1
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Sutradhar PR, Sultana N, Nessa A. miRNA-221: A Potential Biomarker of Progressive Liver Injury in Chronic Liver Disease (CLD) due to Hepatitis B Virus (HBV) and Nonalcoholic Fatty Liver Disease (NAFLD). Int J Hepatol 2024; 2024:4221368. [PMID: 39185365 PMCID: PMC11343628 DOI: 10.1155/2024/4221368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Background: Early detection of progressive liver damage in chronic liver disease (CLD) patients is crucial for better treatment response. Several studies have shown the association of microRNA (miRNA) in the progression of CLD in regulating cell proliferation, fibrosis, and apoptosis as well as in carcinogenesis. Objectives: The study was aimed at determining the expression of miRNA-221 among different stages of fibrosis in CLD patients due to hepatitis B virus (HBV) and nonalcoholic fatty liver disease (NAFLD) and thus evaluate its role as an early biomarker in CLD. Methods: A total of 100 participants (75 CLD patients and 25 healthy control) were recruited in this cross-sectional study and divided into four groups, of which 25 as healthy control, 25 in CLD without fibrosis, 25 were CLD with fibrosis, and 25 were CLD with cirrhosis. Total RNA was extracted from plasma followed by cDNA synthesis, and finally, the expression of miRNA-221 was analyzed for its diagnostic potential as a single biomarker using the qRT-PCR method. Results: The plasma level of miRNA-221 was significantly upregulated in different fibrosis stages of CLD (p < 0.05), and this upregulation was positively correlated with the progression of fibrosis (p < 0.05). Significantly increased expression of miRNA-221 was found in NAFLD patients compared to HBV patients in the CLD without fibrosis patient group (p < 0.05), while expression of miRNA-221 was significantly upregulated among HBV patients in the CLD with the fibrosis group. miRNA-221 showed high diagnostic accuracy in discriminating different stages of fibrosis from healthy control (p < 0.05). Conclusion: miRNA-221 may be used as a potential plasma biomarker for early prediction of fibrosis progression in CLD patients.
Collapse
Affiliation(s)
- Parthana Rani Sutradhar
- Department of MicrobiologySher-E-Bangla Medical College (SBMC), Barishal, Bangladesh
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Nahida Sultana
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Afzalun Nessa
- Department of VirologyBangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| |
Collapse
|
3
|
Quitete FT, Teixeira AVS, Peixoto TC, Martins BC, Atella GC, Resende ADC, Mucci DDB, Martins F, Daleprane JB. Long-term exposure to polychlorinated biphenyl 126 induces liver fibrosis and upregulates miR-155 and miR-34a in C57BL/6 mice. PLoS One 2024; 19:e0308334. [PMID: 39133714 PMCID: PMC11318903 DOI: 10.1371/journal.pone.0308334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Environmental pollutants, including polychlorinated biphenyls (PCBs), act as endocrine disruptors and impair various physiological processes. PCB 126 is associated with steatohepatitis, fibrosis, cirrhosis, and other hepatic injuries. These disorders can be regulated by microRNAs (miRNAs). Therefore, this study aimed to investigate the role of miRNAs in non-alcoholic fatty liver disease associated with exposure to PCB 126. Adult male C57BL/6 mice were exposed to PCB 126 (5 μmol/kg of body weight) for 10 weeks. The PCB group showed lipid accumulation in the liver in the presence of macro- and microvesicular steatosis and fibrosis with increased inflammatory and profibrotic gene expression, consistent with non-alcoholic steatohepatitis (NASH). PCB exposure also upregulated miR-155 and miR-34a, which induce the expression of proinflammatory cytokines and inflammation in the liver and reduce the expression of peroxisome proliferator-activated receptor α, which, in turn, impairs lipid oxidation and hepatic steatosis. Therefore, the present study showed that PCB 126 induced NASH via potential mechanisms involving miR-155 and miR-34a, which may contribute to the development of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Fernanda Torres Quitete
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Thamara Cherem Peixoto
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daniela de Barros Mucci
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Martins
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Julio Beltrame Daleprane
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Mahmoudi A, Jalili A, Butler AE, Aghaee-Bakhtiari SH, Jamialahmadi T, Sahebkar A. Exploration of the Key Genes Involved in Non-alcoholic Fatty Liver Disease and Possible MicroRNA Therapeutic Targets. J Clin Exp Hepatol 2024; 14:101365. [PMID: 38433957 PMCID: PMC10904918 DOI: 10.1016/j.jceh.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Background MicroRNAs (miRNAs) are promising therapeutic agents for non-alcoholic fatty liver disease (NAFLD). This study aimed to identify key genes/proteins involved in NAFLD pathogenesis and progression and to evaluate miRNAs influencing their expression. Methods Gene expression profiles from datasets GSE151158, GSE163211, GSE135251, GSE167523, GSE46300, and online databases were analyzed to identify significant NAFLD-related genes. Then, protein-protein interaction networks and module analysis identified hub genes/proteins, which were validated using real-time PCR in oleic acid-treated HepG2 cells. Functional enrichment analysis evaluated signaling pathways and biological processes. Gene-miRNA interaction networks identified miRNAs targeting critical NAFLD genes. Results The most critical overexpressed hub genes/proteins included: TNF, VEGFA, TLR4, CYP2E1, ACE, SCD, FASN, SREBF2, and TGFB1 based on PPI network analysis, of which TNF, TLR4, SCD, FASN, SREBF2, and TGFB1 were up-regulated in oleic acid-treated HepG2 cells. Functional enrichment analysis for biological processes highlighted programmed necrotic cell death, lipid metabolic process response to reactive oxygen species, and inflammation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the highest adjusted P-value signaling pathways encompassed AGE-RAGE in diabetic complications, TNF, and HIF-1 signaling pathways. In gene-miRNA network analysis, miR-16 and miR-124 were highlighted as the miRNAs exerting the most influence on important NAFLD-related genes. Conclusion In silico analyses identified NAFLD therapeutic targets and miRNA candidates to guide further experimental investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Seyed H. Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
6
|
BinMowyna MN, AlFaris NA, Al-Sanea EA, AlTamimi JZ, Aldayel TS. Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis. Arch Physiol Biochem 2024; 130:300-315. [PMID: 35254877 DOI: 10.1080/13813455.2022.2046106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
This study evaluated if miR-34a/SIRT1 signalling mediates the anti-hepatosteatotic effect of resveratrol (RSV) in high-fat-diet (HFD)-fed rats. Rats were divided into seven groups (n = 6/each) as control, control + miR-34a agomir negative control, HFD, HFD + miR-34a, HFD + RSV, HFD + RSV + Ex-527 (a SIRT1 inhibitor), and HFD + RSV + miR-34a agomir. After 8 weeks, RSV suppressed dyslipidemia, lowered fasting glucose and insulin levels, improved insulin sensitivity, and prevented hepatic lipid accumulation. These effects were associated with hepatic downregulation of SREBP1 and SREBP2, upregulation of PPARα, and acetylation of Nrf2 (activation) and NF-κβ p65 (inhibition). Also, RSV reduced the transcription of miR-34a and increased the nuclear localisation of SIRT1 in the livers, muscles, and adipose tissues of HFD-fed rats. All these effects were prevented by EX-527 and miR-34a agmir. In conclusion, RSV prevents HFD-induced insulin resistance and hepatic steatosis by suppressing miR-34a-induced activation of SIRT1.
Collapse
Affiliation(s)
- Mona N BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ekram A Al-Sanea
- Department of Biology, College of Sciences, Ibb University, Ibb, Yemen
| | - Jozaa Z AlTamimi
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tahany S Aldayel
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Samy AM, Kandeil MA, Sabry D, Abdel-Ghany AA, Mahmoud MO. Exosomal miR-122, miR-128, miR-200, miR-298, and miR-342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR-4/FoxO3 pathway. Arch Pharm (Weinheim) 2024; 357:e2300631. [PMID: 38574101 DOI: 10.1002/ardp.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 04/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.
Collapse
Affiliation(s)
- Ahmed M Samy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo, Egypt
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assuit branch, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Terracciani F, Falcomatà A, Gallo P, Picardi A, Vespasiani-Gentilucci U. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 2023; 79:851-868. [PMID: 36472795 DOI: 10.1007/s13105-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Terracciani
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Falcomatà
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo Gallo
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Antonio Picardi
- Hepatology and Clinical Medicine Unit, University Campus Bio-Medico of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Barroso LN, Salarini J, Leite NC, Villela-Nogueira CA, Dávalos A, Carmo MDGT, Ferreira Peres WA. Effect of fish oil supplementation on the concentration of miRNA-122, FGF-21 and liver fibrosis in patients with NAFLD: Study protocol for a randomized, double-blind and placebo-controlled clinical trial. Clin Nutr ESPEN 2023; 57:117-125. [PMID: 37739645 DOI: 10.1016/j.clnesp.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS To date, no specific drugs are available for non-alcoholic fatty liver disease (NAFLD), though the effect of fish oil supplementation on improving fibrosis in patients with NAFLD has been evaluated. N-3 polyunsaturated fatty acids (n-3 PUFA) may modulate the concentration of microRNAs (miRNAs) and fibroblast growth factor (FGF)-21, which have been identified as non-invasive markers of liver fibrosis. The present study aims to evaluate whether n-3 PUFA supplementation can modulate miRNA-122 and FGF-21 and improve liver fibrosis and steatosis, measured by transient hepatic elastography (THE), in individuals with NAFLD. METHODS A randomized, double-blind, placebo-controlled clinical trial will be conducted to evaluate the effect of 4 g/day supplementation of fish oil (2100 mg EPA and 924 mg DHA) in patients with NAFLD over a 6-month period. Fifty-two patients aged >19 years will be randomly assigned to either a placebo (olive oil) or treatment (fish oil) group. Anthropometric data, food intake, physical activity, body composition, resting energy expenditure (evaluated using indirect calorimetry), liver enzymes, platelets, lipids and glucose profile, inflammatory markers (such as C-reactive protein, neutrophil/lymphocyte, platelet/lymphocyte, and monocyte/lymphocyte ratios), miRNA-122 and FGF-21 concentration, and incorporation of fatty acids into the erythrocyte membrane (analyzed using gas chromatography) as well as the degree of liver fibrosis and steatosis assessed using THE (Fibroscan® Touch 502, Paris, France) and liver biomarkers Steato-Brazilian Longitudinal Study of Adult Health, Fatty Liver Index, NAFLD Fibrosis Score, Fibrosis-4 score, and FibroScan-AST score will be evaluated at the beginning and end of the treatment. Continuous variables with normal distribution will be compared between placebo and intervention groups using Student's T test for independent samples; continuous non-parametric variables will be compared using Dunn or Mann-Whitney test. Associations between categorical variables will be analyzed using the chi-square test, and within-group differences will be evaluated using the Wilcoxon signed-ranks test. The criterion for determining significance will be set at 5%. CONCLUSION The present study protocol will investigate the supplementation of EPA-rich fish oil as an alternative treatment for NAFLD and its feasibility in affecting the concentration of miRNA-122 and FGF-21 markers. Its findings will offer valuable contributions to the literature. REGISTRATION ReBEC number RBR-8dp876.
Collapse
Affiliation(s)
- Lygia N Barroso
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil; School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Jessica Salarini
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil; School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Nathalie Carvalho Leite
- School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Cristiane A Villela-Nogueira
- School of (M)edicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Prof. Rodolpho Paulo Rocco Street, 255 - University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA), Madrid, Spain
| | - Maria das Graças Tavares Carmo
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Wilza Arantes Ferreira Peres
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 367/CCS - Block J2, University City-Ilha Do Fundão, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Goncalves BDS, Meadows A, Pereira DG, Puri R, Pillai SS. Insight into the Inter-Organ Crosstalk and Prognostic Role of Liver-Derived MicroRNAs in Metabolic Disease Progression. Biomedicines 2023; 11:1597. [PMID: 37371692 PMCID: PMC10295788 DOI: 10.3390/biomedicines11061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunctional hepatic metabolism has been linked to numerous diseases, including non-alcoholic fatty liver disease, the most common chronic liver disorder worldwide, which can progress to hepatic fibrosis, and is closely associated with insulin resistance and cardiovascular diseases. In addition, the liver secretes a wide array of metabolites, biomolecules, and microRNAs (miRNAs) and many of these secreted factors exert significant effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the involvement of liver-derived miRNAs in biological processes with an emphasis on delineating the communication between the liver and other tissues associated with metabolic disease progression. Furthermore, the review identifies the primary molecular targets by which miRNAs act. These consolidated findings from numerous studies provide insight into the underlying mechanism of various metabolic disease progression and suggest the possibility of using circulatory miRNAs as prognostic predictors and therapeutic targets for improving clinical intervention strategies.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Avery Meadows
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Duane G Pereira
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Raghav Puri
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sneha S Pillai
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
12
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Oliveira ECSD, Quaglio AEV, Magro DO, Di Stasi LC, Sassaki LY. Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. Int J Mol Sci 2023; 24:ijms24087176. [PMID: 37108339 PMCID: PMC10138604 DOI: 10.3390/ijms24087176] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC) and comprises a chronic gastrointestinal tract disorder characterized by hyperactive and dysregulated immune responses to environmental factors, including gut microbiota and dietary components. An imbalance of the intestinal microbiota may contribute to the development and/or worsening of the inflammatory process. MicroRNAs (miRNAs) have been associated with various physiological processes, such as cell development and proliferation, apoptosis, and cancer. In addition, they play an important role in inflammatory processes, acting in the regulation of pro- and anti-inflammatory pathways. Differences in the profiles of miRNAs may represent a useful tool in the diagnosis of UC and CD and as a prognostic marker in both diseases. The relationship between miRNAs and the intestinal microbiota is not completely elucidated, but recently this topic has gained prominence and has become the target of several studies that demonstrate the role of miRNAs in the modulation of the intestinal microbiota and induction of dysbiosis; the microbiota, in turn, can regulate the expression of miRNAs and, consequently, alter the intestinal homeostasis. Therefore, this review aims to describe the interaction between the intestinal microbiota and miRNAs in IBD, recent discoveries, and perspectives for the future.
Collapse
Affiliation(s)
- Ellen Cristina Souza de Oliveira
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| | - Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo CEP 13083-970, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| |
Collapse
|
14
|
Abenavoli L, Scarlata GGM, Scarpellini E, Boccuto L, Spagnuolo R, Tilocca B, Roncada P, Luzza F. Metabolic-Dysfunction-Associated Fatty Liver Disease and Gut Microbiota: From Fatty Liver to Dysmetabolic Syndrome. Medicina (B Aires) 2023; 59:medicina59030594. [PMID: 36984595 PMCID: PMC10054528 DOI: 10.3390/medicina59030594] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is the recent nomenclature designation that associates the condition of non-alcoholic fatty liver disease (NAFLD) with metabolic dysfunction. Its diagnosis has been debated in the recent period and is generally associated with a diagnosis of steatosis and at least one pathologic condition among overweight/obesity, type 2 diabetes mellitus, and metabolic dysregulation. Its pathogenesis is defined by a “multiple-hit” model and is associated with alteration or dysbiosis of the gut microbiota. The pathogenic role of dysbiosis of the gut microbiota has been investigated in many diseases, including obesity, type 2 diabetes mellitus, and NAFLD. However, only a few works correlate it with MAFLD, although common pathogenetic links to these diseases are suspected. This review underlines the most recurrent changes in the gut microbiota of patients with MAFLD, while also evidencing possible pathogenetic links.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4387
| | | | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Rocco Spagnuolo
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Ragab HM, Ezzat WM, Hassan EM, El Maksoud NA, Afify M, Abd El-Maksoud MDE, Elaziz WA. Significance of MiRNA-34a and MiRNA-192 as a risk factor for nonalcoholic fatty liver disease. J Genet Eng Biotechnol 2023; 21:13. [PMID: 36757530 PMCID: PMC9911573 DOI: 10.1186/s43141-023-00467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND AND AIMS NAFLD is one of the fast-growing health problems that affects up to 25% of people worldwide. Numerous miRNAs have been clarified as important regulators of liver pathophysiology, including NAFLD. Thus, we investigated the expression of the MiRNA-34a and MiRNA-192 as diagnostic markers for NAFLD. PATIENTS AND METHODS Blood samples were collected from NAFLD cases and healthy controls. The expression profile of both studied miRNAs was detected via real-time PCR analysis. RESULTS The present study showed that both studied miRNAs were upregulated in NAFLD patients compared to controls. Interestingly, miRNA-34a and MiRNA-192 are upregulated in NAFLD patients with early fibrosis compared to controls [with a fold change of 4.02 ± 11.49 (P = 0.05) and 18.43 ± 47.8 (P = 0.017), respectively]. However, miRNA-34a is downregulated in NAFLD patients with advanced fibrosis compared to controls, with fold expression of 0.65 ± 1.17 (P = 0.831). The area under the receiver operating characteristics (AUROC) for miRNA-34a and miRNA-192 were 0.790 and 0.643, respectively; furthermore, the sensitivities and specificities were 76.7%, 100% for miRNA-34a and 63.3%, and 93.3% for miRNA-192 (P < 0.05). Additionally, MiRNA34a was positively correlated with hypertension and fasting blood sugar, and it also was negatively correlated with hemoglobin level and total leucocyte count (P < 0.05). CONCLUSION The results obtained indicated that both studied miRNAs could potentially be used as diagnostic biomarkers for the early stage of liver fibrosis in NAFLD cases. Also, miRNA-34a was positively correlated with metabolic disorders associated with NAFLD such as hypertension and diabetes. However, their expression showed no association with advanced fibrosis. Thus, larger cohorts are necessitated to certify the utility of serum MiRNA-34a and MiRNA-192 in monitoring the deterioration of NAFLD.
Collapse
Affiliation(s)
- Halla M. Ragab
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa M. Ezzat
- grid.419725.c0000 0001 2151 8157Internal Medicine Department, National Research Centre, Dokki, Giza, Egypt
| | - Eman Mahmoud Hassan
- grid.419725.c0000 0001 2151 8157Clinical and Chemical Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Nabila Abd El Maksoud
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mie Afify
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed D. E. Abd El-Maksoud
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa Abd Elaziz
- grid.419725.c0000 0001 2151 8157Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
16
|
Circulating miR-122-5p, miR-92a-3p, and miR-18a-5p as Potential Biomarkers in Human Liver Transplantation Follow-Up. Int J Mol Sci 2023; 24:ijms24043457. [PMID: 36834868 PMCID: PMC9962619 DOI: 10.3390/ijms24043457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The requirement of blood-circulating sensitive biomarkers for monitoring liver transplant (LT) is currently a necessary step aiming at the reduction of standard invasive protocols, such as liver biopsy. In this respect, the main objective of this study is to assess circulating microRNA (c-miR) changes in recipients' blood before and after LT and to correlate their blood levels with gold standard biomarkers and with outcomes such as rejection or complications after graft. An miR profile was initially performed; then, the most deregulated miRs were validated by RT-qPCR in 14 recipients pre- and post-LT and compared to a control group of 24 nontransplanted healthy subjects. MiR-122-5p, miR-92a-3p, miR-18a-5p, and miR-30c-5p, identified in the validation phase, were also analyzed considering an additional 19 serum samples collected from LT recipients and focusing on different follow-up (FU) times. The results showed significant, FU-related changes in c-miRs. In particular, miR-122-5p, miR-92a-3p, and miR-18a-5p revealed the same trend after transplantation and an increase in their level was found in patients with complications, independently from FU times. Conversely, the variations in the standard haemato-biochemical parameters for liver function assessment were not significant in the same FU period, confirming the importance of c-miRs as potential noninvasive biomarkers for monitoring patients' outcomes.
Collapse
|
17
|
Rana M, Saini M, Das R, Gupta S, Joshi T, Mehta DK. Circulating MicroRNAs: Diagnostic Value as Biomarkers in the Detection of Non-alcoholic Fatty Liver Diseases and Hepatocellular Carcinoma. Microrna 2023; 12:99-113. [PMID: 37005546 DOI: 10.2174/2211536612666230330083146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-related disorder, is the most common cause of chronic liver disease which, if left untreated, can progress from simple steatosis to advanced fibrosis and eventually cirrhosis or hepatocellular carcinoma, which is the leading cause of hepatic damage globally. Currently available diagnostic modalities for NAFLD and hepatocellular carcinoma are mostly invasive and of limited precision. A liver biopsy is the most widely used diagnostic tool for hepatic disease. But due to its invasive procedure, it is not practicable for mass screening. Thus, noninvasive biomarkers are needed to diagnose NAFLD and HCC, monitor disease progression, and determine treatment response. Various studies indicated that serum miRNAs could serve as noninvasive biomarkers for both NAFLD and HCC diagnosis because of their association with different histological features of the disease. Although microRNAs are promising and clinically useful biomarkers for hepatic diseases, larger standardization procedures and studies are still required.
Collapse
Affiliation(s)
- Minakshi Rana
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Manisha Saini
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Tanishq Joshi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
18
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: https://doi.org/10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
19
|
Pervez MA, Khan DA, Gilani STA, Fatima S, Ijaz A, Nida S. Hepato-Protective Effects of Delta-Tocotrienol and Alpha-Tocopherol in Patients with Non-Alcoholic Fatty Liver Disease: Regulation of Circulating MicroRNA Expression. Int J Mol Sci 2022; 24:ijms24010079. [PMID: 36613525 PMCID: PMC9820400 DOI: 10.3390/ijms24010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in the regulation of genes for normal metabolism in the liver. Dysregulation of miRNAs is involved in the development and progression of non-alcoholic fatty liver disease (NAFLD). We aimed to explore changes in circulating miRNA expression in response to delta-tocotrienol (δT3) and alpha-tocopherol (αTF) supplementation and correlate them with relevant biochemical markers in patients with NAFLD. In total, 100 patients with NAFLD were randomized to either receive δT3 (n = 50) 300 mg or αTF (n = 50) 268 mg twice/day for 48 weeks. Plasma expression of miRNA-122, -21, -103a-2, -421, -375 and -34a were determined at baseline, 24 and 48 weeks of intervention using RT-qPCR. Both δT3 and αTF significantly downregulated expression of miRNA-122, -21, -103a-2, -421, -375 and -34a. Moreover, δT3 was more effective than αTF in reducing expression of miRNA-375 and -34a. A significant correlation was observed between miRNA expression and biochemical markers of hepatic steatosis, insulin resistance (IR), oxidative stress (OS), inflammation and apoptosis. δT3 and αTF exert hepato-protective effects by downregulating miRNAs involved in hepatic steatosis, IR, OS, inflammation and apoptosis in patients with NAFLD. Furthermore, δT3 has more pronounced effects than αTF in reducing miR-375 and miR-34a, which are linked to regulation of inflammation and apoptosis.
Collapse
|
20
|
Comparison of Body Composition, Muscle Strength and Cardiometabolic Profile in Children with Prader-Willi Syndrome and Non-Alcoholic Fatty Liver Disease: A Pilot Study. Int J Mol Sci 2022; 23:ijms232315115. [PMID: 36499438 PMCID: PMC9739027 DOI: 10.3390/ijms232315115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Syndromic and non-syndromic obesity conditions in children, such as Prader-Willi syndrome (PWS) and non-alcoholic fatty liver disease (NAFLD), both lower quality of life and increase risk for chronic health complications, which further increase health service utilization and cost. In a pilot observational study, we compared body composition and muscle strength in children aged 7−18 years with either PWS (n = 9), NAFLD (n = 14), or healthy controls (n = 16). Anthropometric and body composition measures (e.g., body weight, circumferences, skinfolds, total/segmental composition, and somatotype), handgrip strength, six minute-walk-test (6MWT), physical activity, and markers of liver and cardiometabolic dysfunction (e.g., ALT, AST, blood pressure, glucose, insulin, and lipid profile) were measured using standard procedures and validated tools. Genotyping was determined for children with PWS. Children with PWS had reduced lean body mass (total/lower limb mass), lower handgrip strength, 6MWT and increased sedentary activity compared to healthy children or those with NAFLD (p < 0.05). Children with PWS, including those of normal body weight, had somatotypes consistent with relative increased adiposity (endomorphic) and reduced skeletal muscle robustness (mesomorphic) when compared to healthy children and those with NAFLD. Somatotype characterizations were independent of serum markers of cardiometabolic dysregulation but were associated with increased prevalence of abnormal systolic and diastolic blood pressure Z-scores (p < 0.05). Reduced lean body mass and endomorphic somatotypes were associated with lower muscle strength/functionality and sedentary lifestyles, particularly in children with PWS. These findings are relevant as early detection of deficits in muscle strength and functionality can ensure effective targeted treatments that optimize physical activity and prevent complications into adulthood.
Collapse
|
21
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
22
|
Konings MCJM, Baumgartner S, Mensink RP, Plat J. Investigating microRNAs to Explain the Link between Cholesterol Metabolism and NAFLD in Humans: A Systematic Review. Nutrients 2022; 14:nu14234946. [PMID: 36500981 PMCID: PMC9738374 DOI: 10.3390/nu14234946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by hepatic free cholesterol accumulation. In addition, microRNAs (miRNAs) might be involved in NAFLD development. Therefore, we systematically reviewed the literature to examine the link between miRNAs and cholesterol metabolism in NAFLD. Nineteen studies were retrieved by a systematic search in September 2022. From these papers, we evaluated associations between 13 miRNAs with NAFLD and cholesterol metabolism. Additionally, their diagnostic potential was examined. Four miRNAs (miR122, 34a, 132 and 21) were associated with cholesterol metabolism and markers for NAFLD. MiR122 was upregulated in serum of NAFLD patients, increased with disease severity and correlated with HDL-C, TAG, VLDL-C, AST, ALT, ALP, lobular inflammation, hepatocellular ballooning and NAFLD score. Serum and hepatic levels also correlated. Serum and hepatic miR34a levels were increased in NAFLD, and correlated with VLDL-C and TAG. Serum miR379 was also higher in NAFLD, especially in early stages, while miR21 gave ambiguous results. The diagnostic properties of these miRNAs were comparable to those of existing biomarkers. However, serum miR122 levels appeared to be elevated before increases in ALT and AST were evident. In conclusion, miR122, miR34a, miR21 and miR132 may play a role in the development of NAFLD via effects on cholesterol metabolism. Furthermore, it needs to be explored if miRNAs 122, 34a and 379 could be used as part of a panel in addition to established biomarkers in early detection of NAFLD.
Collapse
|
23
|
Rusu I, Pirlog R, Chiroi P, Nutu A, Puia VR, Fetti AC, Rusu DR, Berindan-Neagoe I, Al Hajjar N. The Implications of Noncoding RNAs in the Evolution and Progression of Nonalcoholic Fatty Liver Disease (NAFLD)-Related HCC. Int J Mol Sci 2022; 23:12370. [PMID: 36293225 PMCID: PMC9603983 DOI: 10.3390/ijms232012370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide. Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma (HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders, NAFLD has become one of the main contributing factors to HCC development. However, although NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related HCC cases were diagnosed in late stages when survival chances are minimal. However, in the past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome, especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved to be involved in the regulation of several malignant processes. This review aims to summarize the current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their implications for NAFLD and HCC development. A central focus of the review is on miRNA and lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as potential screening tools and future therapeutic targets.
Collapse
Affiliation(s)
- Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad Radu Puia
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Alin Cornel Fetti
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Radu Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| |
Collapse
|
24
|
Youssef SS, Youness RA, Abbas EAER, Osman NM, ELFiky A, El-Kassas M. miR-516a-3P, a potential circulating biomarker in hepatocellular carcinoma, correlated with rs 738409 polymorphism in PNPLA3. Per Med 2022; 19:483-493. [PMID: 36239555 DOI: 10.2217/pme-2022-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aim: The aim was to investigate the expression profile of miR-516a-3P and its correlation with the PNPLA3 rs738409 polymorphism in Egyptian hepatitis C virus (HCV) and hepatocellular carcinoma (HCC) patients. Materials & methods: miR-516a-3P was quantified and rs738409 was genotyped by quantitative reverse transcription PCR. Results: miR-516a-3P was significantly upregulated in HCC patients compared with HCV patients (p = 0.001). Receiver operating characteristic curve analysis confirmed that miR-516a-3P discriminates HCC from HCV (p = 0.001). A significant (p = 0.015) correlation between miR-516a-3p level and PNPLA3 rs738409 genotypes was recorded in HCV patients, yet it was not recorded in either healthy individuals or HCC patients. miR-516a-3p level was significantly (p = 0.001) higher in HCV patients carrying the rs738409 GG genotype than in those carrying the CC genotype. Conclusion: miR-516a-3P is a potential biomarker in HCC. PNPLA3 rs738409 GG carriers affect miR-516a-3P expression in HCV, and this may highlight a new mechanism in liver disease.
Collapse
Affiliation(s)
- Samar Samir Youssef
- Microbial Biotechnology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Rana Ahmed Youness
- School of Life & Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt.,Pharmaceutical Biology Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
| | - Eman Abd El-Razek Abbas
- Microbial Biotechnology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Noha Mohamed Osman
- Cell Biology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Asmaa ELFiky
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
25
|
Dysregulation of miRISC Regulatory Network Promotes Hepatocellular Carcinoma by Targeting PI3K/Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911300. [PMID: 36232606 PMCID: PMC9569668 DOI: 10.3390/ijms231911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the third leading malignancy worldwide, causing high mortality in adults and children. The neuropathology-associated gene AEG-1 functions as a scaffold protein to correctly assemble the RNA-induced silencing complex (RISC) and optimize or increase its activity. The overexpression of oncogenic miRNAs periodically degrades the target tumor suppressor genes. Oncogenic miR-221 plays a seminal role in the carcinogenesis of HCC. Hence, the exact molecular and biological functions of the oncogene clusters miR-221/AEG-1 axis have not yet been examined widely in HCC. Here, we explored the expression of both miR-221 and AEG-1 and their target/associate genes by qRT-PCR and western blot. In addition, the role of the miR-221/AEG-1 axis was studied in the HCC by flow cytometry analysis. The expression level of the AEG-1 did not change in the miR-221 mimic, and miR-221-transfected HCC cells, on the other hand, decreased the miR-221 expression in AEG-1 siRNA-transfected HCC cells. The miR-221/AEG-1 axis silencing induces apoptosis and G2/M phase arrest and inhibits cellular proliferation and angiogenesis by upregulating p57, p53, RB, and PTEN and downregulating LSF, LC3A, Bcl-2, OPN, MMP9, PI3K, and Akt in HCC cells.
Collapse
|
26
|
Zaiou M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver disease. World J Gastroenterol 2022; 28:5111-5128. [PMID: 36188722 PMCID: PMC9516672 DOI: 10.3748/wjg.v28.i35.5111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause of chronic liver disorder worldwide. It represents a spectrum that includes a continuum of different clinical entities ranging from simple steatosis to nonalcoholic steatohepatitis, which can evolve to cirrhosis and in some cases to hepatocellular carcinoma, ultimately leading to liver failure. The pathogenesis of NAFLD and the mechanisms underlying its progression to more pathological stages are not completely understood. Besides genetic factors, evidence indicates that epigenetic mechanisms occurring in response to environmental stimuli also contribute to the disease risk. Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are one of the epigenetic factors that play key regulatory roles in the development of NAFLD. As the field of ncRNAs is rapidly evolving, the present review aims to explore the current state of knowledge on the roles of these RNA species in the pathogenesis of NAFLD, highlight relevant mechanisms by which some ncRNAs can modulate regulatory networks implicated in NAFLD, and discuss key challenges and future directions facing current research in the hopes of developing ncRNAs as next-generation non-invasive diagnostics and therapies in NAFLD and subsequent progression to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean Lamour, UMR CNRS 7198, CNRS, University of Lorraine, Nancy 54011, France
| |
Collapse
|
27
|
Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets. PPAR Res 2022; 2022:6161694. [PMID: 36164476 PMCID: PMC9509273 DOI: 10.1155/2022/6161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
Collapse
|
28
|
Ramachandran P, Xu G, Huang HH, Rice R, Zhou B, Lindpaintner K, Serie D. Serum Glycoprotein Markers in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. J Proteome Res 2022; 21:1083-1094. [PMID: 35286803 PMCID: PMC8981307 DOI: 10.1021/acs.jproteome.1c00965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fatty liver disease progresses through stages of fat accumulation and inflammation to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, and eventually hepatocellular carcinoma (HCC). Currently available diagnostic tools for HCC lack sensitivity and specificity. In this study, we investigated the use of circulating serum glycoproteins to identify a panel of potential prognostic markers that may be indicative of progression from the healthy state to NASH and further to HCC. Serum samples were processed and analyzed using a novel high-throughput glycoproteomics platform. Our initial dataset contained healthy, NASH, and HCC serum samples. We analyzed 413 glycopeptides, representing 57 abundant serum proteins, and compared among the three phenotypes. We studied the normalized abundance of common glycoforms and found 40 glycopeptides with statistically significant differences in abundances in NASH and HCC compared to controls. Summary level relative abundances of core-fucosylated, sialylated, and branched glycans containing glycopeptides were higher in NASH and HCC as compared to controls. We replicated some of our findings in an independent set of samples of individuals with benign liver conditions and HCC. Our results may be of value in the management of liver diseases. Data generated in this work can be downloaded from MassIVE (https://massive.ucsd.edu) with identifier MSV000088809.
Collapse
Affiliation(s)
| | - Gege Xu
- InterVenn Biosciences, South San Francisco, California 94080, United States
| | - Hector H Huang
- InterVenn Biosciences, South San Francisco, California 94080, United States
| | - Rachel Rice
- InterVenn Biosciences, South San Francisco, California 94080, United States
| | - Bo Zhou
- InterVenn Biosciences, South San Francisco, California 94080, United States
| | - Klaus Lindpaintner
- InterVenn Biosciences, South San Francisco, California 94080, United States
| | - Daniel Serie
- InterVenn Biosciences, South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Hasin-Brumshtein Y, Sakaram S, Khatri P, He YD, Sweeney TE. A robust gene expression signature for NASH in liver expression data. Sci Rep 2022; 12:2571. [PMID: 35173224 PMCID: PMC8850484 DOI: 10.1038/s41598-022-06512-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a progressive liver disease that affects up to 30% of worldwide population, of which up to 25% progress to Non-Alcoholic SteatoHepatitis (NASH), a severe form of the disease that involves inflammation and predisposes the patient to liver cirrhosis. Despite its epidemic proportions, there is no reliable diagnostics that generalizes to global patient population for distinguishing NASH from NAFLD. We performed a comprehensive multicohort analysis of publicly available transcriptome data of liver biopsies from Healthy Controls (HC), NAFLD and NASH patients. Altogether we analyzed 812 samples from 12 different datasets across 7 countries, encompassing real world patient heterogeneity. We used 7 datasets for discovery and 5 datasets were held-out for independent validation. Altogether we identified 130 genes significantly differentially expressed in NASH versus a mixed group of NAFLD and HC. We show that our signature is not driven by one particular group (NAFLD or HC) and reflects true biological signal. Using a forward search we were able to downselect to a parsimonious set of 19 mRNA signature with mean AUROC of 0.98 in discovery and 0.79 in independent validation. Methods for consistent diagnosis of NASH relative to NAFLD are urgently needed. We showed that gene expression data combined with advanced statistical methodology holds the potential to serve basis for development of such diagnostic tests for the unmet clinical need.
Collapse
Affiliation(s)
| | - Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.,Department of Medicine, Center for Biomedical Informatics Research, Stanford University, Stanford, CA, 94305, USA
| | - Yudong D He
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| | - Timothy E Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
| |
Collapse
|
30
|
Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J Cell Physiol 2022; 237:2078-2094. [PMID: 35137416 DOI: 10.1002/jcp.30699] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) impacts more than one-third of the population and is linked with other metabolic diseases. The term encompasses a wide spectrum of diseases, from modest steatosis to nonalcoholic steatohepatitis, fibrosis and, ultimately, cirrhosis with the potential for development of hepatocellular carcinoma. Currently, available methods for diagnosing NAFLD are invasive or lack accuracy, and monitoring to determine response to therapeutic interventions is challenging. Exosomes are nano-scaled extracellular vesicles that are secreted by a variety of cells. They convey proteins, mRNA, miRNA, and other bioactive molecules between cells and are involved in an extensive range of biological processes, particularly cell-cell communication. Several reports suggest that exosomes mediate miRNAs and, thus, they have potential clinical utility for diagnosis, prognosis, and therapeutics in liver diseases. In view of the vital role of exosomal microRNA in disease, we here synthesized current knowledge about the biogenesis of exosomal miRNA and exosome-mediated microRNA transfer. We then discuss the potential of exosomal miRNA in diagnosis and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
32
|
Johnson K, Leary PJ, Govaere O, Barter MJ, Charlton SH, Cockell SJ, Tiniakos D, Zatorska M, Bedossa P, Brosnan MJ, Cobbold JF, Ekstedt M, Aithal GP, Clément K, Schattenberg JM, Boursier J, Ratziu V, Bugianesi E, Anstee QM, Daly AK. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Rep 2022; 4:100409. [PMID: 35072021 PMCID: PMC8762473 DOI: 10.1016/j.jhepr.2021.100409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & AIMS Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. METHODS We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. RESULTS Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. CONCLUSIONS Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. LAY SUMMARY MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUROC, area under the receiver operating characteristic
- Biomarker
- CPM, counts per million
- Ct, cycle threshold
- ER, endoplasmic reticulum
- FC, fold change
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- GTEx, Genotype-Tissue Expression
- MicroRNA
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- PCA, principal component analysis
- SAF, steatosis–activity–fibrosis
- Sequencing
- TGF-β, transforming growth factor-beta
- cDNA, complementary DNA
- logFC, log2 fold change
- miRNA, microRNA
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Katherine Johnson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter J. Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J. Barter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah H. Charlton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J. Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jeremy F. Cobbold
- Oxford Liver Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center of Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jerome Boursier
- Hepatology Department, Angers University Hospital, Angers, France
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Newman LA, Useckaite Z, Johnson J, Sorich MJ, Hopkins AM, Rowland A. Selective Isolation of Liver-Derived Extracellular Vesicles Redefines Performance of miRNA Biomarkers for Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010195. [PMID: 35052873 PMCID: PMC8773667 DOI: 10.3390/biomedicines10010195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Definitive diagnosis of the progressive form, non-alcoholic steatohepatitis (NASH), requires liver biopsy, which is highly invasive and unsuited to early disease or tracking changes. Inadequate performance of current minimally invasive tools is a critical barrier to managing NAFLD burden. Altered circulating miRNA profiles show potential for minimally invasive tracking of NAFLD. The selective isolation of the circulating extracellular vesicle subset that originates from hepatocytes presents an important opportunity for improving the performance of miRNA biomarkers of liver disease. The expressions of miR-122, -192, and -128-3p were quantified in total cell-free RNA, global EVs, and liver-specific EVs from control, NAFL, and NASH subjects. In ASGR1+ EVs, each miR biomarker trended positively with disease severity and expression was significantly higher in NASH subjects compared with controls. The c-statistic defining the performance of ASGR1+ EV derived miRNAs was invariably >0.78. This trend was not observed in the alternative sources. This study demonstrates the capacity for liver-specific isolation to transform the performance of EV-derived miRNA biomarkers for NAFLD, robustly distinguishing patients with NAFL and NASH.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Jillian Johnson
- Early Clinical Development, Pfizer Global Research and Development, Groton, CT 06340, USA;
| | - Michael J. Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Ashley M. Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
- Correspondence: ; Tel.: +61-882-047-546
| |
Collapse
|
34
|
Mariam A, Miller-Atkins G, Moro A, Rodarte AI, Siddiqi S, Acevedo-Moreno LA, Brown JM, Allende DS, Aucejo F, Rotroff DM. Salivary miRNAs as non-invasive biomarkers of hepatocellular carcinoma: a pilot study. PeerJ 2022; 10:e12715. [PMID: 35036096 PMCID: PMC8742548 DOI: 10.7717/peerj.12715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Improved detection of hepatocellular carcinoma (HCC) is needed, as current detection methods, such as alpha fetoprotein (AFP) and ultrasound, suffer from poor sensitivity. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate many cellular functions and impact cancer development and progression. Notably, miRNAs are detectable in saliva and have shown potential as non-invasive biomarkers for a number of cancers including breast, oral, and lung cancers. Here, we present, to our knowledge, the first report of salivary miRNAs in HCC and compare these findings to patients with cirrhosis, a high-risk cohort for HCC. METHODS We performed small RNA sequencing in 20 patients with HCC and 19 with cirrhosis. Eleven patients with HCC had chronic liver disease, and analyses were performed with these samples combined and stratified by the presence of chronic liver disease. P values were adjusted for multiple comparisons using a false discovery rate (FDR) approach and miRNA with FDR P < 0.05 were considered statistically significant. Differential expression of salivary miRNAs was compared to a previously published report of miRNAs in liver tissue of patients with HCC vs cirrhosis. Support vector machines and leave-one-out cross-validation were performed to determine if salivary miRNAs have predictive potential for detecting HCC. RESULTS A total of 4,565 precursor and mature miRNAs were detected in saliva and 365 were significantly different between those with HCC compared to cirrhosis (FDR P < 0.05). Interestingly, 283 of these miRNAs were significantly downregulated in patients with HCC. Machine-learning identified a combination of 10 miRNAs and covariates that accurately classified patients with HCC (AUC = 0.87). In addition, we identified three miRNAs that were differentially expressed in HCC saliva samples and in a previously published study of miRNAs in HCC tissue compared to cirrhotic liver tissue. CONCLUSIONS This study demonstrates, for the first time, that miRNAs relevant to HCC are detectable in saliva, that salivary miRNA signatures show potential to be highly sensitive and specific non-invasive biomarkers of HCC, and that additional studies utilizing larger cohorts are needed.
Collapse
Affiliation(s)
- Arshiya Mariam
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States
| | - Galen Miller-Atkins
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States
| | - Amika Moro
- Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, United States
| | | | - Shirin Siddiqi
- Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, United States
| | | | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, United States
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio, United States
| | - Daniela S. Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Federico Aucejo
- Department of General Surgery, Cleveland Clinic, Cleveland, Ohio, United States
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
35
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
36
|
Thibonnier M, Ghosh S, Blanchard A. Effects of a short-term cold exposure on circulating microRNAs and metabolic parameters in healthy adult subjects. J Cell Mol Med 2021; 26:548-562. [PMID: 34921497 PMCID: PMC8743656 DOI: 10.1111/jcmm.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
This discovery study investigated in healthy subjects whether a short‐term cold exposure may alter circulating microRNAs and metabolic parameters and if co‐expression networks between these factors could be identified. This open randomized crossover (cold vs no cold exposure) study with blind end‐ point evaluation was conducted at 1 center with 10 healthy adult male volunteers. Wearing a cooling vest perfused at 14°C for 2 h reduced the local skin temperature without triggering shivering, increased norepinephrine and blood pressure while decreasing copeptin, C‐peptide and heart rate. Circulating microRNAs measured before and after wearing the cooling vest twice (4 time points) identified 196 mature microRNAs with excellent reproducibility over 72 h. Significant correlations of microRNA expression with copeptin, norepinephrine and C‐peptide were found. A co‐expression‐based microRNA‐microRNA network, as well as microRNA pairs displaying differential correlation as a function of temperature were also detected. This study demonstrates that circulating miRNAs are differentially expressed and coregulated upon cold exposure in humans, supporting their use as predictive and dynamic biomarkers of cardio‐metabolic disorders.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore City, Singapore.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anne Blanchard
- Clinical Investigation Center, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
37
|
Wang Y, Chen B, Xiao C, Yu J, Bu X, Jiang F, Ding W, Ge Z. Effect of miR-183-5p on Cholestatic Liver Fibrosis by Regulating Fork Head Box Protein O1 Expression. Front Physiol 2021; 12:737313. [PMID: 34867446 PMCID: PMC8639207 DOI: 10.3389/fphys.2021.737313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end-stage liver disease and has no effective treatment. MicroRNAs (miRNAs) have been found to modulate gene expression in liver disease. But the potential role of miRNA in hepatic fibrosis is still unclear. The objective of this research is to study the potential mechanism and biological function of miR-183-5p in liver fibrosis. In this study, we used high-throughput sequencing to find that miR-183-5p is upregulated in human fibrotic liver tissues. In addition, miR-183-5p was upregulated both in rat liver fibrosis tissue induced by bile-duct ligation (BDL) and activated LX-2 cells (human hepatic stellate cell line) according to the result of quantitative real-time PCR (RT-qPCR). Moreover, the inhibition of miR-183-5p alleviated liver fibrosis, decreased the fibrotic biomarker levels in vitro and in vivo, and led toLX-2 cell proliferation inhibition and, apoptosis induction. The result of dual-luciferase assay revealed that miR-183-5p suppressed fork head box protein O1 (FOXO1) expression by binding to its 3'UTR directly. Next, we used lentivirus to overexpress FOXO1 in LX-2 cells, and we found that overexpression of FOXO1 reversed the promotion of miR-183-5p on liver fibrosis, reducing the fibrotic biomarker levels inLX-2 cells, inhibitingLX-2 cell proliferation, and promoting apoptosis. Furthermore, overexpression of FOXO1 prevented the activation of the transforming growth factor (TGF)-β signaling pathway in TGF-β1-induced LX-2 cells according to the result of western blotting. In conclusion, the findings showed thatmiR-183-5p might act as a key regulator of liver fibrosis, and miR-183-5p could promote cholestatic liver fibrosis by inhibiting FOXO1 expression through the TGF-β signaling pathway. Thus, inhibition of miR-183-5pmay be a new way to prevent and improve liver fibrosis.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bin Chen
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiang Yu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiangyang Bu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fengxing Jiang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Weijie Ding
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhong Ge
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Bissoondial TL, Pellicano AJ, Goldberg ID, Narayan P. Identification of disease-associated microRNA in a diet-induced model of nonalcoholic steatohepatitis. Mol Omics 2021; 17:911-916. [PMID: 34757352 DOI: 10.1039/d1mo00274k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging evidence suggests that microRNA dysregulation plays an important role in nonalcoholic steatohepatitis. Using a model of diet-induced liver disease that progresses to fibrosis and hepatocellular carcinoma, we identify a set of 22 microRNA with robust correlation with liver enzyme levels and liver collagen content. These disease-asssociated miRs play pivotal roles in steatosis, extracellular matrix deposition and liver cancer, and may form the basis for identification of therapeutic strategies against this form of liver disease.
Collapse
Affiliation(s)
| | | | | | - Prakash Narayan
- Department of Preclinical Research, Angion Biomedica Corp., USA.
| |
Collapse
|
39
|
López-Sánchez GN, Dóminguez-Pérez M, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann Hepatol 2021; 21:100212. [PMID: 32533953 DOI: 10.1016/j.aohep.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The obesity pandemic that affects the global population generates one of the most unfavorable microenvironmental conditions in the hepatocyte, which triggers the metabolic hepatopathy known as non-alcoholic fatty liver; its annual rates increase in its prevalence and does not seem to improve in the future. The international consortia, LITMUS by the European Union and NIMBLE by the United States of America, have started a race for the development of hepatic steatosis and steatohepatitis reliable biomarkers to have an adequate diagnosis. MicroRNAs have been proposed as diagnostic and prognostic biomarkers involved in adaptation to changes in the liver microenvironment, which could improve clinical intervention strategies in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Guillermo Nahúm López-Sánchez
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Mayra Dóminguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Z.C. 14610 Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico.
| |
Collapse
|
40
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines 2021; 9:1524. [PMID: 34829753 PMCID: PMC8614742 DOI: 10.3390/biomedicines9111524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading contributor to the global burden of chronic liver diseases. The phenotypic umbrella of NAFLD spans from simple and reversible steatosis to nonalcoholic steatohepatitis (NASH), which may worsen into cirrhosis and hepatocellular carcinoma (HCC). Notwithstanding, HCC may develop also in the absence of advanced fibrosis, causing a delayed time in diagnosis as a consequence of the lack of HCC screening in these patients. The precise event cascade that may precipitate NASH into HCC is intricate and it entails diverse triggers, encompassing exaggerated immune response, endoplasmic reticulum (ER) and oxidative stress, organelle derangement and DNA aberrancies. All these events may be accelerated by both genetic and environmental factors. On one side, common and rare inherited variations that affect hepatic lipid remodeling, immune microenvironment and cell survival may boost the switching from steatohepatitis to liver cancer, on the other, diet-induced dysbiosis as well as nutritional and behavioral habits may furtherly precipitate tumor onset. Therefore, dietary and lifestyle interventions aimed to restore patients' health contribute to counteract NASH progression towards HCC. Even more, the combination of therapeutic strategies with dietary advice may maximize benefits, with the pursuit to improve liver function and prolong survival.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, 20122 Milan, Italy; (M.M.); (M.L.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
41
|
Identification of a 17-gene-signature in Non-alcoholic Steatohepatitis and Its Relationship with Immune Cell Infiltration. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Non-alcoholic steatohepatitis (NASH) is a risk factor for hepatocellular carcinoma, but the understanding of the regulatory mechanisms driving NASH is not comprehensive. Objectives: We aimed to identify the potential markers of NASH and explore their relationship with immune cell populations. Methods: Five gene expression datasets for NASH were downloaded from the Gene Expression Omnibus and European Bioinformatics Institute Array Express databases. Differentially expressed genes (DEGs) between NASH and controls were screened. Gene Ontology-Biological Process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for functional enrichment analysis of DEGs. Among the candidate genes selected from the protein-protein interaction (PPI) network and module analysis, DEG signatures were further identified using least absolute shrinkage and selection operator regression analysis. The Spearman correlation coefficient was calculated to assess the correlation between DEG signatures and immune cell abundance based on the CIBERSORT algorithm. Results: We screened 403 upregulated, and 158 downregulated DEGs for NASH, and they were mainly enriched in GO-BP, including the inflammatory response, innate immune response, signal transduction, and KEGG pathways, such as the pathways involved in cancer (e.g., the PI3K-Akt signaling pathway), and focal adhesion. We then screened 73 candidate genes from the PPI network and module analysis and finally identified 17 DEG signatures. By evaluating their relationship with immune cell populations, 12 DEG signatures were found to correlate with activated dendritic cells, resting dendritic cells, M2 macrophages, monocytes, neutrophils, and resting memory CD4 T cells, which were significantly different between the NASH and control tissues. Conclusions: We identified a 17-DEG-signature as a candidate biomarker for NASH and analyzed its relationship with immune infiltration in NASH.
Collapse
|
42
|
MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications. Biomolecules 2021; 11:biom11101531. [PMID: 34680164 PMCID: PMC8533942 DOI: 10.3390/biom11101531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Since the well-known hallmarks of cancer were described by Hanahan and Weinberg, fundamental advances of molecular genomic technologies resulted in the discovery of novel puzzle pieces in the multistep pathogenesis of cancer. MicroRNAs are involved in the altered epigenetic pattern and metabolic phenotype of malignantly transformed cells. They contribute to the initiation, progression and metastasis-formation of cancers, also interacting with oncogenes, tumor-suppressor genes and epigenetic modifiers. Metabolic reprogramming of cancer cells results from the dysregulation of a complex network, in which microRNAs are located at central hubs. MicroRNAs regulate the expression of several metabolic enzymes, including tumor-specific isoforms. Therefore, they have a direct impact on the levels of metabolites, also influencing epigenetic pattern due to the metabolite cofactors of chromatin modifiers. Targets of microRNAs include numerous epigenetic enzymes, such as sirtuins, which are key regulators of cellular metabolic homeostasis. A better understanding of reversible epigenetic and metabolic alterations opened up new horizons in the personalized treatment of cancer. MicroRNA expression levels can be utilized in differential diagnosis, prognosis stratification and prediction of chemoresistance. The therapeutic modulation of microRNA levels is an area of particular interest that provides a promising tool for restoring altered metabolism of cancer cells.
Collapse
|
43
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
44
|
Vulf M, Shunkina D, Komar A, Bograya M, Zatolokin P, Kirienkova E, Gazatova N, Kozlov I, Litvinova L. Analysis of miRNAs Profiles in Serum of Patients With Steatosis and Steatohepatitis. Front Cell Dev Biol 2021; 9:736677. [PMID: 34568346 PMCID: PMC8458751 DOI: 10.3389/fcell.2021.736677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic liver diseases worldwide, affecting 25% of the world population. In recent years, there has been increasing evidence for the involvement of microRNAs in the epigenetic regulation of genes taking part in the development of steatosis and steatohepatitis—two main stages of NAFLD pathogenesis. In the present study, miRNA profiles were studied in groups of patients with steatosis and steatohepatitis to compare the characteristics of RNA-dependent epigenetic regulation of the stages of NAFLD development. According to the results of miRNA screening, 23 miRNAs were differentially expressed serum in a group of patients with steatohepatitis and 2 in a group of patients with steatosis. MiR-195-5p and miR-16-5p are common differentially expressed miRNAs for both steatosis and steatohepatitis. We analyzed the obtained results: the search for target genes for the differentially expressed miRNAs in our study and the subsequent gene set enrichment analysis performed on KEGG and REACTOME databases revealed which metabolic pathways undergo changes in RNA-dependent epigenetic regulation in steatosis and steatohepatitis. New findings within the framework of this study are the dysregulation of neurohumoral pathways in the pathogenesis of NAFLD as an object of changes in RNA-dependent epigenetic regulation. The miRNAs differentially expressed in our study were found to target 7% of genes in the classic pathogenesis of NAFLD in the group of patients with steatosis and 50% in the group of patients with steatohepatitis. The effects of these microRNAs on genes for the pathogenesis of NAFLD were analyzed in detail. MiR-374a-5p, miR-1-3p and miR-23a-3p do not target genes directly involved in the pathogenesis of NAFLD. The differentially expressed miRNAs found in this study target genes largely responsible for mitochondrial function. The role of miR-423-5p, miR-143-5p and miR-200c-3 in regulating apoptotic processes in the liver and hepatocarcinogenesis is of interest for future experimental studies. These miR-374a, miR-143, miR-1, miR-23a, and miR-423 have potential for steatohepatitis diagnosis and are poorly studied in the context of NAFLD. Thus, this work opens up prospects for further studies of microRNAs as diagnostic and therapeutic biomarkers for NAFLD.
Collapse
Affiliation(s)
- Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Daria Shunkina
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksandra Komar
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Pavel Zatolokin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Elena Kirienkova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ivan Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
45
|
Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147182. [PMID: 34088068 DOI: 10.1016/j.scitotenv.2021.147182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is associated with non-alcoholic fatty liver disease (NAFLD). The hepatic activation of p53/miR-43a-induced suppression of SIRT1/FXR axis plays a significant role in the development of NAFLD. In this study, we have investigated CdCl2-induced NAFLD in rats involves activation of miR34a/SIRT1/FXR axis. Adult male rats were divided into 4 groups (n-8/each) as a control, CdCl2 (10 mg/l), CdCl2 + miR-34a antagomir (inhibitor), and CdCl2 + SRT1720 (a SIRT1 activator) for 8 weeks, daily. With no effect on fasting glucose and insulin levels, CdCl2 significantly reduced rats' final body, fat pads, and liver weights, and food intake. Concomitantly, it increased the circulatory levels of liver markers (ALT, AST, and γ-GTT), increased the serum and hepatic levels of total cholesterol and triglycerides coincided with increased hepatic lipid accumulation. Besides, it increased the mRNA and protein levels of SREBP1, SREBP2, FAS, and HMGCOA reductase but reduced mRNA levels of PPARα, CPT1, and CPT2. Interestingly, CdCl2 also increased mRNA levels of miR34 without altering mRNA levels of SIRT1 but with a significant reduction in protein levels of SIRT1. These effects were associated with increased total protein levels of p53 and acetylated protein of p53, and FXR. Of note, suppressing miR-34a with a specific anatomic or activating SIRT1 by SRT1720 completely prevented all these effects and reduced hepatic fat accumulations in the livers of rats. In conclusion, CdCl2 induced NAFLD by increasing the transcription of miR-34a which in turn downregulates SIRT1 at the translational level.
Collapse
Affiliation(s)
- Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt.
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Amira M AlRamlawy
- Mansoura Research Centre for Cord Stem Cell (MARC-CSC), Stem cells bank, Children's Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
46
|
Alqahtani SA, Schattenberg JM. Nonalcoholic fatty liver disease: use of diagnostic biomarkers and modalities in clinical practice. Expert Rev Mol Diagn 2021; 21:1065-1078. [PMID: 34346799 DOI: 10.1080/14737159.2021.1964958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The global burden of liver disease is increasing, and nonalcoholic fatty liver disease (NAFLD) is among the most common chronic liver diseases in Asia, Europe, North and South America. The field of noninvasive diagnostic and their role in staging, but also predicting outcome is evolving rapidly. There is a high-unmet need to stage patients with NAFLD and to identify the subset of patients at risk of progression to end-stage liver disease. AREAS COVERED The review covers all established diagnostic blood-based and imaging biomarkers to stage and grade NAFLD. Noninvasive surrogate scores are put into perspective of the available evidence and recommended use. The outlook includes genetics, combined algorithms, and artificial intelligence that will allow clinicians to guide and support the management in both early and later disease stages. EXPERT OPINION In the future, these diagnostics tests will help clinicians to establish patient care pathways and support the identification of relevant subgroups for monitoring and pharmacotherapy. In addition, researchers will be guided to better understand available scores and support the development of future prediction systems. These will likely include multiparametric aspects of the disease and machine learning algorithms will refine their use and integration with large datasets.
Collapse
Affiliation(s)
- Saleh A Alqahtani
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Division Of Gastroenterology And Hepatology, Johns Hopkins University, Baltimore, USA
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department Of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
47
|
Chrysavgis L, Papatheodoridi A, Cholongitas E, Koutsilieris M, Papatheodoridis G, Chatzigeorgiou A. Significance of Circulating Cell-Free DNA Species in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22168849. [PMID: 34445552 PMCID: PMC8396264 DOI: 10.3390/ijms22168849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
The pathogenetic mechanisms involved in the progression of non-alcoholic fatty liver disease (NAFLD) have not been completely elucidated, while the significance of circulating cell-free DNA (cf-DNA) species has been rarely evaluated in NAFLD. Herein, we assessed the serum levels of cf-DNA species in NAFLD patients and investigated their potential associations with patients’ characteristics and severity of liver disease. Forty-nine adult patients with NAFLD of any stage were included in this cohort study. Cf-DNA was isolated from patients’ sera and the levels of several distinct cf-DNA species including total cf-DNA, gene-coding cf-DNA, Alu repeat sequences, mitochondrial DNA copies and 5-methyl-2′-deoxycytidine were determined. Cirrhotic compared to non-cirrhotic patients had significantly lower serum levels of cf-DNA and RNAse P coding DNA as well as higher expression of 5-methyl-2′-deoxycytidine. After adjustment for the significant clinico-epidemiological factors, lower serum levels of cf-DNA or RNAse P were independently associated with the presence of cirrhosis. Serum levels of total and gene-coding DNA are associated with the presence of cirrhosis in NAFLD patients regardless of clinical or epidemiological parameters and may therefore be used as a screening tool for NAFLD progression.
Collapse
Affiliation(s)
- Lampros Chrysavgis
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece; (L.C.); (A.P.); (M.K.)
| | - Alkistis Papatheodoridi
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece; (L.C.); (A.P.); (M.K.)
- Department of Clinical Therapeutics, “Alexandra” General Hospital of Athens, Medical School of National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Evangelos Cholongitas
- 1st Department of Internal Medicine, General Hospital of Athens “Laiko”, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michael Koutsilieris
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece; (L.C.); (A.P.); (M.K.)
| | - George Papatheodoridis
- Department of Gastroenterology, General Hospital of Athens “Laiko”, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece; (L.C.); (A.P.); (M.K.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +30-210-7462623
| |
Collapse
|
48
|
Jiang H, Qian Y, Shen Z, Liu Y, He Y, Gao R, Shen M, Chen S, Fu Q, Yang T. Circulating microRNA‑135a‑3p in serum extracellular vesicles as a potential biological marker of non‑alcoholic fatty liver disease. Mol Med Rep 2021; 24:498. [PMID: 33955511 PMCID: PMC8127071 DOI: 10.3892/mmr.2021.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is a widespread threat to human health. However, the present screening methods for NAFLD are time‑consuming or invasive. The present study aimed to assess the potential of microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) as a biomarker of NAFLD. C57BL/6J mice were fed either a 12‑week high‑fat diet (HFD) or standard chow to establish NAFLD and control groups, respectively. Serum samples were obtained from the mouse model of NAFLD, as well as 50 patients with NAFLD and 50 healthy individuals, and EVs were extracted and verified. Using reverse transcription‑quantitative PCR, the mRNA expression level of selected miRNAs in the serum and EVs was analyzed. In order to determine the diagnostic value, receiver operating characteristic (ROC) curves were used. The mice treated with HFD showed notable hepatic steatosis and higher concentrations of serum alanine aminotransferase (ALT). There was also a significant decrease in the expression levels of miR‑135a‑3p, miR‑129b‑5p and miR‑504‑3p, and an increase in miR‑122‑5p expression levels in circulating EVs in mice treated with HFD and patients with NAFLD. There were also similar miR‑135a‑3p and miR‑122‑5p expression patterns in the serum. ROC analysis demonstrated that miR‑135a‑3p in circulating EVs was highly accurate in diagnosing NAFLD, with the area under the curve value being 0.849 (95% CI, 0.777‑0.921; P<0.0001). Bioinformatics analysis indicated that dysregulated miR‑135a‑3p was associated with 'platelet‑derived growth factor receptor signaling pathway' and 'AMP‑activated protein kinase signaling pathway'. In summary, circulating miR‑135a‑3p in EVs may serve as a potential non‑invasive biomarker to diagnose NAFLD. This miRNA was a more sensitive and specific biological marker for NAFLD compared with ALT.
Collapse
Affiliation(s)
- Hemin Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyang Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwei Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Dongiovanni P, Paolini E, Corsini A, Sirtori CR, Ruscica M. Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur J Clin Invest 2021; 51:e13519. [PMID: 33583033 DOI: 10.1111/eci.13519] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND A consensus of experts has proposed to replace the term nonalcoholic fatty liver disease (NAFLD), whose global prevalence is 25%, with metabolic dysfunction-associated fatty liver disease (MAFLD), to describe more appropriately the liver disease related to metabolic derangements. MAFLD is closely intertwined with type 2 diabetes, obesity, dyslipidaemia, all linked to a rise in the risk of cardiovascular disease (CVDs). Since controversy still stands on whether or not NAFLD/MAFLD raises the odds of CVD, the present review aims to evaluate the impact of NAFLD/MAFLD aetiologies on CV health and the potential correction by dietary and drug approaches. RESULTS Epidemiological studies indicate that NAFLD raises risk of fatal or non-fatal CVD events. NAFLD patients have a higher prevalence of arterial plaques and stiffness, coronary calcification, and endothelial dysfunction. Although genetic and environmental factors strongly contribute to NAFLD pathogenesis, a Mendelian randomization analysis indicated that the PNPLA3 genetic variant leading to NAFLD may not be causally associated with CVD risk. Among other genetic variants related to NAFLD, TM6SF2 appears to be protective, whereas MBOAT7 may favour venous thromboembolism. CONCLUSIONS NAFLD is correlated to a higher CVD risk which may be ameliorated by dietary interventions. This is not surprising, since new criteria defining MAFLD include other metabolic risk abnormalities fuelling development of serious adverse extrahepatic outcomes, for example CVD. The present lack of a targeted pharmacological approach makes the identification of patients with liver disease at higher CVD risk (eg diabetes, hypertension, obesity or high levels of C-reactive protein) of major clinical interest.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,Multimedica IRCCS, Sesto San Giovanni (MI), Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
50
|
Kanoni S, Kumar S, Amerikanou C, Kurth MJ, Stathopoulou MG, Bourgeois S, Masson C, Kannt A, Cesarini L, Kontoe MS, Milanović M, Roig FJ, Beribaka M, Campolo J, Jiménez-Hernández N, Milošević N, Llorens C, Smyrnioudis I, Francino MP, Milić N, Kaliora AC, Trivella MG, Ruddock MW, Medić-Stojanoska M, Gastaldelli A, Lamont J, Deloukas P, Dedoussis GV, Visvikis-Siest S. Nutrigenetic Interactions Might Modulate the Antioxidant and Anti-Inflammatory Status in Mastiha-Supplemented Patients With NAFLD. Front Immunol 2021; 12:683028. [PMID: 34025683 PMCID: PMC8138178 DOI: 10.3389/fimmu.2021.683028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with no therapeutic consensus. Oxidation and inflammation are hallmarks in the progression of this complex disease, which also involves interactions between the genetic background and the environment. Mastiha is a natural nutritional supplement known to possess antioxidant and anti-inflammatory properties. This study investigated how a 6-month Mastiha supplementation (2.1 g/day) could impact the antioxidant and inflammatory status of patients with NAFLD, and whether genetic variants significantly mediate these effects. We recruited 98 patients with obesity (BMI ≥ 30 kg/m2) and NAFLD and randomly allocated them to either the Mastiha or the placebo group for 6 months. The anti-oxidative and inflammatory status was assessed at baseline and post-treatment. Genome-wide genetic data was also obtained from all participants, to investigate gene-by-Mastiha interactions. NAFLD patients with severe obesity (BMI > 35kg/m2) taking the Mastiha had significantly higher total antioxidant status (TAS) compared to the corresponding placebo group (P value=0.008). We did not observe any other significant change in the investigated biomarkers as a result of Mastiha supplementation alone. We identified several novel gene-by-Mastiha interaction associations with levels of cytokines and antioxidant biomarkers. Some of the identified genetic loci are implicated in the pathological pathways of NAFLD, including the lanosterol synthase gene (LSS) associated with glutathione peroxidase activity (Gpx) levels, the mitochondrial pyruvate carrier-1 gene (MPC1) and the sphingolipid transporter-1 gene (SPNS1) associated with hemoglobin levels, the transforming growth factor‐beta‐induced gene (TGFBI) and the micro-RNA 129-1 (MIR129-1) associated with IL-6 and the granzyme B gene (GZMB) associated with IL-10 levels. Within the MAST4HEALTH randomized clinical trial (NCT03135873, www.clinicaltrials.gov) Mastiha supplementation improved the TAS levels among NAFLD patients with severe obesity. We identified several novel genome-wide significant nutrigenetic interactions, influencing the antioxidant and inflammatory status in NAFLD.
Collapse
Affiliation(s)
- Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Satish Kumar
- EA_1122, IGE-PCV, Université de Loraine, Nancy, France
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Mary Jo Kurth
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | | | - Stephane Bourgeois
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Aimo Kannt
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Lucia Cesarini
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Maja Milanović
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Francisco J Roig
- Biotechvana, Parc Científic, Universitat de València, Valencia, Spain.,Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Mirjana Beribaka
- Department of Biology, Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Jonica Campolo
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Nuria Jiménez-Hernández
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | | | - Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Valencia, Spain
| | | | - M Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Nataša Milić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Maria Giovanna Trivella
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Mark W Ruddock
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | - Milica Medić-Stojanoska
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | | | - John Lamont
- Randox Laboratories Ltd (RANDOX), Crumlin, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, United Kingdom
| | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | | |
Collapse
|