4
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Zhou X, Li Y, Wang J, Zhao Y, Wang H, Han Y, Lin X. Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet ( Setaria italica L. Beauv). Front Genet 2024; 15:1356807. [PMID: 38435060 PMCID: PMC10904469 DOI: 10.3389/fgene.2024.1356807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.
Collapse
Affiliation(s)
- Xiaoke Zhou
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuxue Zhao
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huimin Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yucui Han
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
6
|
Liu Y, Li C, Qin A, Deng W, Chen R, Yu H, Wang Y, Song J, Zeng L. Genome-wide identification and transcriptome profiling expression analysis of the U-box E3 ubiquitin ligase gene family related to abiotic stress in maize (Zea mays L.). BMC Genomics 2024; 25:132. [PMID: 38302871 PMCID: PMC10832145 DOI: 10.1186/s12864-024-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The U-box gene family encodes E3 ubiquitin ligases involved in plant hormone signaling pathways and abiotic stress responses. However, there has yet to be a comprehensive analysis of the U-box gene family in maize (Zea mays L.) and its responses to abiotic stress. RESULTS In this study, 85 U-box family proteins were identified in maize and were classified into four subfamilies based on phylogenetic analysis. In addition to the conserved U-box domain, we identified additional functional domains, including Pkinase, ARM, KAP and Tyr domains, by analyzing the conserved motifs and gene structures. Chromosomal localization and collinearity analysis revealed that gene duplications may have contributed to the expansion and evolution of the U-box gene family. GO annotation and KEGG pathway enrichment analysis identified a total of 105 GO terms and 21 KEGG pathways that were notably enriched, including ubiquitin-protein transferase activity, ubiquitin conjugating enzyme activity and ubiquitin-mediated proteolysis pathway. Tissue expression analysis showed that some ZmPUB genes were specifically expressed in certain tissues and that this could be due to their functions. In addition, RNA-seq data for maize seedlings under salt stress revealed 16 stress-inducible plant U-box genes, of which 10 genes were upregulated and 6 genes were downregulated. The qRT-PCR results for genes responding to abiotic stress were consistent with the transcriptome analysis. Among them, ZmPUB13, ZmPUB18, ZmPUB19 and ZmPUB68 were upregulated under all three abiotic stress conditions. Subcellular localization analysis showed that ZmPUB19 and ZmPUB59 were located in the nucleus. CONCLUSIONS Overall, our study provides a comprehensive analysis of the U-box gene family in maize and its responses to abiotic stress, suggesting that U-box genes play an important role in the stress response and providing insights into the regulatory mechanisms underlying the response to abiotic stress in maize.
Collapse
Affiliation(s)
- Yongle Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- College of Life Sciences, Nanjing University, Nanjing, 210095, People's Republic of China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Wenli Deng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
7
|
Liu Z, Wang L, Li Y, Zhu J, Li Z, Chen L, Li H, Shi T, Yao P, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-wide analysis of the U-box E3 ligases gene family in potato (Solanum tuberosum L.) and overexpress StPUB25 enhance drought tolerance in transgenic Arabidopsis. BMC Genomics 2024; 25:10. [PMID: 38166714 PMCID: PMC10759479 DOI: 10.1186/s12864-023-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Wang
- Hebei North University, Zhangjiakou, 075000, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyang Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianbin Shi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
8
|
Cao H, Tian Q, Ju M, Duan Y, Li G, Ma Q, Zhang H, Zhang X, Miao H. Genome-wide analysis of the U-box E3 ubiquitin ligase family role in drought tolerance in sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1261238. [PMID: 37810391 PMCID: PMC10558006 DOI: 10.3389/fpls.2023.1261238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
Plant U-box (PUB) proteins belong to a class of ubiquitin ligases essential in various biological processes. Sesame (Sesamum indicum L.) is an important and worldwide cultivated oilseed crop. However few studies have been conducted to explore the role of PUBs in drought tolerance in sesame. This study identified a total of 56 members of the sesame PUB family (SiPUB) genes distributed unevenly across all 13 chromosomes. Based on phylogenetic analysis, all 56 SiPUB genes were classified into six groups with various structures and motifs. Cis-acting element analysis suggested that the SiPUB genes are involved in response to various stresses including drought. Based on RNA-seq analysis and quantitative real-time PCR, we identified nine SiPUB genes with significantly different expression profiles under drought stress. The expression patterns of six SiPUB genes in root, leaf and stem tissues corroborated the reliability of the RNA-seq datasets. These findings underscore the importance of SiPUB genes in enhancing drought tolerance in sesame plants. Our study provides novel insights into the evolutionary patterns and variations of PUB genes in sesame and lays the foundation for comprehending the functional characteristics of SiPUB genes under drought-induced stress conditions.
Collapse
Affiliation(s)
- Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xianmei Zhang
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Luohe Academy of Agricultural Sciences, Luohe, Henan, China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Li S, Yao X, Zhang B, Tang H, Lu L. Genome-wide characterization of the U-box gene in Camellia sinensis and functional analysis in transgenic tobacco under abiotic stresses. Gene 2023; 865:147301. [PMID: 36813060 DOI: 10.1016/j.gene.2023.147301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Plants U-box genes are crucial for plant survival, and they extensively regulate plant growth, reproduction and development as well as coping with stress and other processes. In this study, we identified 92 CsU-box genes through genome-wide analysis in the tea plant (Camellia sinensis), all of them contained the conserved U-box domain and were divided into 5 groups, which supported by the further genes structure analysis. The expression profiles in eight tea plant tissues and under abiotic and hormone stresses were analyzed using the TPIA database. 7 CsU-box genes (CsU-box27/28/39/46/63/70/91) were selected to verify and analyze expression patterns under PEG-induced drought and heat stress in tea plant respectively, the qRT-PCR results showed consistent with transcriptome datasets; and the CsU-box39 were further heterologous expressed in tobacco to perform gene function analysis. Phenotypic analyses of overexpression transgenic tobacco seedlings and physiological experiments revealed that CsU-box39 positively regulated the plant response to drought stress. These results lay a solid foundation for studying the biological function of CsU-box, and will provide breeding strategy basis for tea plant breeders.
Collapse
Affiliation(s)
- Shiyu Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Baohui Zhang
- Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| |
Collapse
|
10
|
Jiang L, Lin Y, Wang L, Peng Y, Yang M, Jiang Y, Hou G, Liu X, Li M, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide identification and expression profiling reveal the regulatory role of U-box E3 ubiquitin ligase genes in strawberry fruit ripening and abiotic stresses resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1171056. [PMID: 37035055 PMCID: PMC10078948 DOI: 10.3389/fpls.2023.1171056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Zizelski Valenci G, Raveh D, Bar-Zvi D. The activity of the stress modulated Arabidopsis ubiquitin ligases PUB46 and PUB48 is partially redundant. PLANT SIGNALING & BEHAVIOR 2022; 17:2072111. [PMID: 35546519 PMCID: PMC9116408 DOI: 10.1080/15592324.2022.2072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The Arabidopsis ubiquitin ligases PUB46, PUB47 and PUB48 are encoded by paralogus genes. Single gene pub46 and pub48 mutants display increased drought sensitivity compared to wild type (WT) suggesting that each has specific biological activity. The high sequence homology between PUB46 and PUB48 activity suggested that they may also share some aspects of their activity. Unfortunately, the close proximity of the PUB46 and PUB48 gene loci precludes obtaining a double mutant required to study if they are partially redundant by crossing the available single mutants. We thus applied microRNA technology to reduce the activity of all three gene products of the PUB46-48 subfamily by constructing an artificial microRNA (aMIR) targeted to this subfamily. Expressing aMIR46-48 in WT plants resulted in increased drought-sensitivity, a phenotype resembling that of each of the single pub46 and pub48 mutants, and enhanced sensitivity to methyl viologen, similar to that observed for the pub46 mutant. The WT plants expressing aMIR46-48 plants also revealed reduced inhibition by ABA at seed germination, a phenotype not evident in the single mutants. Expressing aMIR46-48 in pub46 and pub48 mutants further enhanced the drought sensitivity of each parental single mutant and of WT expressing aMIR46-48. These results suggest that the biological activities of PUB46 and PUB48 in abiotic stress response are partially redundant.
Collapse
Affiliation(s)
- Gal Zizelski Valenci
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dina Raveh
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the NegevThe Doris and Bertie I. , Beer-Sheva, Israel
| |
Collapse
|
12
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
13
|
Fang Y, Du Q, Yang Q, Jiang J, Hou X, Yang Z, Zhao D, Li X, Xie X. Identification, characterization, and expression profiling of the putative U-box E3 ubiquitin ligase gene family in Sorghum bicolor. Front Microbiol 2022; 13:942302. [PMID: 36187972 PMCID: PMC9520534 DOI: 10.3389/fmicb.2022.942302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
The U-box family is one of the main E3 ubiquitin ligase families in plants. The U-box family has been characterized in several species. However, genome-wide gene identification and expression profiling of the U-box family in response to abiotic stress in Sorghum bicolor remain unclear. In this study, we broadly identified 68 U-box genes in the sorghum genome, including 2 CHIP genes, and 1 typical UFD2 (Ub fusion degradation 2) gene. The U-box gene family was divided into eight subclasses based on homology and conserved domain characteristics. Evolutionary analysis identified 14, 66, and 82 U-box collinear gene pairs in sorghum compared with arabidopsis, rice, and maize, respectively, and a unique tandem repeat pair (SbPUB26/SbPUB27) is present in the sorghum genome. Gene Ontology (GO) enrichment analysis showed that U-box proteins were mainly related to ubiquitination and modification, and various stress responses. Comprehensive analysis of promoters, expression profiling, and gene co-regulation networks also revealed that many sorghum U-box genes may be correlated with multiple stress responses. In summary, our results showed that sorghum contains 68 U-box genes, which may be involved in multiple abiotic stress responses. The findings will support future gene functional studies related to ubiquitination in sorghum.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Degang Zhao
- College of Life Sciences, Ministry of Education, Institute of Agricultural Bioengineering, Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
- *Correspondence: Xin Xie,
| |
Collapse
|
14
|
Zaidi PH, Shahid M, Seetharam K, Vinayan MT. Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize ( Zea Mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:869270. [PMID: 35712555 PMCID: PMC9194767 DOI: 10.3389/fpls.2022.869270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Being a widely cultivated crop globally under diverse climatic conditions and soil types, maize is often exposed to an array of biotic and abiotic stresses. Soil salinity is one of the challenges for maize cultivation in many parts of lowland tropics that significantly affects crop growth and reduces economic yields. Breeding strategies integrated with molecular approach might accelerate the process of identifying and developing salinity-tolerant maize cultivars. In this study, an association mapping panel consisting of 305 diverse maize inbred lines was phenotyped in a managed salinity stress phenotyping facility at International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates (UAE). Wide genotypic variability was observed in the panel under salinity stress for key phenotypic traits viz., grain yield, days to anthesis, anthesis-silking interval, plant height, cob length, cob girth, and kernel number. The panel was genotyped following the genome-based sequencing approach to generate 955,690 SNPs. Total SNPs were filtered to 213,043 at a call rate of 0.85 and minor allele frequency of 0.05 for association analysis. A total of 259 highly significant (P ≤ 1 × 10-5) marker-trait associations (MTAs) were identified for seven phenotypic traits. The phenotypic variance for MTAs ranged between 5.2 and 9%. A total of 64 associations were found in 19 unique putative gene expression regions. Among them, 12 associations were found in gene models with stress-related biological functions.
Collapse
Affiliation(s)
- Pervez H. Zaidi
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Mohammed Shahid
- International Centre for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Kaliyamoorthy Seetharam
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Madhumal Thayil Vinayan
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| |
Collapse
|
15
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
16
|
Suranjika S, Pradhan S, Nayak SS, Parida A. De novo transcriptome assembly and analysis of gene expression in different tissues of moth bean (Vigna aconitifolia) (Jacq.) Marechal. BMC PLANT BIOLOGY 2022; 22:198. [PMID: 35428206 PMCID: PMC9013028 DOI: 10.1186/s12870-022-03583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The underutilized species Vigna aconitifolia (Moth Bean) is an important legume crop cultivated in semi-arid conditions and is valued for its seeds for their high protein content. It is also a popular green manure cover crop that offers many agronomic benefits including nitrogen fixation and soil nutrients. Despite its economic potential, genomic resources for this crop are scarce and there is limited knowledge on the developmental process of this plant at a molecular level. In the present communication, we have studied the molecular mechanisms that regulate plant development in V. aconitifolia, with a special focus on flower and seed development. We believe that this study will greatly enrich the genomic resources for this plant in form of differentially expressed genes, transcription factors, and genic molecular markers. RESULTS We have performed the de novo transcriptome assembly using six types of tissues from various developmental stages of Vigna aconitifolia (var. RMO-435), namely, leaves, roots, flowers, pods, and seed tissue in the early and late stages of development, using the Illumina NextSeq platform. We assembled the transcriptome to get 150938 unigenes with an average length of 937.78 bp. About 79.9% of these unigenes were annotated in public databases and 12839 of those unigenes showed a significant match in the KEGG database. Most of the unigenes displayed significant differential expression in the late stages of seed development as compared with leaves. We annotated 74082 unigenes as transcription factors and identified 12096 simple sequence repeats (SSRs) in the genic regions of V.aconitifolia. Digital expression analysis revealed specific gene activities in different tissues which were validated using Real-time PCR analysis. CONCLUSIONS The Vigna aconitifolia transcriptomic resources generated in this study provide foundational resources for gene discovery with respect to various developmental stages. This study provides the first comprehensive analysis revealing the genes involved in molecular as well as metabolic pathways that regulate seed development and may be responsible for the unique nutritive values of moth bean seeds. Hence, this study would serve as a foundation for characterization of candidate genes which would not only provide novel insights into understanding seed development but also provide resources for improved moth bean and related species genetic enhancement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), An autonomous Institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha India
| | - Seema Pradhan
- Institute of Life Sciences (ILS), An autonomous Institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha India
| | - Soumya Shree Nayak
- Institute of Life Sciences (ILS), An autonomous Institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha India
| | - Ajay Parida
- Institute of Life Sciences (ILS), An autonomous Institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha India
| |
Collapse
|
17
|
How Many Faces Does the Plant U-Box E3 Ligase Have? Int J Mol Sci 2022; 23:ijms23042285. [PMID: 35216399 PMCID: PMC8875423 DOI: 10.3390/ijms23042285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.
Collapse
|
18
|
Hajibarat Z, Saidi A, Zeinalabedini M, Gorji AM, Ghaffari MR, Shariati V, Ahmadvand R. Genome-wide identification of StU-box gene family and assessment of their expression in developmental stages of Solanum tuberosum. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:25. [PMID: 35147812 PMCID: PMC8837765 DOI: 10.1186/s43141-022-00306-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Background The Plant U-box (PUB), ubiquitin ligase gene, has a highly conserved domain in potato. However, little information is available about U-box genes in potato (Solanum tuberosum). In this study, 62 U-box genes were detected in the potato genome using bioinformatics methods. Further, motif analysis, gene structure, gene expression, TFBS, and synteny analysis were performed on the U-box genes. Results Based on in silico analysis, most of StU-boxs included a U-box domain; however, some of them lacked harbored domain the ARM, Pkinase_Tyr, and other domains. Based on their phylogenetic relationships, the StU-box family members were categorized into four classes. Analysis of transcription factor binding sites (TFBS) in the promoter region of StU-box genes revealed that StU-box genes had the highest and the lowest number of TFBS in MYB and CSD, respectively. Moreover, based on in silico and gene expression data, variable frequencies of TFBS in StU-box genes could indicate that these genes control different developmental stages and are involved in complex regulatory mechanisms. The number of exons in U-box genes ranged from one to sixteen. For most U-box genes, the exon–intron compositions and conserved motifs composition in most proteins in each group were similar. The intron–exon patterns and the composition of conserved motifs validated the U-box genes phylogenetic classification. Based on the results of genome distribution, StU-box genes were distributed unevenly on the 12 S. tuberosum chromosomes. The results showed that gene duplication may possess a significant role in genome expansion of S. tuberosum. Furthermore, genome evolution of S. tuberosum was surveyed using identification of orthologous and paralogous. We identified 40 orthologous gene pairs between S. tuberosum with Solanum lycopersicum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Zea maize, Coriaria mytifolia, and Arabidopsis thaliana as well as eight duplicated genes (paralogous) in S. tuberosum. StU-box 51 gene is one of the important gene among other StU-boxes in S. tuberosum under drought stress which was expressed in tuber and leaf under drought stress. Furthermore, StU-box 51 gene has the highest expression levels in four tissue-specific (stem, root, leaf, and tuber) in potato as well as it had the highest number of TFBS in promoter region. Based on our results, StU-box 51 can introduce to researcher to utilize in breeding program and genetic engineering in potato. Conclusions The results of this survey will be useful for further investigation of the probable role and molecular mechanisms of U-box genes in response to different stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00306-7.
Collapse
Affiliation(s)
- Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Mosuapour Gorji
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
19
|
Chen C, Wang C, Li J, Gao X, Huang Q, Gong Y, Hao X, Maoz I, Kai G, Zhou W. Genome-Wide Analysis of U-box E3 Ubiquitin Ligase Family in Response to ABA Treatment in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2022; 13:829447. [PMID: 35222487 PMCID: PMC8863962 DOI: 10.3389/fpls.2022.829447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Plant U-box (PUB) proteins are ubiquitin ligases (E3) involved in multiple biological processes and in response to plant stress. However, the various aspects of the genome and the differences in functions between the U-box E3 (UBE3) ubiquitin ligases remain quite obscure in Salvia miltiorrhiza. The 60 UBE3 genes in the S. miltiorrhiza genome were recognized in the present study. The phylogenetic analysis, gene structure, motifs, promoters, and physical and chemical properties of the genes were also examined. Based on the phylogenetic relationship, the 60 UBE3 genes were categorized under six different groups. The U-box domain was highly conserved across the family of UBE3 genes. Analysis of the cis-acting element revealed that the UBE3 genes might play an important role in a variety of biological processes, including a reaction to the abscisic acid (ABA) treatment. To investigate this hypothesis, an ABA treatment was developed for the hairy roots of S. miltiorrhiza. Thirteen out of the UBE3 genes significantly increased after the ABA treatment. The co-expression network revealed that nine UBE3 genes might be associated with phenolic acids or tanshinone biosynthesis. The findings of the present study brought fresh and new understanding to the participation of the UBE3 gene family in plants, specifically in their biological responses mediated by the ABA. In S. miltiorrhiza, this gene family may be crucial during the ABA treatment. Significantly, the results of this study contribute novel information to the understanding of the ubiquitin ligase gene and its role in plant growth.
Collapse
Affiliation(s)
- Chengan Chen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Can Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junbo Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiankui Gao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qikai Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifu Gong
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Tang X, Ghimire S, Liu W, Fu X, Zhang H, Sun F, Zhang N, Si H. Genome-wide identification of U-box genes and protein ubiquitination under PEG-induced drought stress in potato. PHYSIOLOGIA PLANTARUM 2022; 174:e13475. [PMID: 34114235 DOI: 10.1111/ppl.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications in eukaryotic cells, and it is involved in a variety of biological processes, including abiotic stress response. The ubiquitination modification is highly specific, which depends on the accurate recognition of substrate proteins by ubiquitin ligase. Plant U-box (PUB) proteins are a class of ubiquitin ligases, multiple members of which have shown to participate in water-deficit stress in Arabidopsis and rice. U-box gene family and large-scale profiling of the ubiquitome in potato has not been reported to date, although it is one of the most important food crops. The identified 66 U-box genes from the potato genome database were unevenly distributed on 10 chromosomes. These StPUBs have a large number of tandem repeat sequences. Analysis of gene expression characteristics revealed that many StPUBs responded to abiotic stress. Three hundred and fourteen lys modification sites were identified under PEG-induced drought stress, which were distributed on 200 proteins, with 25 differential ubiquitination modification sites, most of which were up-regulated. The ubiquitination modification in potato protein was enhanced under PEG-induced drought stress, and U-box ubiquitin ligase was involved. This study provides an overall strategy and rich data set to clarify the effects of ubiquitination on potatoes under PEG-induced drought stress and the ubiquitination modification involved in potato U-box genes in response to PEG-induced drought stress.
Collapse
Affiliation(s)
- Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shantwana Ghimire
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Weigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huanhuan Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fujun Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Kim JH, Kim MS, Kim DY, Amoah JN, Seo YW. Molecular Characterization of U-box E3 Ubiquitin Ligases (TaPUB2 and TaPUB3) Involved in the Positive Regulation of Drought Stress Response in Arabidopsis. Int J Mol Sci 2021; 22:13658. [PMID: 34948454 PMCID: PMC8704797 DOI: 10.3390/ijms222413658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/25/2022] Open
Abstract
Plant U-box E3 ubiquitin ligase (PUB) is involved in various environmental stress conditions. However, the molecular mechanism of U-box proteins in response to abiotic stress in wheat remains unknown. In this study, two U-box E3 ligase genes (TaPUB2 and TaPUB3), which are highly expressed in response to adverse abiotic stresses, were isolated from common wheat, and their cellular functions were characterized under drought stress. Transient expression assay revealed that TaPUB2 was localized in the cytoplasm and Golgi apparatus, whereas TaPUB3 was expressed only in the Golgi apparatus in wheat protoplasts. Additionally, TaPUB2 and TaPUB3 underwent self-ubiquitination. Moreover, TaPUB2/TaPUB3 heterodimer was identified in yeast and the cytoplasm of wheat protoplasts using a pull-down assay and bimolecular fluorescence complementation analysis. Heterogeneous overexpression of TaPUB2 and TaPUB3 conferred tolerance to drought stress. Taken together, these results implied that the heterodimeric form of U-box E3 ubiquitin ligases (TaPUB2/TaPUB3) responded to abiotic stress and roles as a positive regulator of drought stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, Korea; (J.H.K.); (M.S.K.); (D.Y.K.); (J.N.A.)
| |
Collapse
|
22
|
Zhou J, Hu Y, Li J, Yu Z, Guo Q. Genome-Wide Identification and Expression Analysis of the Plant U-Box Protein Gene Family in Phyllostachys edulis. Front Genet 2021; 12:710113. [PMID: 34917124 PMCID: PMC8669748 DOI: 10.3389/fgene.2021.710113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/15/2021] [Indexed: 01/26/2023] Open
Abstract
The U-box gene encodes a ubiquitin ligase that contains a U-box domain. The plant U-box (PUB) protein plays an important role in the plant stress response; however, very few studies have investigated the role of these proteins in Moso bamboo (Phyllostachys edulis). Thus, more research on PUB proteins is necessary to understand the mechanisms of stress tolerance in P. edulis. In this study, we identified 121 members of the PUB family in P. edulis (PePUB), using bioinformatics based on the P. edulis V2 genome build. The U-box genes of P. edulis showed an uneven distribution among the chromosomes. Phylogenetic analysis of the U-box genes between P. edulis and Arabidopsis thaliana suggested that these genes can be classified into eight subgroups (Groups I–VIII) based on their structural and phylogenetic features. All U-box genes and the structure of their encoded proteins were identified in P. edulis. We further investigated the expression pattern of PePUB genes in different tissues, including the leaves, panicles, rhizomes, roots, and shoots. The qRT-PCR results showed that expression of three genes, PePUB15, PePUB92, and PePUB120, was upregulated at low temperatures compared to that at 25°C. The expression levels of two PePUBs, PePUB60 and PePUB120, were upregulated under drought stress. These results suggest that the PePUB genes play an important role in resistance to low temperatures and drought in P. edulis. This research provides new insight into the function, diversity, and characterization of PUB genes in P. edulis and provides a basis for understanding their biological roles and molecular mechanisms.
Collapse
Affiliation(s)
- Jie Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiajia Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaoyan Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,International Center of Bamboo and Rattan, Beijing, China
| |
Collapse
|
23
|
Liao HZ, Liao WJ, Zou DX, Zhang RQ, Ma JL. Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses. PLANT SIGNALING & BEHAVIOR 2021; 16:1976547. [PMID: 34633911 PMCID: PMC9208792 DOI: 10.1080/15592324.2021.1976547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The plant U-box (PUB) gene family, one of the major ubiquitin ligase families in plants, plays important roles in multiple cellular processes including environmental stress responses and resistance. The function of U-box genes has been well characterized in Arabidopsis and other plants. However, little is known about the tea plant (Camellia sinensis) PUB genes. Here, 89 U-box proteins were identified from the chromosome-scale referenced genome of tea plant. According to the domain organization and phylogenetic analysis, the tea plant PUB family were classified into ten classes, named Class I to X, respectively. Using previously released stress-related RNA-seq data in tea plant, we identified 34 stress-inducible CsPUB genes. Specifically, eight CsPUB genes were expressed differentially under both anthracnose pathogen and drought stresses. Moreover, six of the eight CsPUBs were upregulated in response to these two stresses. Expression profiling performed by qRT-PCR was consistent with the RNA-seq analysis, and stress-related cis-acting elements were identified in the promoter regions of the six upregulated CsPUB genes. These results strongly implied the putative functions of U-box ligase genes in response to biotic and abiotic stresses in tea plant.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, China
| | - Wang-Jiao Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Dong-Xia Zou
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Ri-Qing Zhang
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| |
Collapse
|
24
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
25
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
26
|
Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene 2021; 799:145840. [PMID: 34274467 DOI: 10.1016/j.gene.2021.145840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
In this study, 82 U-box genes were identified in wild emmer wheat (TdPUBs) through a genome-search method. Phylogenetic analysis classified them into seven groups and the genes belonging to the same group shared the similar exon-intron structure, motif organization and cis-element compositions. Synteny analysis of the U-box genes between different species revealed that segmental duplication and polyploidization mainly contributed to the expansion of TdPUBs. Furthermore, the genetic variations of U-box were investigated in wild emmer, domesticated emmer and durum wheat. Results showed that significant genetic bottleneck has occurred during domestication process of tetraploid emmer wheat. Meanwhile, 12 TdPUBs were co-located with known domestication related QTLs. Finally, the tissue-specific and stress-responsive TdPUB genes were identified through RNA-seq analysis. Combined with qPCR validation of 19 salt-responsive TdPUBs, the candidates involving in salt response were obtained. It lays the foundation to better understand the regulatory roles of U-box family in emmer wheat and beyond.
Collapse
|
27
|
Wang C, Song B, Dai Y, Zhang S, Huang X. Genome-wide identification and functional analysis of U-box E3 ubiquitin ligases gene family related to drought stress response in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2021; 21:235. [PMID: 34039263 PMCID: PMC8152096 DOI: 10.1186/s12870-021-03024-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The plant U-box (PUB) proteins are a family of ubiquitin ligases (E3) enzymes that involved in diverse biological processes, as well as in responses to plant stress response. However, the characteristics and functional divergence of the PUB gene family have not yet been previously studied in the Chinese white pear (Pyrus bretschneideri). RESULTS In the present study, we identified 62 PbrPUBs in Chinese white pear genome. Based on the phylogenetic relationship, 62 PUB genes were clustered into five groups. The results of conserved motif and gene structure analysis supported the classification phylogenetic tree. The PbrPUB genes were unevenly distribution on 17 pear chromosomes, chromosome 15 housed most member of PUB family, with eight PUB genes. Cis-acting element analysis indicated that PUB genes might participate in diverse biological processes, especially in the response to abiotic stresses. Based on RNA-data from 'Dangshansuli' at seven tissues, we found that PUB genes exhibited diverse of expression level in seven tissues, and qRT-PCR experiment further supported the reliable of RNA-Seq data. To identify candidate genes associated with resistance, we conducted qRT-PCR experiment the expression level of pear seed plant under four abiotic stresses, including: ABA, dehydration, salt and cold treatment. One candidate PUB gene associated with dehydration stress was selected to conduct further functional experiment. Subcellular localization revealed PbrPUB18 protein was located on cell nucleus. Furthermore, heterologous over-expression of PbrPUB18 in Arabidopsis indicated that the over-expression of PbrPUB18 could enhance resistance in drought treatment. In conclusions, we systematically identified the PUB genes in pear, and provided useful knowledge for functional identification of PUB genes in pear.
Collapse
Affiliation(s)
- Chunmeng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuqin Dai
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Genome-Wide Distribution, Expression and Function Analysis of the U-Box Gene Family in Brassica oleracea L. Genes (Basel) 2019; 10:genes10121000. [PMID: 31810369 PMCID: PMC6947298 DOI: 10.3390/genes10121000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
The plant U-box (PUB) protein family plays an important role in plant growth and development. The U-box gene family has been well studied in Arabidopsis thaliana, Brassica rapa, rice, etc., but there have been no systematic studies in Brassica oleracea. In this study, we performed genome-wide identification and evolutionary analysis of the U-box protein family of B. oleracea. Firstly, based on the Brassica database (BRAD) and the Bolbase database, 99 Brassica oleracea PUB genes were identified and divided into seven groups (I-VII). The BoPUB genes are unevenly distributed on the nine chromosomes of B. oleracea, and there are tandem repeat genes, leading to family expansion from the A. thaliana genome to the B. oleracea genome. The protein interaction network, GO annotation, and KEGG pathway enrichment analysis indicated that the biological processes and specific functions of the BoPUB genes may mainly involve abiotic stress. RNA-seq transcriptome data of different pollination times revealed spatiotemporal expression specificity of the BoPUB genes. The differential expression profile was consistent with the results of RT-qPCR analysis. Additionally, a large number of pollen-specific cis-acting elements were found in promoters of differentially expressed genes (DEG), which verified that these significantly differentially expressed genes after self-pollination (SP) were likely to participate in the self-incompatibility (SI) process, including gene encoding ARC1, a well-known downstream protein of SI in B. oleracea. Our study provides valuable information indicating that the BoPUB genes participates not only in the abiotic stress response, but are also involved in pollination.
Collapse
|