1
|
Elhemiely AA, Darwish A. Pharmacological and biochemical insights into lead-induced hepatotoxicity: Pathway interplay and the protective effects of arbutin via the oral and intraperitoneal routes in silico and in vivo. Int Immunopharmacol 2024; 142:112968. [PMID: 39226827 DOI: 10.1016/j.intimp.2024.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lead acetate (PbAc), a hazardous heavy metal, poses significant threats to human health and the environment because of widespread industrial exposure. PbAc exposure leads to liver injury primarily through oxidative stress and the disruption of key regulatory pathways. Understanding these mechanisms and exploring protective agents are vital for mitigating PbAc-induced hepatotoxicity. Therefore, we aimed to investigate the molecular pathways implicated in PbAc-induced liver damage, focusing on Sirt-1, Nrf2 (HO-1, NQO1, and SOD), Akt-1/GSK3β, m-TOR, and P53. Additionally, we aimed to assess the hepatoprotective effects of arbutin, which is administered orally and intraperitoneally, to determine the most effective delivery method. METHODOLOGY In silico analyses were conducted to identify relevant protein networks associated with Sirt-1 and AKT-1/GSK-3B pathways. The pharmacodynamic properties of arbutin were examined, followed by molecular docking studies to elucidate its interactions with the selected protein network. In vivo preclinical studies were carried out on adult male rats randomly assigned to 6 different treatment groups, including PbAc exposure and PbAc exposure treated with arbutin either orally or intraperitoneally. RESULTS PbAc exposure led to hepatic oxidative stress, as evidenced by elevated MDA levels and SIRT-1 inhibition, disrupting antioxidant pathways and activating antiautophagic and proapoptotic pathways, ultimately resulting in hepatocyte necrosis. Both oral and intraperitoneal arbutin administration effectively modifed these effects, with intraperitoneal delivery showing superior efficacy in mitigating PbAc-induced histological, immunological, and biochemical alterations. CONCLUSION This study provides insights into the molecular mechanisms underlying PbAc-induced liver injury and highlights the hepatoprotective potential of arbutin. These findings suggest that arbutin, particularly when administered intraperitoneally, holds promise as a therapeutic agent for combating PbAc-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| |
Collapse
|
2
|
Nan N, Yang Y, Fu X, Xian S, Wu Q, Shi J, Zhou S. Dendrobium nobile Lindl. alkaloids protect CCl 4-induced acute liver injury via upregulating LAMP1 expression and activating autophagy flux. J Nat Med 2024:10.1007/s11418-024-01852-9. [PMID: 39546174 DOI: 10.1007/s11418-024-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA) are considered important active ingredients of Dendrobium, which have a variety of pharmacological functions. Recent studies indicate that DNLA has beneficial activity in acute liver injury. However, the specific mechanism by which DNLA produces liver protective effects is stills unclear. This study was designed to determine whether regulation of autophagy is involved in the mode of action of DNLA in liver protection. Using CCl4-induced acute liver injury (ALI) and cell culture models, the molecular mechanism of DNLA-mediated autophagy regulation was studied. The results showed that DNLA significantly improved CCl4-induced liver damage and oxidative stress, which was confirmed in AML-12 cells. DNLA promoted autophagy in cells treated with CCl4, manifested by reduced protein expressions of p62 and LC3-II. Fluorescence imaging showed a decrease in the number of autophagosomes in AML-12 cells transfected with mCherry-GFP-LC3B. In addition, DNLA inhibited lysosomal membrane permeabilization by upregulating lysosomal associated membrane protein-1 (LAMP1), thereby promoting autophagy, preventing CCl4-induced mitochondrial dysfunction, and reducing the production of mitochondrial reactive oxygen species (ROS). While pretreatment of cells with lysosomal inhibitor chloroquine weakened mitochondrial protection elicited by DNLA, overexpression of mitochondrial-targeted SOD2 in AML-12 cells significantly blocked CCl4 induced downregulation of LAMP1, thereby improving lysosome integrity and promoting lysosome dependent autophagy, suggesting that there may exist a bidirectional regulation between mitochondrial ROS and lysosome-autophagy activation. Collectively, these results demonstrated that DNLA can protect the liver injury mediated by dysregulation of lysosome-autophagy process through promoting ROS-lysosome-autophagy axis and improving mitochondrial damage.
Collapse
Affiliation(s)
- Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024; 96:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and production of fibroblast growth factor 21 (FGF21), a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Liu S, Chen L, Peng H, Zhang Q, Zeng Q, Cui B, Zhang M. Roles of mTOR-p70S6K signaling pathway and HO-1 in ethylbenzene-induced hepatoxic effects in L02 cells. Food Chem Toxicol 2024; 194:115086. [PMID: 39489395 DOI: 10.1016/j.fct.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Ethylbenzene (EB)-induced hepatotoxic effects has been indicated as oxidative damage and mitochondria-mediated apoptosis in vivo in our previous study, yet the mechanisms remain unclear. This study aimed to explore the role of the mTOR-p70S6K signaling pathway in EB-induced hepatoxic effects in vitro. Normal human hepatocytes (L02 cells) were exposed to different concentrations of ethylbenzene (0-10 mM) for 24 h. In vitro, we found that EB treatment decreased the viability of L02 cells, via inducing oxidative stress, mitochondrial impairments, excessive apoptosis and autophagy. These were accompanied by the inactivation of the mTOR-p70S6K signaling cascade, as manifested by the decreased levels of related molecules Atg family proteins and Heme oxygenase-1 (HO-1). These findings were further confirmed by mTOR inhibitor treatment and immunofluorescence analysis. Jointly, our results indicate that EB induces hepatoxic effects by triggering mitochondrial impairments and excess apoptosis and autophagy in L02 cells via suppressing the mTOR-p70S6K signaling, and oxidative stress affects the passive up-regulation of HO-1.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Occupational Health Comprehensive Management, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China; School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Linlin Chen
- Department of Occupational Health Comprehensive Management, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Qiang Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Zeng
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ming Zhang
- Department of Occupational Health Comprehensive Management, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
5
|
Wang T, Gao T, Fujisawa M, Ohara T, Sakaguchi M, Yoshimura T, Matsukawa A. SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes. Int J Mol Sci 2024; 25:6269. [PMID: 38892460 PMCID: PMC11172722 DOI: 10.3390/ijms25116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Wang C, Yang F, Zeng W, Chen X, Qiu Z, Wang Q, Meng Y, Zheng G, Hu J. Vine tea total flavonoids activate the AMPK/mTOR pathway to amelioration hepatic steatosis in mice fed a high-fat diet. J Food Sci 2024; 89:3019-3036. [PMID: 38517018 DOI: 10.1111/1750-3841.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Chuting Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, Hubei, People's Republic of China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Wei Zeng
- Respiratory, The First People's Hospital of Jingzhou, Jingzhou, Hubei, People's Republic of China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
- Hubei Shizhen Laboratory, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
7
|
Teng Q, Lv H, Peng L, Ren Z, Chen J, Ma L, Wei H, Wan C. Lactiplantibacillus plantarum ZDY2013 Inhibits the Development of Non-Alcoholic Fatty Liver Disease by Regulating the Intestinal Microbiota and Modulating the PI3K/Akt Pathway. Nutrients 2024; 16:958. [PMID: 38612992 PMCID: PMC11013082 DOI: 10.3390/nu16070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.
Collapse
Affiliation(s)
- Qiang Teng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Lingling Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Lixue Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
8
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Zhang J, Sun X, Chai X, Jiao Y, Sun J, Wang S, Yu H, Feng X. Curcumin Mitigates Oxidative Damage in Broiler Liver and Ileum Caused by Aflatoxin B1-Contaminated Feed through Nrf2 Signaling Pathway. Animals (Basel) 2024; 14:409. [PMID: 38338051 PMCID: PMC10854683 DOI: 10.3390/ani14030409] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This experiment aimed to investigate the mitigating effect of CUR on the growth performance and liver and intestinal health of broilers fed AFB1-contaminated diets. In this study, 320 one-day-old healthy male Arbor Acres (AA) broilers were randomly divided into four groups, including the Control group (fed the basal diet), the AFB1 group (fed the AFB1-contaminated diet containing 1 mg/kg AFB1), the AFB1+CUR group (fed the AFB1-contaminated diet with 500 mg/kg CUR), and the CUR group (fed the basal diet containing 500 mg/kg CUR), with eight replicates of ten animals per group and a 28 d experimental period. In terms of the growth performance, the addition of 500 mg/kg CUR significantly improved AFB1-induced significant reductions in the final body weight on day 28 and mean daily gain (p < 0.05) and increased the ratio of the mean daily feed intake to mean daily weight gain in broilers (p < 0.05). In terms of liver health, significant improvements in liver histological lesions occurred in broilers in the AFB1+CUR group compared to the AFB1 group, with significantly higher glutathione peroxidase (GSH-Px), catalase (CAT), and total superoxide dismutase (T-SOD) activities (p < 0.05) and significantly higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1) gene expression (p < 0.05). In terms of intestinal health, CUR addition significantly increased the relative length of ileum (p < 0.05), significantly elevated the height of ileal villi (p < 0.05), significantly reduced D-Lactate (D-LA) and diamine oxidase (DAO) activities in broiler serum (p < 0.05), significantly increased GSH, CAT, and T-SOD activities in ileal tissues (p < 0.05), and significantly elevated the expression of Nrf2, HO-1, and NQO-1 genes (p < 0.05) compared to the AFB1 group. In conclusion, CUR showed a protective effect against damage to the liver and intestine caused by AFB1 in broilers through the Nrf2 signaling pathway, thereby improving the growth performance of broilers exposed to AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (X.S.); (X.C.); (Y.J.); (J.S.); (S.W.); (H.Y.)
| |
Collapse
|
11
|
Boran T, Zengin OS, Seker Z, Gunaydin Akyildiz A, Oztas E, Özhan G. The cyclin-dependent kinase inhibitor abemaciclib-induced hepatotoxicity: Insight on the molecular mechanisms in HepG2/THP-1 co-culture model. Toxicol Lett 2024; 391:1-12. [PMID: 37992977 DOI: 10.1016/j.toxlet.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Drug-induced liver injury (DILI) is one of the widespread causes of liver injury and immune system plays important role. Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used as monotherapy or combination therapy in the treatment of breast cancer. Like other kinase inhibitors, the underlying mechanisms of ABE-induced hepatotoxicity are not completely known yet. In the current study, hepatotoxicity of ABE was evaluated with HepG2/THP-1 co-culture model which has been developed in recent years for the evaluation of DILI potential. Following ABE treatment, oxidative stress, mitochondrial damage, cytokine secretion levels, apoptotic/necrotic cell death were determined. According to our results, ROS production along with GSH depletion was observed in HepG2 cells after ABE treatment. ABE promoted secretion of pro-inflammatory mediators (TNF-α and MCP-1) and declined anti-inflammatory cytokine IL-10 release. Besides, NFKβ and JNK1 protein expression levels increased following ABE treatment. ABE enhanced intracellular calcium levels, induced early apoptotic and necrotic cell deaths in HepG2 cells. Furthermore, the changes in some mitochondrial parameters including a reducement in intracellular ATP levels and complex V activity; hyperpolarized mitochondrial membrane potential and enhanced mitochondrial ROS levels were observed, whereas mitochondrial mass did not show any differences after ABE treatments. Therefore, ABE-induced hepatotoxic effects is probably via oxidative stress, inflammatory response and necrotic cell death rather than direct mitochondrial toxicity. In conclusion; the study makes a significant contribution to strengthening the infrastructure we have on in vitro toxicity mechanism evaluations, which are the basis of preclinical toxicity studies.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34500 Istanbul, Turkey
| | - Ozge Sultan Zengin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Ezgi Oztas
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey.
| |
Collapse
|
12
|
El-Shafey ES, Elsherbiny ES. Therapeutic potential of a 2,2’-bipyridine-based vanadium(IV) complex on HepG2 cells: cytotoxic effects and molecular targeting. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 10:204-217. [DOI: 10.1080/2314808x.2023.2176969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | | |
Collapse
|
13
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
14
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Shu Y, He Y, Ye G, Liu X, Huang J, Zhang Q, Tian D, Wang T, Shu J. Curcumin inhibits the activity and induces apoptosis of activated hepatic stellate cell by suppressing autophagy. J Cell Biochem 2023; 124:1764-1778. [PMID: 37909649 DOI: 10.1002/jcb.30487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Curcumin, a kind of natural compound, has been previously proven to inhibit the autophagy in hepatic stellate cells (HSCs) and induce their apoptosis. However, it is not clear whether the enhanced apoptosis of activated HSCs (aHSCs) caused by curcumin depends on autophagy inhibition. We aim to verify this hypothesis and explore the potential mechanisms in this study. Immortalized human HSC line LX-2 was used as an experimental specimen and pretreated with transforming growth factor β1(TGF-β1) for 24 h to activate it before drug application. The levels of autophagy, apoptosis, cell activity, lipid metabolism, and the activity of the PI3K/Akt/mTOR signal pathway were evaluated by multiple methods, such as Western blotting, mcherry-EGFP-LC3B adenoviruses transfection, immunofluorescence, Nile Red staining, flow cytometry among others. Our results showed that rapamycin, an autophagy activator, could partly offset the effects of curcumin on autophagy and apoptosis of LX-2 cells, while 3-Methyladenine (3-MA), an autophagy inhibitor, could enhance these effects. Furthermore, curcumin could promote the activity of the PI3K/Akt/mTOR signal pathway in LX-2 cells, while PI3K inhibitor could partly offset this effect and increase the autophagy level. Overall, we demonstrated that curcumin could inhibit the activity and promote LX-2 cells apoptosis by suppressing autophagy by activating the PI3K/Akt/mTOR signal pathway. In addition, lipid recovery and energy deprivation due to autophagy inhibition may be the exact mechanism by which curcumin attenuates the pro-fibrotic activity of LX-2.
Collapse
Affiliation(s)
- Yongxiang Shu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yajun He
- Department of Clinical laboratory, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Guorong Ye
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xuyou Liu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jiahuang Huang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Qinghui Zhang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Da Tian
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tengyan Wang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jianchang Shu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3135-3148. [PMID: 37209153 DOI: 10.1007/s00210-023-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder that is associated with the accumulation of triglycerides (TG) in hepatocytes. Resveratrol (RSV), as a natural product, and metformin have been reported to have potential lipid-lowering effects for the treatment of NAFLD via autophagy, but the combined effects of both have not yet been studied. The current study aimed to investigate the role of autophagy in the lipid-lowering effects of RSV, alone and in combination with metformin, on the hepatic steatosis model of HepG2 cells and elucidate the mechanism of action. Triglyceride measurement and real-time PCR showed that RSV-metformin reduced lipid accumulation and the expression of lipogenic genes in palmitic acid (PA)-induced HepG2 cells. Additionally, the LDH release assay indicated that this combination protected HepG2 cells against PA-induced cell death through autophagy. The western blotting analysis revealed that RSV-metformin induced autophagy by reducing the expression of p62 and increasing LC3-I and LC3-II proteins. This combination also enhanced cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels in HepG2 cells. Furthermore, SIRT1 inhibitor treatment inhibited autophagy induced by RSV-metformin, which indicated the autophagy induction is SIRT1-dependent. This study demonstrated for the first time that RSV-metformin reduced hepatic steatosis by triggering autophagy via the cAMP/AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
18
|
Lehmann TP, Golik M, Olejnik J, Łukaszewska M, Markowska D, Drożdżyńska M, Kotecki A, Głowacki M, Jagodziński PP. Potential applications of using tissue-specific EVs in targeted therapy and vaccinology. Biomed Pharmacother 2023; 166:115308. [PMID: 37660644 DOI: 10.1016/j.biopha.2023.115308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Many cell types secrete spherical membrane bodies classified as extracellular vesicles (EVs). EVs participate in intercellular communication and are present in body fluids, including blood, lymph, and cerebrospinal fluid. The time of EVs survival in the body varies depending on the body's localisation. Once the EVs reach cells, they trigger a cellular response. Three main modes of direct interaction of EVs with a target cell were described: receptor-ligand interaction mode, a direct fusion of EVs with the cellular membrane and EVs internalisation. Studies focused on the medical application of EVs. Medical application of EVs may require modification of their surface and interior. EVs surface was modified by affecting the parental cells or by the direct amendment of isolated EVs. The interior modification involved introducing materials into the cells or direct administrating isolated EVs. EVs carry proteins, lipids, fragments of DNA, mRNA, microRNA (miRNA) and long non-coding RNA. Because of EVs availability in liquid biopsy, they are potential diagnostic markers. Modified EVs could enhance the treatment of diseases such as colorectal cancer, Parkinson's disease, leukaemia or liver fibrosis. EVs have specific tissue tropisms, which makes them convenient organ-directed carriers of nucleic acids, drugs and vaccines. In conclusion, recently published works have shown that EVs could become biomarkers and modern vehicles of advanced drug forms.
Collapse
Affiliation(s)
- Tomasz P Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Marta Golik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Jolanta Olejnik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Łukaszewska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Dominika Markowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Martyna Drożdżyńska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Aleksander Kotecki
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
19
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Hu Z, Xu W, Zhang J, Tang Y, Xing H, Xu P, Ma Y, Niu Q. TFE3-mediated impairment of lysosomal biogenesis and defective autophagy contribute to fluoride-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114674. [PMID: 36827899 DOI: 10.1016/j.ecoenv.2023.114674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Excessive fluoride exposure can cause liver injury, but the specific mechanisms need further investigation. We aimed to explore the role of impaired lysosomal biogenesis and defective autophagy in fluoride-induced hepatotoxicity and its potential mechanisms, focusing on the role of transcription factor E3 (TFE3) in regulating hepatocyte lysosomal biogenesis. To this end, we established a Sprague-Dawley (SD) rat model exposed to sodium fluoride (NaF) and a rat liver cell line (BRL3A) model exposed to NaF. The results showed that NaF exposure diminished liver function and led to apoptosis as well as autophagosome accumulation and impaired autophagic degradation. In addition, NaF exposure caused compromised lysosome biogenesis and decreased lysosomal degradation, and inhibited TFE3 nuclear translocation. Notably, the mTOR inhibitors rapamycin (RAPA) and Ad-TFE3 promoted lysosomal biogenesis and enhanced lysosomal degradation function. Furthermore, RAPA and Ad-TFE3 reduced NaF-induced apoptosis by alleviating impaired autophagic degradation. In conclusion, NaF impairs lysosomal biogenesis by inhibiting TFE3 nuclear translocation, decreasing lysosomal degradation function, resulting in impaired autophagic degradation, and ultimately inducing apoptosis. Therefore, TFE3 may be a promising therapeutic target for fluoride-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
21
|
López-Méndez TB, Sánchez-Álvarez M, Trionfetti F, Pedraz JL, Tripodi M, Cordani M, Strippoli R, González-Valdivieso J. Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective. Cell Biosci 2023; 13:44. [PMID: 36871010 PMCID: PMC9985235 DOI: 10.1186/s13578-023-00986-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
In recent years, progress in nanotechnology provided new tools to treat cancer more effectively. Advances in biomaterials tailored for drug delivery have the potential to overcome the limited selectivity and side effects frequently associated with traditional therapeutic agents. While autophagy is pivotal in determining cell fate and adaptation to different challenges, and despite the fact that it is frequently dysregulated in cancer, antitumor therapeutic strategies leveraging on or targeting this process are scarce. This is due to many reasons, including the very contextual effects of autophagy in cancer, low bioavailability and non-targeted delivery of existing autophagy modulatory compounds. Conjugating the versatile characteristics of nanoparticles with autophagy modulators may render these drugs safer and more effective for cancer treatment. Here, we review current standing questions on the biology of autophagy in tumor progression, and precursory studies and the state-of-the-art in harnessing nanomaterials science to enhance the specificity and therapeutic potential of autophagy modulators.
Collapse
Affiliation(s)
- Tania B López-Méndez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Miguel Sánchez-Álvarez
- Area of Cell and Developmental Biology. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain. .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.
| | - Juan González-Valdivieso
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA.
| |
Collapse
|
22
|
Bond LM, Ibrahim A, Lai ZW, Walzem RL, Bronson RT, Ilkayeva OR, Walther TC, Farese RV. Fitm2 is required for ER homeostasis and normal function of murine liver. J Biol Chem 2023; 299:103022. [PMID: 36805337 PMCID: PMC10027564 DOI: 10.1016/j.jbc.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident protein fat storage-inducing transmembrane protein 2 (FIT2) catalyzes acyl-CoA cleavage in vitro and is required for ER homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase in vivo and how this activity affects the liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice fed a chow diet exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. These mice also had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. We found that challenging FIT2-LKO mice with a high-fat diet worsened hepatic ER stress and liver injury but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase in vivo and is crucial for normal hepatocyte function and ER homeostasis in the murine liver.
Collapse
Affiliation(s)
- Laura M Bond
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayon Ibrahim
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zon W Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Harvard T.H. Chan Advanced Multi-omics Platform, Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rosemary L Walzem
- Department of Poultry Science and Graduate Faculty of Nutrition, Kleberg Animal & Food Science Center, Texas A&M University, College Station, Texas, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, Massachusetts, USA
| | - Olga R Ilkayeva
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Harvard T.H. Chan Advanced Multi-omics Platform, Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA; Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Boston, Massachusetts, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
23
|
Meng YX, Zhao R, Huo LJ. Interleukin-22 alleviates alcohol-associated hepatic fibrosis, inhibits autophagy, and suppresses the PI3K/AKT/mTOR pathway in mice. Alcohol Clin Exp Res 2023; 47:448-458. [PMID: 36799106 DOI: 10.1111/acer.15021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Alcohol-associated hepatic fibrosis is a widespread liver disease with no effective treatment. Recent studies have indicated that interleukin-22 (IL-22) can ameliorate alcohol-associated liver disease. However, the mechanism underlying the role of IL-22 in alcohol-associated hepatic fibrosis remains unclear. Therefore, we investigated the effect of IL-22 in a mouse model of alcohol-associated hepatic fibrosis and its underlying mechanisms. METHODS Alcohol-associated hepatic fibrosis was induced by feeding male C57BL/6J mice with a Lieber-DeCarli liquid diet containing 4% ethyl alcohol for 8 weeks and injecting them with 5% tetrachloromethane (CCl4 ) intraperitoneally for the last 4 weeks. During the last 4 weeks, IL-22 was also administered. We investigated the role of IL-22 in autophagy and the PI3K/AKT/mTOR signaling pathway using a 3-methyladenine intraperitoneal injection in the mice treated with IL-22. The effects of IL-22 on alcohol-associated hepatic fibrosis, autophagy-related gene expression, and PI3K/AKT/mTOR activity were assessed using histopathology, biochemical analysis, transmission electron microscopy, quantitative real-time PCR, immunohistochemistry, and western blotting. RESULTS Mice treated with ethanol and CCl4 displayed distinct liver injuries, including hepatocyte necrosis, inflammatory cell infiltration, and hepatic fibrosis, which were substantially attenuated by IL-22 treatment. In addition, we found that IL-22 regulated the expression of autophagy-related genes and inhibited the PI3K/AKT/mTOR pathway, as evidenced by the reduction in p-PI3K, p-AKT, and p-mTOR expression after IL-22 treatment. CONCLUSIONS IL-22 exerts a marked protective effect against alcohol-associated hepatic fibrosis. Its effect may be partly related to the alteration of autophagy-related gene expression and inhibition of the PI3K/AKT/mTOR pathway in the liver.
Collapse
Affiliation(s)
- Yu-Xi Meng
- Shanxi Medical University, Taiyuan, China.,Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Zhao
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-Juan Huo
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
24
|
Effect of Ethanol on Exosome Biogenesis: Possible Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:biom13020222. [PMID: 36830592 PMCID: PMC9953654 DOI: 10.3390/biom13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023] Open
Abstract
Most eukaryotic cells, including hepatocytes, secrete exosomes into the extracellular space, which are vesicles facilitating horizontal cell-to-cell communication of molecular signals and physiological cues. The molecular cues for cellular functions are carried by exosomes via specific mRNAs, microRNAs, and proteins. Exosomes released by liver cells are a vital part of biomolecular communication in liver diseases. Importantly, exosomes play a critical role in mediating alcohol-associated liver disease (ALD) and are potential biomarkers for ALD. Moreover, alcohol exposure itself promotes exosome biogenesis and release from the livers of humans and rodent models. However, the mechanisms by which alcohol promotes exosome biogenesis in hepatocytes are still unclear. Of note, alcohol exposure leads to liver injury by modulating various cellular processes, including autophagy, ER stress, oxidative stress, and epigenetics. Evidence suggests that there is a link between each of these processes with exosome biogenesis. The aim of this review article is to discuss the interplay between ethanol exposure and these altered cellular processes in promoting hepatocyte exosome biogenesis and release. Based on the available literature, we summarize and discuss the potential mechanisms by which ethanol induces exosome release from hepatocytes, which in turn leads to the progression of ALD.
Collapse
|
25
|
Cao L, Yin G, Du J, Jia R, Gao J, Shao N, Li Q, Zhu H, Zheng Y, Nie Z, Ding W, Xu G. Salvianolic Acid B Regulates Oxidative Stress, Autophagy and Apoptosis against Cyclophosphamide-Induced Hepatic Injury in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:ani13030341. [PMID: 36766230 PMCID: PMC9913662 DOI: 10.3390/ani13030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Salvianolic acid B (Sal B), as one of the main water-soluble components of Salvia miltiorrhizae, has significant pharmacological activities, including antioxidant, free radical elimination and biofilm protection actions. However, the protective effect of Sal B on Nile tilapia and the underlying mechanism are rarely reported. Therefore, the aim of this study was to evaluate the effects of Sal B on antioxidant stress, apoptosis and autophagy in Nile tilapia liver. In this experiment, Nile tilapia were fed diets containing sal B (0.25, 0.50 and 0.75 g·kg-1) for 60 days, and then the oxidative hepatic injury of the tilapia was induced via intrapleural injection of 50 g·kg-1 cyclophosphamide (CTX) three times. After the final exposure to CTX, the Nile tilapia were weighed and blood and liver samples were collected for the detection of growth and biochemical indicators, pathological observations and TUNEL detection, as well as the determination of mRNA expression levels. The results showed that after the CTX treatment, the liver was severely damaged, the antioxidant capacity of the Nile tilapia was significantly decreased and the hepatocyte autophagy and apoptosis levels were significantly increased. Meanwhile, dietary Sal B can not only significantly improve the growth performance of tilapia and effectively reduce CTX-induced liver morphological lesions, but can also alleviate CTX-induced hepatocyte autophagy and apoptosis. In addition, Sal B also significantly regulated the expression of genes related to antioxidative stress, autophagy and apoptosis pathways. This suggested that the hepatoprotective effect of Sal B may be achieved through various pathways, including scavenging free radicals and inhibiting hepatocyte apoptosis and autophagy.
Collapse
|
26
|
Liu L, Yang Y, Yang F, Lin Y, Liu K, Wang X, Zhang Y. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Hum Exp Toxicol 2023; 42:9603271221149011. [PMID: 36594174 DOI: 10.1177/09603271221149011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 μM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 μM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.
Collapse
Affiliation(s)
- L Liu
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - Y Yang
- School of Pharmacy, 12412Changzhou University, Changzhou, China.,Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - F Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Lin
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - K Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - X Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
27
|
Chowdhury O, Ghosh S, Das A, Liu H, Shang P, Stepicheva NA, Hose S, Sinha D, Chattopadhyay S. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin. Cell Signal 2023; 101:110521. [PMID: 36375715 DOI: 10.1016/j.cellsig.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The unending lifestyle stressors along with genetic predisposition, environmental factors and infections have pushed the immune system into a state of constant activity, leading to unresolved inflammation and increased vulnerability to chronic diseases. Liver fibrosis, an early-stage liver condition that increases the risk of developing liver diseases like cirrhosis and hepatocellular carcinoma, is among the various diseases linked to inflammation that dominate worldwide morbidity and mortality. We developed a mouse model with low-grade lipopolysaccharide (LPS) exposure that shows hepatic damage and a pro-inflammatory condition in the liver. We show that inflammation and oxidative changes increase autophagy in liver cells, a degradation process critical in maintaining cellular homeostasis. Our findings from in vivo and in vitro studies also show that induction of both inflammation and autophagy trigger epithelial-mesenchymal transition (EMT) and pro-fibrotic changes in hepatocytes. Inhibiting the inflammatory pathways with a naturally occurring NF-κB inhibitor and antioxidant, melatonin, could assuage the changes in autophagy and activation of EMT/fibrotic pathways in hepatocytes. Taken together, this study shows a pathway linking inflammation and autophagy which could be targeted for future drug development to delay the progression of liver fibrosis.
Collapse
Affiliation(s)
- Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
28
|
Nury C, Merg C, Eb-Levadoux Y, Bovard D, Porchet M, Maranzano F, Loncarevic I, Tavalaei S, Lize E, Demenescu RL, Yepiskoposyan H, Hoeng J, Ivanov NV, Renggli K, Titz B. Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods 2022:1-10. [PMID: 36482696 DOI: 10.1080/15376516.2022.2156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Matthieu Porchet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Fabio Maranzano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Isidora Loncarevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shahrzad Tavalaei
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Eleonore Lize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Hasmik Yepiskoposyan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Kasper Renggli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
29
|
4-Methylguaiacol alleviated alcoholic liver injury by increasing antioxidant capacity and enhancing autophagy through the Nrf2-Keap1 pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Wang P, Chen B, Zhan Y, Wang L, Luo J, Xu J, Zhan L, Li Z, Liu Y, Wei J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022; 14:2279. [PMID: 36365098 PMCID: PMC9695556 DOI: 10.3390/pharmaceutics14112279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Biaoqi Chen
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yunyan Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jia Xu
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
31
|
Guo Q, Chen G, Ou H, Jin R, Ni Q, Qin R. Binaprofen induces zebrafish liver injury via the mitochondrial pathway. Mol Med Rep 2022; 26:314. [PMID: 36004474 PMCID: PMC9437965 DOI: 10.3892/mmr.2022.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/29/2022] [Indexed: 11/06/2022] Open
Abstract
Binaprofen (C18H23NO5) is a drug not commercially available that causes liver injury; however, the underlying mechanism is unknown. The aim of the present study was to determine the mechanism underlying binaprofen‑induced liver injury at the genetic level. Zebrafish were treated with binaprofen. Serum biomarkers [alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH)], malondialdehyde (MDA) and glutathione (GSH) content analysis, liver cell morphology examination, DAPI staining, electron microscopy, microarray analysis and reverse transcription‑quantitative (RT‑q)PCR were performed 12, 24 and 48 h post‑treatment to analyze the mechanism underlying binaprofen‑induced liver injury. Following exposure to binaprofen, zebrafish serum levels of ALT, AST and LDH increased; MDA content of liver tissue increased and GSH content decreased. Liver cells exhibited mild to moderate vacuolization and mitochondria exhibited vacuolization and disrupted cristae. Liver cell apoptosis rate increased. There were 190 common differentially expressed genes at 12, 24 and 48 h. Gene Ontology analysis showed that the function of downregulated genes was primarily associated with 'DNA replication', 'DNA metabolic process', 'cell cycle', 'cell redox homeostasis', 'mitochondrion' and 'lipid transport'. The function of upregulated genes was primarily associated with 'peroxisome proliferator', 'oxidation activity', 'peroxisome' and 'apoptosis'. Pathway analysis showed that downregulated genes were those pertaining to 'cell cycle', 'DNA replication', 'ribosome', 'spliceosome', 'pyrimidine metabolism', 'purine metabolism', upregulated genes were those pertaining to 'PPAR signaling pathway', 'p53 signaling pathway'; RT‑qPCR assay supported the microarray results. The mechanism underlying binaprofen‑induced liver injury was associated with lipid peroxidation and apoptosis. Binaprofen downregulated genes associated with lipid transport and anti‑apoptosis genes, upregulated pro‑apoptosis genes and induces liver cell injury via the mitochondrial signaling pathway.
Collapse
Affiliation(s)
- Qiuping Guo
- Drug Non-Clinical Evaluation and Research Center, Guangzhou General Pharmaceutical Research Institute, Haizhu, Guangzhou 510240, P.R. China
| | - Guiying Chen
- Drug Non-Clinical Evaluation and Research Center, Guangzhou General Pharmaceutical Research Institute, Haizhu, Guangzhou 510240, P.R. China
| | - Huiyu Ou
- Drug Non-Clinical Evaluation and Research Center, Guangzhou General Pharmaceutical Research Institute, Haizhu, Guangzhou 510240, P.R. China
| | - Ruomin Jin
- Drug Safety Evaluation Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qingchun Ni
- Drug Non-Clinical Evaluation and Research Center, Guangzhou General Pharmaceutical Research Institute, Haizhu, Guangzhou 510240, P.R. China
| | - Renan Qin
- Drug Non-Clinical Evaluation and Research Center, Guangzhou General Pharmaceutical Research Institute, Haizhu, Guangzhou 510240, P.R. China
| |
Collapse
|
32
|
Yang L, Cheng X, Shi W, Li H, Zhang Q, Huang S, Huang X, Wen S, Gan J, Liao Z, Sun J, Liang J, Ouyang Y, He M. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation. Nutrients 2022; 14:nu14173600. [PMID: 36079859 PMCID: PMC9460126 DOI: 10.3390/nu14173600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice by using the CRISPR/Cas9 system. The animals were weighed, and histology, immunohistochemistry, electronic microscopy, and liver function tests were used to examine any change in the livers. Autophagy markers were detected by Western blotting. MicroRNA (miRNA) sequencing was performed on liver samples and analyses to study the signaling pathway altered by Vasn KO. Significant reductions in mice body and liver weight, accompanied by abnormal liver function, liver injury, and reduced glycogen accumulation in hepatocytes, were observed in the Vasn KO mice. The deficiency of Vasn also significantly increased the number of autophagosomes and the expression of LC3A/B-II/I but decreased SQSTM1/p62 levels in hepatocytes, suggesting aberrant activation of autophagy. Vasn deficiency inhibited glycogen-mediated mammalian target of rapamycin (mTOR) phosphorylation and activated Unc-51-like kinase 1 (ULK1) signaling, suggesting that Vasn deletion upregulates hepatocyte autophagy through the mTOR-ULK1 signaling pathway as a possible cause of diminished life span and health. Our results indicate that Vasn is required for the homeostasis of liver glycogen metabolism upstream of hepatocyte autophagy, suggesting research values for regulating Vasn in pathways related to liver physiology and functions. Overall, this study provides new insight into the role of Vasn in liver functionality.
Collapse
Affiliation(s)
- Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Wei Shi
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Ji Gan
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| |
Collapse
|
33
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
34
|
Cell Autophagy in NASH and NASH-Related Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147734. [PMID: 35887082 PMCID: PMC9322157 DOI: 10.3390/ijms23147734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.
Collapse
|
35
|
Naringenin affords protection against lipopolysaccharide/D-galactosamine-induced acute liver failure: Role of autophagy. Arch Biochem Biophys 2022; 717:109121. [DOI: 10.1016/j.abb.2022.109121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
|
36
|
Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol Appl Pharmacol 2022; 440:115931. [PMID: 35202709 DOI: 10.1016/j.taap.2022.115931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Protocatechuic acid (PCA), a natural phenolic acid, is known for antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic activities. However, the protective mechanisms of PCA on thioacetamide (TAA)-induced liver/brain injury are not well addressed. Chronic liver injury was induced in mice by intraperitoneal injection of TAA (200 mg/kg, 3 times/week) for 8 weeks. Simultaneously, PCA (100, 150 mg/kg/day, p.o.) was given daily from the 4th week. Protocatechuic acid ameliorated liver and brain damage indicated by the decrease in serum activities of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, levels of bilirubin, and ammonia concomitant with restoration of normal albumin levels. Additionally, PCA treatment ameliorated oxidative stress in liver and brain, confirmed by the decrease in malondialdehyde and nitric oxide levels and the increase in antioxidant activities. Moreover, PCA showed anti-inflammatory actions through downregulation of TNF-α expression in the liver and IL-6/IL-17/IL-23 levels in the brain, which is confirmed by the decrease in CD4+ T brain cell numbers. Most importantly, PCA treatment showed a significant decrease in mTOR level and number of LC3 positive cells in both liver and brain tissues. Consequently, PCA could inhibit mTOR-induced apoptosis, as it showed anti-apoptotic actions through downregulation of caspase-3 expression in liver and p53 expression in liver and brain. Furthermore, liver and brain tissues of treated mice showed restoration of normal histology. It can be concluded that, several mechanisms, including: antioxidant, anti-inflammatory, anti-autophagic and anti-apoptotic activities can be implicated in the hepato- and neuroprotective potentials of PCA.
Collapse
|
37
|
Stoica SI, Bleotu C, Ciobanu V, Ionescu AM, Albadi I, Onose G, Munteanu C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022; 10:481. [PMID: 35203690 PMCID: PMC8962344 DOI: 10.3390/biomedicines10020481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological-adaptive-or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the" Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA") filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/"syntaxes", with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia's mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest (PUB), 060042 Bucharest, Romania;
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
| | - Irina Albadi
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania;
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Department of Research, Romanian Association of Balneology, 022251 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
38
|
He Z, Chen S, Pan T, Li A, Wang K, Lin Z, Liu W, Wang Y, Wang Y. Ginsenoside Rg2 Ameliorating CDAHFD-Induced Hepatic Fibrosis by Regulating AKT/mTOR-Mediated Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1911-1922. [PMID: 35104139 DOI: 10.1021/acs.jafc.1c07578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ginsenoside Rg2 (G-Rg2) in the rhizome of Panax ginseng can modify lipid accumulation, oxidative stress, and apoptosis in the liver induced by a high-fat diet. This research adds to this by assessing the potential antifibrosis effect of G-Rg2 (including possible mechanisms). G-Rg2 significantly improved pathological changes in liver tissue induced by a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD), it inhibited serum transaminase, plasma lipopolysaccharide, and liver hydroxyproline levels; it inhibited TGF-β1, α-SMA, and COL1A1 expression, it activated the AKT/mTOR signal pathway, and it inhibited liver expression of autophagy-related proteins. The in vitro experiments showed that G-Rg2 also restored the autophagy flux impairment induced by oleic acid and inhibited TGF-β1 expression by promoting p62 degradation in hepatocytes. In hepatic stellate (HSC-T6) cells, G-Rg2 reversed lipopolysaccharide-induced activation through the AKT/mTOR signaling pathway, inhibiting autophagy. Thus, G-Rg2 ameliorates CDAHFD-induced liver fibrosis and lipopolysaccharide-induced HSC-T6 cell activation by inhibiting AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Ziwei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ao Li
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Liu
- College of Foreign Languages, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118,China
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administrition of Traditional Chinese Medicine, Changchun 130118, China
| |
Collapse
|
39
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
40
|
Pervin M, Karim MR, Kuramochi M, Izawa T, Kuwamura M, Yamate J. Possible Cytoprotection of Low Dose Lipopolysaccharide in Rat Thioacetamide-Induced Liver Lesions, Focusing on the Analyses of Hepatic Macrophages and Autophagy. Toxicol Pathol 2022; 50:353-365. [PMID: 35142238 DOI: 10.1177/01926233221076758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) may influence hepatic macrophages and autophagy. We evaluated the potential participation of macrophages and autophagosomes in thioacetamide (TAA)-induced rat liver injury under pretreatment of a low dose LPS (0.1 mg/kg BW, intraperitoneally; nonhepatotoxic dose). F344 rats were pretreated with LPS (LPS + TAA) or saline (TAA alone) at 24 hours before TAA injection (100 mg/kg BW, intraperitoneally); rats were examined on Days 0 (controls), 1, 2, and 3 after TAA injection. Data were compared between TAA alone and LPS + TAA rats. LPS pretreatment significantly reduced TAA-induced hepatic lesion (centrilobular necrosis with inflammation) on Days 1 and 2, being reflected by declined hepatic enzyme values and decreased number of apoptotic cells. LC3B-immunoreacting autophagosomes (as cytoplasmic fine granules) were significantly increased on Days 1 and 2 in hepatocytes of LPS + TAA rats. In LPS + TAA rats, hepatic macrophages reacting to CD68, CD163, and MHC class II mainly on Day 2 and mRNA levels of macrophage-related factors (MCP-1, IL-1β, and IL-4) on Day 1 were significantly decreased. Collectively, the low-dose LPS pretreatment might act as cytoprotection against TAA-induced hepatotoxicity through increased autophagosomes and decreased hepatic macrophages, although the dose/time-dependent cytoprotection of LPS should be further investigated at molecular levels.
Collapse
Affiliation(s)
- Munmun Pervin
- Osaka Prefecture University, Osaka, Japan.,Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rabiul Karim
- Osaka Prefecture University, Osaka, Japan.,Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | | | | |
Collapse
|
41
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
42
|
Phatruengdet T, Khuemjun P, Intakhad J, Krunchanuchat S, Chariyakornkul A, Wongpoomchai R, Pilapong C. Pharmacokinetic/Pharmacodynamic Determinations of Iron-tannic Molecular Nanoparticles with its Implication in MR Imaging and Enhancement of Liver Clearance. Nanotheranostics 2022; 6:195-204. [PMID: 34976594 PMCID: PMC8671955 DOI: 10.7150/ntno.63310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Assessment and enhancement of liver clearance are promising strategies for protection of liver from various liver diseases. Iron-tannic nanoparticles (FTs) were previously considered as imageable autophagic enhancers with biodegradation potential. Herein, we present a new approach for utilizing Iron-tannic nanoparticles (FTs) as a tool for imaging and increasing liver clearance. Pharmacokinetic profiling suggested that FTs were initially found in blood circulation and thereafter were distributed to the liver. By using MR imaging (T1 weighted), maximum MRI signal enhancement was found to occur after 30 minutes post-injection (i.v.) and gradually decreased afterward. Decreasing MRI signal may be due to FTs metabolism by the liver. By assessing imaging-derived pharmacokinetics, we can simply determine the rate constant of liver degradation of FTs. Potentially, we might use this parameter to monitor liver function, where its clearance is of concern. Once functional implication of FTs in liver clearance was investigated, FTs were found to induce hepatocyte autophagy along with activation of lysosomes. Consequently, the hepatocytes were capable of efficiently clearing cellular debris. From these results, it is clear that FTs should be considered as a molecular tool for quantitative MRI-derived liver function assessment, and for enhancing clearance function in liver parenchyma. Hopefully, our findings will pave the way to develop new strategies for non-invasive assessment and enhancement of liver clearance.
Collapse
Affiliation(s)
- Thipjutha Phatruengdet
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyachat Khuemjun
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jannarong Intakhad
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowalak Krunchanuchat
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
43
|
Byrnes K, Blessinger S, Bailey NT, Scaife R, Liu G, Khambu B. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B 2022; 12:33-49. [PMID: 35127371 PMCID: PMC8799888 DOI: 10.1016/j.apsb.2021.07.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ that governs body energy metabolism. Autophagy's role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.
Collapse
Key Words
- AIM, Atf8 interacting motif
- ATGL, adipose triglyceride lipase
- ATL3, Atlastin GTPase 3
- ATM, ATM serine/threonine kinase
- Autophagy
- BA, bile acid
- BCL2L13, BCL2 like 13
- BNIP3, BCL2 interacting protein 3
- BNIP3L, BCL2 interacting protein 3 like
- CAR, constitutive androstane receptor
- CCPG1, cell cycle progression 1
- CLN3, lysosomal/endosomal transmembrane protein
- CMA, chaperonin mediated autophagy
- CREB, cAMP response element binding protein
- CRY1, cryptochrome 1
- CYP27A1, sterol 27-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- Cryptochrome 1
- DFCP1, double FYVE-containing protein 1
- FAM134B, family with sequence similarity 134, member B
- FFA, free fatty acid
- FOXO1, Forkhead box O1
- FUNDC1, FUN14 domain containing 1
- FXR, farnesoid X receptor
- Farnesoid X receptor
- GABARAPL1, GABA type A receptor associated protein like 1
- GIM, GABARAP-interacting motif
- LAAT-1, lysosomal amino acid transporter 1 homologue
- LALP70, lysosomal apyrase-like protein of 70 kDa
- LAMP1, lysosomal-associated membrane protein-1
- LAMP2, lysosomal-associated membrane protein-2
- LD, lipid droplet
- LIMP1, lysosomal integral membrane protein-1
- LIMP3, lysosomal integral membrane protein-3
- LIR, LC3 interacting region
- LXRa, liver X receptor a
- LYAAT-1, lysosomal amino acid transporter 1
- Liver metabolism
- Lysosome
- MCOLN1, mucolipin 1
- MFSD1, major facilitator superfamily domain containing 1
- NAFLD, non-alcoholic fatty liver disease
- NBR1, BRCA1 gene 1 protein
- NCoR1, nuclear receptor co-repressor 1
- NDP52, calcium-binding and coiled-coil domain-containing protein 2
- NPC-1, Niemann-Pick disease, type C1
- Nutrient regeneration
- OPTN, optineurin
- PEX5, peroxisomal biogenesis factor 5
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- PINK1, phosphatase and tensin homolog (PTEN)-induced kinase 1
- PKA, protein kinase A
- PKB, protein kinase B
- PLIN2, perilipin 2
- PLIN3, perilipin 3
- PP2A, protein phosphatase 2a
- PPARα, peroxisomal proliferator-activated receptor-alpha
- PQLC2, PQ-loop protein
- PXR, pregnane X receptor
- Quality control
- RETREG1, reticulophagy regulator 1
- ROS, reactive oxygen species
- RTN3, reticulon 3
- RTNL3, a long isoform of RTN3
- S1PR2, sphingosine-1-phosphate receptor 2
- S6K, P70-S6 kinase
- S6RP, S6 ribosomal protein
- SCARB2, scavenger receptor class B member 2
- SEC62, SEC62 homolog, preprotein translocation factor
- SIRT1, sirtuin 1
- SLC36A1, solute carrier family 36 member 1
- SLC38A7, solute carrier family 38 member 7
- SLC38A9, sodium-coupled neutral amino acid transporter 9
- SNAT7, sodium-coupled neutral amino acid transporter 7
- SPIN, spindling
- SQSTM1, sequestosome 1
- STBD1, starch-binding domain-containing protein 1
- Signaling proteins
- TBK1, serine/threonine-protein kinase
- TEX264, testis expressed 264, ER-phagy receptor
- TFEB/TFE3, transcription factor EB
- TGR5, takeda G protein receptor 5
- TRAC-1, thyroid-hormone-and retinoic acid-receptor associated co-repressor 1
- TRPML1, transient receptor potential mucolipin 1
- ULK1, Unc-51 like autophagy activating kinase 1
- UPR, unfolded protein response
- V-ATPase, vacuolar-ATPase
- VDR, vitamin D3 receptor
- VLDL, very-low-density lipoprotein
- WIPI1, WD repeat domain phosphoinositide-interacting protein 1
- mTORC1, mammalian target of rapamycin complex 1
Collapse
|
44
|
Sun M, Liu Q, Liang Q, Gao S, Zhuang K, Zhang Y, Zhang H, Liu K, She G, Xia Q. Toosendanin triggered hepatotoxicity in zebrafish via inflammation, autophagy, and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109171. [PMID: 34454086 DOI: 10.1016/j.cbpc.2021.109171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Toosendanin (TSN) is a crucial component from Toosendan Fructus with a promising anti-tumor capacity. It is also the primary suspect hepatotoxic component of Toosendan Fructus. However, the mechanisms underlying TSN-induced liver injury are still largely unknown. In present study, we evaluated the hepatotoxicity of TSN on zebrafish and explored the role of inflammation, autophagy, and apoptosis in TSN-induced hepatotoxicity. We found that TSN treatment decreased the area and fluorescence intensity of zebrafish liver in time- and dose-dependent manners at nonlethal concentrations. The ALT and AST activities were increased after TSN treatment. Severe cytoplasmic vacuolation and nuclear shrank were found in the liver of TSN-treated zebrafish. The expression profile of genes demonstrated that inflammation, autophagy and apoptosis pathways were involved in TSN-induced hepatotoxicity. Our study demonstrated for the first time that TSN treatment gave rise to liver injury in zebrafish, and inflammation, autophagy, apoptosis played a role in TSN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Meng Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qing Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qiuxia Liang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuo Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; School of Pharmacy, Hebei University, Baoding 071002, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Huazheng Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China.
| |
Collapse
|
45
|
Feng S, Tong H, Gao JH, Tang SH, Yang WJ, Wang GM, Zhou HY, Wen SL. Anti-inflammation treatment for protection of hepatocytes and amelioration of hepatic fibrosis in rats. Exp Ther Med 2021; 22:1213. [PMID: 34584558 PMCID: PMC8422404 DOI: 10.3892/etm.2021.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation is considered as an important pathophysiologic mechanism of hepatic cirrhosis, which induces hepatocyte injury and activates hepatic stellate cells (HSCs), thus resulting in hepatic fibrosis. Previous studies have reported that cyclooxygenase-2 (COX-2) inhibitor can effectively treat liver fibrosis, while somatostatin (SST) analogues inhibit the activation of HSCs. The present study aimed to investigate the effects of a COX-2 inhibitor, celecoxib, combined with a SST analogue, octreotide, for protection of hepatocytes and prevention of fibrosis in a rat model of hepatic fibrosis. Therefore, a hepatic fibrosis rat model was established following peritoneal injection of thioacetamide (TAA), and the rats were then treated with a combination of celecoxib and octreotide (TAA + C). Immunohistochemistry and western blotting assays were used to assess the expression levels of proteins associated with inflammation, epithelial-mesenchymal transition (EMT), proliferation, apoptosis and autophagy. H&E staining, transmission electron microscopy and scanning electron microscopy were used to evaluate the destruction of hepatocytes. Masson's Trichrome and Sirius Red were used to measure the degree of liver fibrosis. The results demonstrated that, compared with those of the control group, the degree of liver fibrosis and the expression of the intrahepatic inflammation factors were aggravated in the TAA group. Furthermore, the apoptosis rate, EMT and autophagy of hepatocytes were also increased in the TAA group. However, treatment with TAA + C restored the aforementioned increased levels compared with the TAA group. In conclusion, treatment of rats with the combination of celecoxib and octreotide could attenuate the progress of hepatic fibrosis via protection of hepatocytes by reducing apoptosis, EMT and autophagy in hepatocytes.
Collapse
Affiliation(s)
- Shi Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Huan Tong
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Hang Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Juan Yang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Gui-Ming Wang
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
46
|
Fan Y, Lu J, Liu J, Zhang R, Yu Z, Guan S. 1,3-dichloro-2-propanol induced hepatic lipid accumulation by inhibiting autophagy via AKT/mTOR/FOXO1 pathway in mice. Food Chem Toxicol 2021; 157:112578. [PMID: 34560177 DOI: 10.1016/j.fct.2021.112578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Our study investigated the effects of food contaminant 1,3-dichloro-2-propanol (1,3-DCP) on hepatic lipid metabolism and its mechanism. We found that triglyceride (TG), total cholesterol (TC) and the number of lipid droplets (LDs) were increased in the liver of C57BL/6 mice given intragastric administration of 1,3-DCP for 30 days. Meanwhile, 1,3-DCP inhibited autophagosomes and lysosomes formation, reflected by decreased LC3-II, LAMP1, LAMP2, CTSD, CTSB expression, increased p62 expression and decreased LC3 fluorescence. Subsequently, we detected the changes of hepatic lipid accumulation caused by 1,3-DCP using an autophagy inducer or inhibitor. In vivo, Hepatic lipid accumulation caused by 1,3-DCP was mitigated by the autophagy inducer Rapa. On the contrary, the autophagy inhibitor (chloroquine or 3-methyladenine) further exacerbated hepatic lipid accumulation caused by 1,3-DCP. 1,3-DCP reduced the number of autophagosomes encapsulated LDs, assessed by colocalization of LD and LC3. These data demonstrated that 1,3-DCP induced lipid accumulation by inhibiting autophagy. We further investigated the mechanism of 1,3-DCP-inhibited autophagy and found 1,3-DCP increased the ratios of p-AKT/AKT, p-mTOR/mTOR, p-FOXO1/FOXO1, decreased FOXO1 nuclear localization in vivo. These proteins may be involved in the regulation of 1,3-DCP-mediated autophagy. We detected the changes in autophagy marker protein LC3-II and lipid accumulation using an AKT inhibitor ARQ-092 or a mTOR inhibitor rapamycin in HepG2 cells. Compared with 1,3-DCP group, lipid accumulation was decreased, LC3-II and FOXO1 nuclear localization were increased, p-FOXO1 levels were decreased in HepG2 cells pretreated with ARQ-092 or rapamycin. Taken together, these data revealed that the effects of 1,3-DCP on lipid accumulation by inhibiting autophagy were dependent on AKT/mTOR/FOXO1 signaling pathway. Our study not only supplied the mechanism of 1,3-DCP toxicity, but also provided experimental basis for effective intervention measures of 1,3-DCP toxicity.
Collapse
Affiliation(s)
- Yong Fan
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jinhua Liu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zelin Yu
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engneering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
47
|
Cheng R, Xu H, Hong Y. miR221 regulates TGF-β1-induced HSC activation through inhibiting autophagy by directly targeting LAMP2. Mol Med Rep 2021; 24:777. [PMID: 34498712 PMCID: PMC8436230 DOI: 10.3892/mmr.2021.12417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is a serious threat to human life and health. Activated hepatic stellate cells (HSCs) play a key role in the occurrence and development of liver fibrosis. Studies have reported that microRNAs (miRNAs/miRs) are involved in the pathological process of fibrosis, as well as its relevance in clinical diagnosis. However, the role of miR221 in hepatic fibrosis remains controversial. Remarkably, transforming growth factor‑β (TGF‑β1) caused HSC dysfunction in autophagic activation, characterized by an increase in P62 aggregation and LC3II expression. The present study aimed to determine whether autophagy regulates hepatic fibrosis by mediating HSC activation and explore the potential targets leading to the sequence of events associated with miR221. The expression of miR221 was quantified in a liver fibrosis model in vivo and in vitro, and its specific target gene lysosome‑associated membrane glycoprotein 2 (LAMP2) was predicted by bioinformatics. The results showed that the expression levels of collagen‑I (COL‑I) and α‑smooth muscle actin (α‑SMA) were increased in miR221‑overexpressing LX2 cells, while the autophagy inducer rapamycin reversed the inhibition of autophagic flux induced by miR221. Additionally, the overexpression of LAMP2 could significantly inhibit TGF‑β1‑induced COL‑I and α‑SMA expression, which was similar to the effect of the miR221 inhibitor on the regulation of TGF‑β1‑induced HSC activation. These results indicated that miR221 may regulate TGF‑β1‑induced HSC activation through inhibiting autolysosome function by directly targeting LAMP2. The molecular mechanism of miR221 in regulating TGF‑β1‑induced HSC activation may provide novel insight into therapies to ameliorate the pathological progression of liver fibrosis.
Collapse
Affiliation(s)
- Ran Cheng
- The First Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hao Xu
- Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Hong
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
48
|
Sekiguchi K, Miyahara H, Inoue M, Kiyota K, Sakai K, Hanada T, Ihara K. Metabolome Characteristics of Liver Autophagy Deficiency under Starvation Conditions in Infancy. Nutrients 2021; 13:nu13093026. [PMID: 34578904 PMCID: PMC8470362 DOI: 10.3390/nu13093026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The liver function is essential for metabolism, detoxification, and bile synthesis, even in the neonatal period. Autophagy plays significance roles in THE adult liver, whereas the role of liver autophagy in the early neonatal period largely remains unclear. To clarify the importance of liver autophagy in the neonatal starvation period, we generated liver-specific autophagy-deficient (Atg5flox/flox; Albumin-Cre) mice and investigated under starvation conditions comparing with control (Atg5flox/+; Albumin-Cre) mice, focusing on serum metabolites and liver histopathology. As a result, autophagy in the liver was found to unessential for the survival under postnatal starvation. A metabolomics analysis of serum metabolites by gas chromatography-tandem mass spectrometry showed a significant difference between the groups, especially after 12-h starvation, suggesting the synergistical adaption of metabolic pathways, such as the “malate-aspartate shuttle”, “aspartate metabolism”, “urea cycle”, and “glycine and serine metabolism”. Liver-specific autophagy-deficiency under postnatal starvation conditions can cause a characteristic metabolic alteration suggesting a change of the mitochondrial function. Neonates seemed to maintain ketone production under starvation conditions, even in the autophagy-deficient liver, through a change in the mitochondrial function, which may be an adaptive mechanism for avoiding fatal starvation.
Collapse
Affiliation(s)
- Kazuhito Sekiguchi
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan; (K.S.); (M.I.); (K.K.)
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi 480-1195, Japan;
| | - Masanori Inoue
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan; (K.S.); (M.I.); (K.K.)
| | - Kyoko Kiyota
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan; (K.S.); (M.I.); (K.K.)
| | - Kumiko Sakai
- Institute for Research Promotion, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan;
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan;
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan; (K.S.); (M.I.); (K.K.)
- Correspondence: ; Tel.: +81-97-586-5833
| |
Collapse
|
49
|
Sánchez-Monteagudo A, Ripollés E, Berenguer M, Espinós C. Wilson's Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021; 9:1100. [PMID: 34572285 PMCID: PMC8471362 DOI: 10.3390/biomedicines9091100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson disease (WD) is a rare disorder caused by mutations in ATP7B, which leads to the defective biliary excretion of copper. The subsequent gradual accumulation of copper in different organs produces an extremely variable clinical picture, which comprises hepatic, neurological psychiatric, ophthalmological, and other disturbances. WD has a specific treatment, so that early diagnosis is crucial to avoid disease progression and its devastating consequences. The clinical diagnosis is based on the Leipzig score, which considers clinical, histological, biochemical, and genetic data. However, even patients with an initial WD diagnosis based on a high Leipzig score may harbor other conditions that mimic the WD's phenotype (Wilson-like). Many patients are diagnosed using current available methods, but others remain in an uncertain area because of bordering ceruloplasmin levels, inconclusive genetic findings and unclear phenotypes. Currently, the available biomarkers for WD are ceruloplasmin and copper in the liver or in 24 h urine, but they are not solid enough. Therefore, the characterization of biomarkers that allow us to anticipate the evolution of the disease and the monitoring of new drugs is essential to improve its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Edna Ripollés
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Marina Berenguer
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| |
Collapse
|
50
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|