1
|
Gulzar F, Yang H, Chen J, Hassan B, Huang X, Qiong F. 6-BA Reduced Yield Loss under Waterlogging Stress by Regulating the Phenylpropanoid Pathway in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:1991. [PMID: 39065518 PMCID: PMC11281113 DOI: 10.3390/plants13141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Waterlogging stress causes substantial destruction to plant growth and production under climatic fluctuations globally. Plants hormones have been widely explored in numerous crops, displaying an imperative role in crop defense and growth mechanism. However, there is a paucity of research on the subject of plant hormones regulating waterlogging stress responses in wheat crop. In this study, we clarified the role of 6-BA in waterlogging stress through inducing phenylpropanoid biosynthesis in wheat. The application of 6-BA (6-benzyladenine) enhanced the growth and development of wheat plants under waterlogging stress, which was accompanied by reduced electrolyte leakage, high chlorophyll, and soluble sugar content. ROS scavenging was also enhanced by 6-BA, resulting in reduced MDA and H2O2 accumulation and amplified antioxidant enzyme activities. Additionally, under the effect of 6-BA, the acceleration of lignin content and accumulation in the cell walls of wheat tissues, along with the activation of PAL (phenylalanine ammonia lyase), TAL (tyrosine ammonia lyase), and 4CL (4-hydroxycinnamate CoA ligase) activities and the increase in the level of transcription of the TaPAL and Ta4CL genes, were observed under waterlogging stress. Also, 6-BA improved the root growth system under waterlogging stress conditions. Further qPCR analysis revealed increased auxin signaling (TaPR1) in 6-BA-treated plants under waterlogging stress that was consistent with the induction of endogenous IAA hormone content under waterlogging stress conditions. Here, 6-BA also reduced yield loss, as compared to control plants. Thus, the obtained data suggested that, under the application of 6-BA, phenylpropanoid metabolism (i.e., lignin) was stimulated, playing a significant role in reducing the negative effects of waterlogging stress on yield, as evinced by the improved plant growth parameters.
Collapse
Affiliation(s)
- Faiza Gulzar
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Jiabo Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Beenish Hassan
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fangao Qiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
- Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
2
|
Lubyanova A, Allagulova C. Exogenous Sodium Nitroprusside Affects the Redox System of Wheat Roots Differentially Regulating the Activity of Antioxidant Enzymes under Short-Time Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1895. [PMID: 39065422 PMCID: PMC11280031 DOI: 10.3390/plants13141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule involved in the regulation of plant ontogenesis and adaptation to different adverse environmental factors, in particular to osmotic stress. Understanding NO-induced plant protection is important for the improvement of plant stress tolerance and crop productivity under global climate changes. The root system is crucial for plant survival in a changeable environment. Damages that it experiences under water deficit conditions during the initial developmental periods seriously affect the viability of the plants. This work was devoted to the comparative analysis of the pretreatment of wheat seedlings through the root system with NO donor sodium nitroprusside (SNP) for 24 h on various parameters of redox homeostasis under exposure to osmotic stress (PEG 6000, 12%) over 0.5-24 h. The active and exhausted solutions of SNP, termed as (SNP/+NO) and (SNP/-NO), respectively, were used in this work at a concentration of 2 × 10-4 M. Using biochemistry and light microscopy methods, it has been revealed that osmotic stress caused oxidative damages and the disruption of membrane cell structures in wheat roots. PEG exposure increased the production of superoxide (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and the levels of electrolyte leakage (EL) and lipid peroxidation (LPO). Stress treatment enhanced the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), the excretion of proline, and the rate of cell death and inhibited their division. Pretreatment with (SNP/+NO) decreased PEG-induced root damages by differently regulating the antioxidant enzymes under stress conditions. Thus, (SNP/+NO) pretreatment led to SOD, APX, and CAT inhibition during the first 4 h of stress and stimulated their activity after 24 h of PEG exposure when compared to SNP-untreated or (SNP/-NO)-pretreated and stress-subjected plants. Osmotic stress triggered the intense excretion of proline by roots into the external medium. Pretreatment with (SNP/+NO) in contrast with (SNP/-NO) additionally increased stress-induced proline excretion. Our results indicate that NO is able to mitigate the destructive effects of osmotic stress on the roots of wheat seedlings. However, the mechanisms of NO protective action may be different at certain periods of stress exposure.
Collapse
Affiliation(s)
- Alsu Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospect Oktyabrya 71, lit.1e, 450054 Ufa, Russia;
| | | |
Collapse
|
3
|
Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lv C, Zhu J, Chen ZH, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC PLANT BIOLOGY 2024; 24:385. [PMID: 38724918 PMCID: PMC11080113 DOI: 10.1186/s12870-024-05091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhenxiang Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Liu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Liang Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Xu Q, Wu M, Zhang L, Chen X, Zhou M, Jiang B, Jia Y, Yong X, Tang S, Mou L, Jia Z, Shabala S, Pan Y. Unraveling Key Factors for Hypoxia Tolerance in Contrasting Varieties of Cotton Rose by Comparative Morpho-physiological and Transcriptome Analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14317. [PMID: 38686568 DOI: 10.1111/ppl.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Chen
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mei Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | | | - Lisha Mou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhishi Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Kordyum E, Akimov Y, Polishchuk O, Panas I, Stepanov S, Kozeko L. Psammophytes Alyssum desertorum Stapf and Secale sylvestre Host Are Sensitive to Soil Flooding. PLANTS (BASEL, SWITZERLAND) 2024; 13:413. [PMID: 38337946 PMCID: PMC10857069 DOI: 10.3390/plants13030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes-sand plants-to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron microscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency was observed in both studied plants, as indicated by decreased values of φR0 and PIABS,total. More noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive ethylene emission in A. desertorum, indicate species-specific differences in these traits in response to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to prolonged hypoxia causes plant death.
Collapse
Affiliation(s)
- Elizabeth Kordyum
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkivska Str., 01024 Kyiv, Ukraine (O.P.); (S.S.); (L.K.)
| | - Yuri Akimov
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkivska Str., 01024 Kyiv, Ukraine (O.P.); (S.S.); (L.K.)
| | - Oleksandr Polishchuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkivska Str., 01024 Kyiv, Ukraine (O.P.); (S.S.); (L.K.)
| | - Ihor Panas
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine;
| | - Sergiy Stepanov
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkivska Str., 01024 Kyiv, Ukraine (O.P.); (S.S.); (L.K.)
| | - Liudmyla Kozeko
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkivska Str., 01024 Kyiv, Ukraine (O.P.); (S.S.); (L.K.)
| |
Collapse
|
6
|
Martins TS, Da-Silva CJ, Shabala S, Striker GG, Carvalho IR, de Oliveira ACB, do Amarante L. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance. PLANTA 2023; 259:24. [PMID: 38108902 DOI: 10.1007/s00425-023-04275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies.
Collapse
Affiliation(s)
- Tamires S Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Cristiane J Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Department of Horticultural Science, NC State University, Raleigh, USA.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Perth, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Ivan R Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| |
Collapse
|
7
|
O'Lone CE, Juhász A, Nye-Wood M, Dunn H, Moody D, Ral JP, Colgrave ML. Proteomic exploration reveals a metabolic rerouting due to low oxygen during controlled germination of malting barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1305381. [PMID: 38186599 PMCID: PMC10771735 DOI: 10.3389/fpls.2023.1305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Barley (Hordeum vulgare L.) is used in malt production for brewing applications. Barley malting involves a process of controlled germination that modifies the grain by activating enzymes to solubilize starch and proteins for brewing. Initially, the grain is submerged in water to raise grain moisture, requiring large volumes of water. Achieving grain modification at reduced moisture levels can contribute to the sustainability of malting practices. This study combined proteomics, bioinformatics, and biochemical phenotypic analysis of two malting barley genotypes with observed differences in water uptake and modification efficiency. We sought to reveal the molecular mechanisms at play during controlled germination and explore the roles of protein groups at 24 h intervals across the first 72 h. Overall, 3,485 protein groups were identified with 793 significant differentially abundant (DAP) within and between genotypes, involved in various biological processes, including protein synthesis, carbohydrate metabolism, and hydrolysis. Functional integration into metabolic pathways, such as glycolysis, pyruvate, starch and sucrose metabolism, revealed a metabolic rerouting due to low oxygen enforced by submergence during controlled germination. This SWATH-MS study provides a comprehensive proteome reference, delivering new insights into the molecular mechanisms underlying the impacts of low oxygen during controlled germination. It is concluded that continued efficient modification of malting barley subjected to submergence is largely due to the capacity to reroute energy to maintain vital processes, particularly protein synthesis.
Collapse
Affiliation(s)
- Clare E. O'Lone
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Mitchell Nye-Wood
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Hugh Dunn
- Pilot Malting Australia, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - David Moody
- Barley Breeding, InterGrain Pty Ltd, Bibra Lake, WA, Australia
| | - Jean-Philippe Ral
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Michelle L. Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Li B, Hua W, Zhang S, Xu L, Yang C, Zhu Z, Guo Y, Zhou M, Jiao C, Xu Y. Physiological, Epigenetic, and Transcriptome Analyses Provide Insights into the Responses of Wheat Seedling Leaves to Different Water Depths under Flooding Conditions. Int J Mol Sci 2023; 24:16785. [PMID: 38069108 PMCID: PMC10706670 DOI: 10.3390/ijms242316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Flooding stress, including waterlogging and submergence, is one of the major abiotic stresses that seriously affects the growth and development of plants. In the present study, physiological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results demonstrate that FS increased the leaves' hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD) activities more than HS and WL. However, there were no significant differences in the contents of H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of 9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments, respectively, among which the 'photosynthesis', 'phenylpropanoid biosynthesis', and 'plant hormone signal transduction' pathways were extensively enriched under the three flooding treatments. The genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-type-specific responses were observed in the three conditions, including the enrichment of specific TFs and response pathways. These results will contribute to a better understanding of the molecular mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7250, Australia
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| |
Collapse
|
9
|
Zhang X, Huang C, Meng Y, Liu X, Gao Y, Liu Z, Ma S. Physiological Mechanism of Waterlogging Stress on Yield of Waxy Maize at the Jointing Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:3034. [PMID: 37687280 PMCID: PMC10489971 DOI: 10.3390/plants12173034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
In the main agricultural area for waxy maize production in China, waterlogging occurs frequently during the waxy maize jointing stage, and this causes significant yield reduction. It is very important to understand the physiological mechanism of waterlogging stress in waxy maize during the jointing stage to develop strategies against waterlogging stress. Therefore, this study set waterlogging treatments in the field for 0, 2, 4, 6, 8, and 10 days during the waxy maize jointing stage, and were labelled CK, WS2, WS4, WS6, WS8 and WS10, respectively. By analyzing the effect of waterlogging on the source, sink, and transport of photoassimilates, the physiological mechanism of waterlogging stress in the jointing stage was clarified. The results show that PEPC and POD activities and Pro content decreased significantly under WS2 compared to CK. Except for these three indicators, the Pn, GS, leaf area, kernel number, yield, and puncture strength of stems were significantly decreased under the WS4. Under the WS6, the content of MDA began to increase significantly, while almost all other physiological indices decreased significantly. Moreover, the structure of stem epidermal cells and the vascular bundle were deformed after 6 days of waterlogging. Therefore, the threshold value of waterlogging stress occured at 4 to 6 days in the jointing stage of waxy maize. Moreover, waterlogging stress at the jointing stage mainly reduces the yield by reducing the number of kernels; specifically, the kernel number decreased by 6.7-15.5% in 4-10 days of waterlogging, resulting in a decrease of 9.9-20.2% in the final yield. Thus, we have shown that waterlogging stress at the jointing stage results in the decrease of potential waxy maize kernel numbers and yield when the synthesis of sources was limited and the transport of photoassimilates was restricted.
Collapse
Affiliation(s)
- Xuepeng Zhang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Huang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Field Observation and Research Station of Efficient Water Use for Agriculture, Xinxiang 453002, China
| | - Ye Meng
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- School of Faculty Engineering, University of Putra Malaysia, Selonga 43400, Malaysia
| | - Xuchen Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Field Observation and Research Station of Efficient Water Use for Agriculture, Xinxiang 453002, China
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Field Observation and Research Station of Efficient Water Use for Agriculture, Xinxiang 453002, China
| | - Zhandong Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Field Observation and Research Station of Efficient Water Use for Agriculture, Xinxiang 453002, China
| | - Shoutian Ma
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453002, China; (X.Z.); (C.H.); (Y.M.); (X.L.); (Y.G.)
- Field Observation and Research Station of Efficient Water Use for Agriculture, Xinxiang 453002, China
| |
Collapse
|
10
|
Miricescu A, Brazel AJ, Beegan J, Wellmer F, Graciet E. Transcriptional analysis in multiple barley varieties identifies signatures of waterlogging response. PLANT DIRECT 2023; 7:e518. [PMID: 37577136 PMCID: PMC10422865 DOI: 10.1002/pld3.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Waterlogging leads to major crop losses globally, particularly for waterlogging-sensitive crops such as barley. Waterlogging reduces oxygen availability and results in additional stresses, leading to the activation of hypoxia and stress response pathways that promote plant survival. Although certain barley varieties have been shown to be more tolerant to waterlogging than others and some tolerance-related quantitative trait loci have been identified, the molecular mechanisms underlying this trait are mostly unknown. Transcriptomics approaches can provide very valuable information for our understanding of waterlogging tolerance. Here, we surveyed 21 barley varieties for the differential transcriptional activation of conserved hypoxia-response genes under waterlogging and selected five varieties with different levels of induction of core hypoxia-response genes. We further characterized their phenotypic response to waterlogging in terms of shoot and root traits. RNA sequencing to evaluate the genome-wide transcriptional responses to waterlogging of these selected varieties led to the identification of a set of 98 waterlogging-response genes common to the different datasets. Many of these genes are orthologs of the so-called "core hypoxia response genes," thus highlighting the conservation of plant responses to waterlogging. Hierarchical clustering analysis also identified groups of genes with intrinsic differential expression between varieties prior to waterlogging stress. These genes could constitute interesting candidates to study "predisposition" to waterlogging tolerance or sensitivity in barley.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of BiologyMaynooth UniversityMaynoothIreland
- Pesticide Registration DivisionDepartment of Agriculture, Food and the Marine, Backweston CampusCelbridgeIreland
| | | | - Joseph Beegan
- Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Frank Wellmer
- Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Emmanuelle Graciet
- Department of BiologyMaynooth UniversityMaynoothIreland
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynoothIreland
| |
Collapse
|
11
|
Zhu J, Zhou H, Fan Y, Guo Y, Zhang M, Shabala S, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:9. [PMID: 36656369 PMCID: PMC9852152 DOI: 10.1007/s00122-023-04267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Yu Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Luan H, Chen C, Yang J, Qiao H, Li H, Li S, Zheng J, Shen H, Xu X, Wang J. Genome-wide association scan and transcriptome analysis reveal candidate genes for waterlogging tolerance in cultivated barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1048939. [PMID: 36589094 PMCID: PMC9798782 DOI: 10.3389/fpls.2022.1048939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging is the primary abiotic factor that destabilizes the yield and quality of barley (Hordeum vulgare L.). However, the genetic basis of waterlogging tolerance remains poorly understood. In this study, we conducted a genome-wide association study (GWAS) by involving 106,131 single-nucleotide polymorphisms (SNPs) with a waterlogging score (WLS) of 250 barley accessions in two years. Out of 72 SNPs that were found to be associated with WLS, 34 were detected in at least two environments. We further performed the transcriptome analysis in root samples from TX9425 (waterlogging tolerant) and Franklin (waterlogging sensitive), resulting in the identification of 5,693 and 8,462 differentially expressed genes (DEGs) in these genotypes, respectively. The identified DEGs included various transcription factor (TF) genes, primarily including AP2/ERF, bZIP and MYB. By combining GWAS and RNA-seq, we identified 27 candidate genes associated with waterlogging, of which three TFs (HvDnaJ, HvMADS and HvERF1) were detected in multiple treatments. Moreover, by overexpressing barley HvERF1 in Arabidopsis, the transgenic lines were detected with enhanced waterlogging tolerance. Altogether, our results provide new insights into the genetic mechanisms of waterlogging, which have implications in the molecular breeding of waterlogging-tolerant barley varieties.
Collapse
Affiliation(s)
- Haiye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Changyu Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Hailong Qiao
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Hongtao Li
- Lianyungang academy of agricultural sciences, Lianyungang, China
| | - Shufeng Li
- Lianyungang academy of agricultural sciences, Lianyungang, China
| | - Junyi Zheng
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Xiao Xu
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Jun Wang
- Lianyungang academy of agricultural sciences, Lianyungang, China
| |
Collapse
|
13
|
Singh V, Mandhania S, Pal A, Kaur T, Banakar P, Sankaranarayanan K, Arya SS, Malik K, Datten R. Morpho-physiological and biochemical responses of cotton ( Gossypium hirsutum L.) genotypes upon sucking insect-pest infestations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2023-2039. [PMID: 36573153 PMCID: PMC9789232 DOI: 10.1007/s12298-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The effects of sucking insect-pests on the morpho-physiological and biochemical changes in the leaves of four cotton genotypes-Bio 100 BG-II and GCH-3 (highly tolerant); KDCHH-9810 BG-II and HS-6 (highly susceptible)-were examined. Compared to tolerant genotypes, susceptible genotypes showed a decrease in relative water content, specific leaf weight, leaf area, photosynthetic rate, and total chlorophyll content, with an increase in electrolyte leakage. Hydrogen peroxide and total soluble sugar content were higher in susceptible plants. In contrast, resistant plants had higher levels of total soluble protein, total phenolic content, gossypol content, tannin content, peroxidase activity, and polyphenol oxidase. The findings demonstrated that the Bio 100 BG-II and GCH-3 genotypes effectively offset the impact of sucking insect-pests by modifying the factors mentioned above. The KDCHH-9810 BG-II and HS-6 genotypes could not completely negate the effects of sucking insect-pests. Customized metabolites and total soluble protein are more efficient in protecting cotton plants from damage brought on by infestations of sucking insects and pests. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01253-w.
Collapse
Affiliation(s)
- Vikram Singh
- Biochemistry Laboratory, Cotton Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar, Haryana 125004 India
| | - Shiwani Mandhania
- Biochemistry Laboratory, Cotton Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar, Haryana 125004 India
| | - Ajay Pal
- Department of Biochemistry, CCS HAU, Hisar, Haryana 125004 India
| | - Taranjeet Kaur
- Biochemistry Laboratory, Cotton Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar, Haryana 125004 India
| | - Prakash Banakar
- Department of Nematology, CCS HAU, Hisar, Haryana 125004 India
| | - K. Sankaranarayanan
- Regional Station, Central Institute for Cotton Research, Coimbatore, Tamil Nadu 641003 India
| | - S. S. Arya
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Karmal Malik
- Biochemistry Laboratory, Cotton Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar, Haryana 125004 India
| | - Rashi Datten
- Biochemistry Laboratory, Cotton Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar, Haryana 125004 India
| |
Collapse
|
14
|
Xu L, Zhao C, Pang J, Niu Y, Liu H, Zhang W, Zhou M. Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1066752. [PMID: 36507408 PMCID: PMC9727299 DOI: 10.3389/fpls.2022.1066752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging severely affects wheat growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of plants. The formation of adventitious roots (ARs) and root cortical aerenchyma (RCA) are the most important adaptive trait contributing to plants' ability to survive in waterlogged soil conditions. This study used a genome-wide association study (GWAS) approach with 90K single nucleotide polymorphisms (SNPs) in a panel of 329 wheat genotypes, to reveal quantitative trait loci (QTL) conferring ARs and RCA. The wheat genotypes exposed to waterlogging were evaluated for ARs and RCA in both field and glasshouse over two consecutive years. Six and five significant marker-trait associations (MTAs) were identified for ARs and RCA formation under waterlogging, respectively. The most significant MTA for AR and RCA was found on chromosome 4B. Two wheat cultivars with contrasting waterlogging tolerance (tolerant: H-242, sensitive: H-195) were chosen to compare the development and regulation of aerenchyma in waterlogged conditions using staining methods. Results showed that under waterlogging conditions, H2O2 signal generated before aerenchyma formation in both sensitive and tolerant varieties with the tolerant variety accumulating more H2O2 and in a quicker manner compared to the sensitive one. Several genotypes which performed consistently well under different conditions can be used in breeding programs to develop waterlogging-tolerant wheat varieties.
Collapse
Affiliation(s)
- Le Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Huaqiong Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
15
|
Transcriptomics for Drought Stress Mediated by Biological Processes in-relation to Key Regulated Pathways in Gossypium darwinii. Mol Biol Rep 2022; 49:11341-11350. [PMID: 35907118 DOI: 10.1007/s11033-022-07774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Wild cotton Gossypium darwinii, an allotetraploid harbours important traits useful for tolerating abiotic stress, i.e., drought, salt and good genetic stability, hence these characteristics can be transferred to cultivated cotton for genetic improvement. MATERIALS AND METHODS In this study, we analyzed the RNA-seq transcriptomes from leaves of G. darwinii seedlings with and without drought stress. A total of 86.7 million valid reads with an average length of 95.79 bp were generated from the two samples and 58,960 transcripts with a length of more than 500 bp were assembled. We searched the known proteins on the strength of sequence similarity; these transcripts were annotated with COG, KEGG and GO functional categories. According to gene expression abundance RPKM value, we carried out RT-qPCR analysis to determine the expression pattern of the obtained transcription factors. RESULTS A total of 58,960 genes was differentially expressed (DEG), with 32,693 and 25,919 genes found to be upregulated and downregulated, respectively. Through gene ontology and KEGG pathways, the upregulated genes were found to associate with all the GO terms, molecular functions (MF), biological process (BP) and cellular components (CC), which are highly linked to enhancing drought stress tolerance. CONCLUSION The study provides an in-depth knowledge of regulation of pathways and genes involved in photosynthesis during drought stress in G. darwinii. These pathways and genes were found to be significantly downregulated and this information could be further utilized by cotton breeders in developing a more drought tolerant cotton germplasm.
Collapse
|
16
|
Galić V, Mlinarić S, Marelja M, Zdunić Z, Brkić A, Mazur M, Begović L, Šimić D. Contrasting Water Withholding Responses of Young Maize Plants Reveal Link Between Lipid Peroxidation and Osmotic Regulation Corroborated by Genetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:804630. [PMID: 35873985 PMCID: PMC9296821 DOI: 10.3389/fpls.2022.804630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Linking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation (TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and current water content (CWC). Proline accumulation was found to be influenced by H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism. Most of the associations detected were for proline (29.4%) and TBARS (44.1%). Gene ontology (GO) enrichment analysis showed significant enrichment in regulation of integral membrane parts and peroxisomes along with regulation of transcription and polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes are needed to elucidate the role of this signaling mechanism in regulation of response to water deficit.
Collapse
Affiliation(s)
- Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Marelja
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zvonimir Zdunić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Andrija Brkić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Maja Mazur
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Šimić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| |
Collapse
|
17
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
18
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
19
|
Manik SMN, Quamruzzaman M, Zhao C, Johnson P, Hunt I, Shabala S, Zhou M. Genome-Wide Association Study Reveals Marker Trait Associations (MTA) for Waterlogging-Triggered Adventitious Roots and Aerenchyma Formation in Barley. Int J Mol Sci 2022; 23:ijms23063341. [PMID: 35328762 PMCID: PMC8954902 DOI: 10.3390/ijms23063341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits that contribute to a plant's ability to survive in waterlogged soil conditions. This study used a genome-wide association (GWAS) approach using 18,132 single nucleotide polymorphisms (SNPs) in a panel of 697 barley genotypes to reveal marker trait associations (MTA) conferring the above adaptive traits. Experiments were conducted over two consecutive years in tanks filled with soil and then validated in field experiments. GWAS analysis was conducted using general linear models (GLM), mixed linear models (MLM), and fixed and random model circulating probability unification models (FarmCPU model), with the FarmCPU showing to be the best suited model. Six and five significant (approximately -log10 (p) ≥ 5.5) MTA were identified for AR and RCA formation under waterlogged conditions, respectively. The highest -log10 (p) MTA for adventitious root and aerenchyma formation were approximately 9 and 8 on chromosome 2H and 4H, respectively. The combination of different MTA showed to be more effective in forming RCA and producing more AR under waterlogging stress. Genes from major facilitator superfamily (MFS) transporter and leucine-rich repeat (LRR) families for AR formation, and ethylene responsive factor (ERF) family genes and potassium transporter family genes for RCA formation were the potential candidate genes involved under waterlogging conditions. Several genotypes, which performed consistently well under different conditions, can be used in breeding programs to develop waterlogging-tolerant varieties.
Collapse
Affiliation(s)
- S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Ian Hunt
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- Correspondence:
| |
Collapse
|
20
|
Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:485-504. [PMID: 35400890 PMCID: PMC8943088 DOI: 10.1007/s12298-022-01146-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/15/2023]
Abstract
In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of "pathogen-proof" plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Manoj Choudhary
- ICAR-National Research Center for Integrated Pest Management, New Delhi, India
- Department of Plant Pathology, University of Florida, Gainesville, United States
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal 735225 India
| | - Anshu Sharma
- Department of FST, Dr. YS Parmar UHF Nauni, Solan, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Liu Y, Fan H, Dong J, Chen J, Xu H, Zhou X. Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum. Mol Biol Rep 2021; 49:303-312. [PMID: 34743272 DOI: 10.1007/s11033-021-06874-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND As an alpine plant, Rhododendron chrysanthum (R. chrysanthum) has evolved cold resistance mechanisms and become a valuable plant resource with the responsive mechanism of cold stress. METHODS AND RESULTS We adopt the phosphoproteomic and proteomic analysis combining with physiological measurement to illustrate the responsive mechanism of R. chrysanthum seedling under cold (4 °C) stress. After chilling for 12 h, 350 significantly changed proteins and 274 significantly changed phosphoproteins were detected. Clusters of Orthologous Groups (COG) analysis showed that significantly changed phosphoproteins and proteins indicated cold changed energy production and conversion and signal transduction. CONCLUSIONS The results indicated photosynthesis was inhibited under cold stress, but cold induced calcium-mediated signaling, reactive oxygen species (ROS) homeostasis and other transcription regulation factors could protect plants from the destruction caused by cold stress. These data provide the insight to the cold stress response and defense mechanisms of R. chrysanthum leaves at the phosphoproteome level.
Collapse
Affiliation(s)
- Yunbo Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hang Fan
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jiawei Dong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jianyu Chen
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
22
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
23
|
Yuan Z, Ni X, Arif M, Dong Z, Zhang L, Tan X, Li J, Li C. Transcriptomic Analysis of the Photosynthetic, Respiration, and Aerenchyma Adaptation Strategies in Bermudagrass ( Cynodon dactylon) under Different Submergence Stress. Int J Mol Sci 2021; 22:ijms22157905. [PMID: 34360668 PMCID: PMC8347729 DOI: 10.3390/ijms22157905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.
Collapse
Affiliation(s)
- Zhongxun Yuan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), Ningxia University, Yinchuan 750021, China;
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Zhi Dong
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Limiao Zhang
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xue Tan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
- Correspondence:
| |
Collapse
|
24
|
Zhou LL, Gao KY, Cheng LS, Wang YL, Cheng YK, Xu QT, Deng XY, Li JW, Mei FZ, Zhou ZQ. Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. PROTOPLASMA 2021; 258:891-904. [PMID: 33486619 DOI: 10.1007/s00709-021-01610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a pathway for the degradation of cytoplasmic components in eukaryotes. In wheat, the mechanism by which autophagy regulates programmed cell death (PCD) is unknown. Here, we demonstrated that short-term waterlogging-induced autophagy inhibited PCD in root cells of wheat. The waterlogging-tolerant wheat cultivar Huamai 8 and the waterlogging-sensitive wheat cultivar Huamai 9 were used as experimental materials, and their roots were waterlogged for 0-48 h. Waterlogging stress increased the number of autophagic structures, the expression levels of autophagy-related genes (TaATG), and the occurrence of PCD in root cells. PCD manifested as morphological changes in the cell nucleus, significant enhancement of DNA laddering bands, and increases in caspase-like protease activity and the expression levels of metacaspase genes. The autophagy promoter rapamycin (RAPA) reduced PCD levels, whereas the autophagy inhibitor 3-methyladenine (3-MA) enhanced them. The expression levels of TaATG genes and the number of autophagic structures were lower in cortex cells than in stele cells, but the levels of PCD were higher in cortex cells. The number of autophagic structures was greater in Huamai 8 than in Huamai 9, but the levels of PCD were lower. In summary, our results showed that short-term waterlogging induced autophagy which could inhibit PCD. Mechanisms of response to waterlogging stress differed between cortex and stele cells and between two wheat cultivars of contrasting waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Lang Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai-Yue Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Sha Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yue-Li Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi-Keng Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiu-Tao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
25
|
Ma X, Li J, Deng C, Sun J, Liu J, Li N, Lu Y, Wang R, Zhao R, Zhou X, Lu C, Chen S. NaCl-altered oxygen flux profiles and H+-ATPase activity in roots of two contrasting poplar species. TREE PHYSIOLOGY 2021; 41:756-770. [PMID: 33105484 DOI: 10.1093/treephys/tpaa142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Maintaining mitochondrial respiration is crucial for proving ATP for H+ pumps to continuously exclude Na+ under salt stress. NaCl-altered O2 uptake, mitochondrial respiration and the relevance to H+-ATPase activity were investigated in two contrasting poplar species, Populus euphratica (salt-tolerant) and Populus popularis 35-44 (salt-sensitive). Compared with P. popularis, P. euphratica roots exhibited a greater capacity to extrude Na+ under NaCl stress (150 mM). The cytochemical analysis with Pb(NO3)2 staining revealed that P. euphratica root cells retained higher H+ hydrolysis activity than the salt-sensitive poplar during a long term (LT) of increasing salt stress (50-200 mM NaCl, 4 weeks). Long-sustained activation of proton pumps requires long-lasting supply of energy (adenosine triphosphate, ATP), which is delivered by aerobic respiration. Taking advantage of the vibrating-electrodes technology combined with the use of membrane-tipped, polarographic oxygen microelectrodes, the species, spatial and temporal differences in root O2 uptake were characterized under conditions of salt stress. Oxygen uptake upon NaCl shock (150 mM) was less declined in P. euphratica than in P. popularis, although the salt-induced transient kinetics were distinct from the drastic drop of O2 caused by hyperosmotic shock (255 mM mannitol). Short-term (ST) treatment (150 mM NaCl, 24 h) stimulated O2 influx in P. euphratica roots, and LT-treated P. euphratica displayed an increased O2 influx along the root axis, whereas O2 influx declined with increasing salinity in P. popularis roots. The spatial localization of O2 influxes revealed that the apical zone was more susceptible than the elongation region upon high NaCl (150, 200 mM) during ST and LT stress. Pharmacological experiments showed that the Na+ extrusion and H+-ATPase activity in salinized roots were correspondingly suppressed when O2 uptake was inhibited by a mitochondrial respiration inhibitor, NaN3. Therefore, we conclude that the stable mitochondrial respiration energized H+-ATPase of P. euphratica root cells for maintaining Na+ homeostasis under salt environments.
Collapse
Affiliation(s)
- Xiuying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
- Department of life Science and Engineering, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, People's Republic of China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Yanjun Lu
- College of Forestry, Northwest Agriculture & Forestry University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Ruigang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
26
|
Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M, Yu M, Shabala S. Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. PLANT COMMUNICATIONS 2021; 2:100188. [PMID: 34027398 PMCID: PMC8132176 DOI: 10.1016/j.xplc.2021.100188] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 05/03/2023]
Abstract
When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.
Collapse
Affiliation(s)
- Qi Wu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nana Su
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Corresponding author
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Corresponding author
| |
Collapse
|
27
|
Karahara I, Horie T. Functions and structure of roots and their contributions to salinity tolerance in plants. BREEDING SCIENCE 2021; 71:89-108. [PMID: 33762879 PMCID: PMC7973495 DOI: 10.1270/jsbbs.20123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance. Furthermore, we introduce important literature for the development of barriers against the apoplastic flow of ions, including Na+, as well as for understanding the functions and components of the barrier structure under salinity stress.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
28
|
Jia W, Ma M, Chen J, Wu S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms22031088. [PMID: 33499312 PMCID: PMC7865476 DOI: 10.3390/ijms22031088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.
Collapse
|
29
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|