1
|
Mentink LJ, van Osch MJP, Bakker LJ, Olde Rikkert MGM, Beckmann CF, Claassen JAHR, Haak KV. Functional and vascular neuroimaging in maritime pilots with long-term sleep disruption. GeroScience 2024:10.1007/s11357-024-01417-4. [PMID: 39531187 DOI: 10.1007/s11357-024-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanism underlying the possible causal association between long-term sleep disruption and Alzheimer's disease remains unclear Musiek et al. 2015. A hypothesised pathway through increased brain amyloid load was not confirmed in previous work in our cohort of maritime pilots with long-term work-related sleep disruption Thomas et al. Alzheimer's Res Ther 2020;12:101. Here, using functional MRI, T2-FLAIR, and arterial spin labeling MRI scans, we explored alternative neuroimaging biomarkers related to both sleep disruption and AD: resting-state network co-activation and between-network connectivity of the default mode network (DMN), salience network (SAL) and frontoparietal network (FPN), vascular damage and cerebral blood flow (CBF). We acquired data of 16 maritime pilots (56 ± 2.3 years old) with work-related long-term sleep disruption (23 ± 4.8 working years) and 16 healthy controls (59 ± 3.3 years old), with normal sleep patterns (Pittsburgh Sleep Quality Index ≤ 5). Maritime pilots did not show altered co-activation in either the DMN, FPN, or SAL and no differences in between-network connectivity. We did not detect increased markers of vascular damage in maritime pilots, and additionally, maritime pilots did not show altered CBF-patterns compared to healthy controls. In summary, maritime pilots with long-term sleep disruption did not show neuroimaging markers indicative of preclinical AD compared to healthy controls. These findings do not resemble those of short-term sleep deprivation studies. This could be due to resiliency to sleep disruption or selection bias, as participants have already been exposed to and were able to deal with sleep disruption for multiple years, or to compensatory mechanisms Mentink et al. PLoS ONE. 2021;15(12):e0237622. This suggests the relationship between sleep disruption and AD is not as strong as previously implied in studies on short-term sleep deprivation, which would be beneficial for all shift workers suffering from work-related sleep disruptions.
Collapse
Affiliation(s)
- Lara J Mentink
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands.
| | | | - Leanne J Bakker
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
2
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2024:10.1007/s12035-024-04400-4. [PMID: 39103716 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Rowe RK, Schulz P, He P, Mannino GS, Opp MR, Sierks MR. Acute sleep deprivation in mice generates protein pathology consistent with neurodegenerative diseases. Front Neurosci 2024; 18:1436966. [PMID: 39114483 PMCID: PMC11303328 DOI: 10.3389/fnins.2024.1436966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Insufficient or disturbed sleep is strongly associated with adverse health conditions, including various neurodegenerative disorders. While the relationship between sleep and neurodegenerative disease is likely bidirectional, sleep disturbances often predate the onset of other hallmark clinical symptoms. Neuronal waste clearance is significantly more efficient during sleep; thus, disturbed sleep may lead to the accumulation of neuronal proteins that underlie neurodegenerative diseases. Key pathological features of neurodegenerative diseases include an accumulation of misfolded or misprocessed variants of amyloid beta (Aβ), tau, alpha synuclein (α-syn), and TarDNA binding protein 43 (TDP-43). While the presence of fibrillar protein aggregates of these neuronal proteins are characteristic of neurodegenerative diseases, the presence of small soluble toxic oligomeric variants of these different proteins likely precedes the formation of the hallmark aggregates. Methods We hypothesized that sleep deprivation would lead to accumulation of toxic oligomeric variants of Aβ, tau, α-syn, and TDP-43 in brain tissue of wild-type mice. Adult mice were subjected to 6 h of sleep deprivation (zeitgeber 0-6) for 5 consecutive days or were left undisturbed as controls. Following sleep deprivation, brains were collected, and protein pathology was assessed in multiple brain regions using an immunostain panel of reagents selectively targeting neurodegenerative disease-related variants of Aβ, tau, α-syn, and TDP-43. Results Overall, sleep deprivation elevated levels of all protein variants in at least one of the brain regions of interest. The reagent PDTDP, targeting a TDP-43 variant present in Parkinson's disease, was elevated throughout the brain. The cortex, caudoputamen, and corpus callosum brain regions showed the highest accumulation of pathology following sleep deprivation. Discussion These data provide a direct mechanistic link between sleep deprivation, and the hallmark protein pathologies of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Grant S. Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael R. Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
5
|
Ohno M. A Strategy for Allowing Earlier Diagnosis and Rigorous Evaluation of BACE1 Inhibitors in Preclinical Alzheimer's Disease. J Alzheimers Dis 2024; 99:431-445. [PMID: 38701146 DOI: 10.3233/jad-231451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer's disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20-60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| |
Collapse
|
6
|
Kang B, Ma J, Jeong I, Yoon S, Kim JI, Heo SJ, Oh SS. Behavioral marker-based predictive modeling of functional status for older adults with subjective cognitive decline and mild cognitive impairment: Study protocol. Digit Health 2024; 10:20552076241269555. [PMID: 39193313 PMCID: PMC11348489 DOI: 10.1177/20552076241269555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
Objective This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment. Methods A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time. Results The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies. Conclusions Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.
Collapse
Affiliation(s)
- Bada Kang
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| | - Jinkyoung Ma
- Department of Nursing, Yong-In Arts and Science University, Yongin, Republic of Korea
| | - Innhee Jeong
- Department of Nursing, Graduate School of Yonsei University, Seoul, Republic of Korea
- Navy Headquarter, Gyeryong, Republic of Korea
| | - Seolah Yoon
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
- College of Nursing and Brain Korea 21 Four Project, Yonsei University, Seoul, Republic of Korea
| | - Jennifer Ivy Kim
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
| | - Seok-jae Heo
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sarah Soyeon Oh
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
8
|
Postnov D, Semyachkina-Glushkovskaya O, Litvinenko E, Kurths J, Penzel T. Mechanisms of Activation of Brain's Drainage during Sleep: The Nightlife of Astrocytes. Cells 2023; 12:2667. [PMID: 37998402 PMCID: PMC10670149 DOI: 10.3390/cells12222667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The study of functions, mechanisms of generation, and pathways of movement of cerebral fluids has a long history, but the last decade has been especially productive. The proposed glymphatic hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an active discussion on both the criticism of some of the perspectives and our intensive study of new experimental facts. It was especially found that the intensity of the metabolite clearance changes significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level, a number of aspects of this problem have been focused on, such as astrocytes-glial cells, which, over the past two decades, have been recognized as equal partners of neurons and perform many important functions. In particular, an important role was assigned to astrocytes within the framework of the glymphatic hypothesis. In this review, we return to the "astrocytocentric" view of the BWRS function and the explanation of its activation during sleep from the viewpoint of new findings over the last decade. Our main conclusion is that the BWRS's action may be analyzed both at the systemic (whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional unit of the BWRS.
Collapse
Affiliation(s)
- Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Elena Litvinenko
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Charité — Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Sun X, He C, Qu H. Bibliometric review on sleep and Alzheimer disease between 1986 and 2023. Medicine (Baltimore) 2023; 102:e35764. [PMID: 37932981 PMCID: PMC10627664 DOI: 10.1097/md.0000000000035764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Alzheimer disease (AD) is a major disease that affects the elderly worldwide. Therefore, this study aimed to examine the relationship between AD and sleep disorders, identify journal publications and collaborators, and analyze keywords and research trends using a bibliometric method. METHODS Data retrieval is based on the Web of Science Core Collection database. CiteSpace V.6.1.R6 was used to analyze bibliometric analysis, calculate centrality, and draw co-occurrence maps of countries/regions, institutions, authors, published journals, cited literature, keyword co-occurrence maps, cluster maps, time graphs, and emergent maps from January 1986 to April 2023. RESULTS There were 4677 publications relevant to AD and sleep disorders. From 1986 to 2023, the number of publications per year showed an increasing trend. The United States not only has the largest output of publications, the first in the centrality ranking, but also owns the 3 highest frequencies of publication institutions. The journal NEUROLOGY has the highest citation frequency, reaching 2671, with a median centrality value of 0.64. A comprehensive analysis of centrality showed that AD, circadian rhythm, dementia, Parkinson disease, sleep, and older adults are both high-frequency words and high centrality words, becoming core keywords in this field. CONCLUSIONS This was the first study to provide an overview, about the current main status of development, hot spots of the study, and the future trends in sleep disorders and AD, which provides a comprehensive review of the trends and gaps in field of sleep and AD, and thus lays the groundwork for future research.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chao He
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiling Qu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
10
|
Roh SE, Xiao M, Delgado A, Kwak C, Savonenko A, Bakker A, Kwon HB, Worley P. Sleep and circadian rhythm disruption by NPTX2 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559408. [PMID: 37808783 PMCID: PMC10557648 DOI: 10.1101/2023.09.26.559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Sleep and circadian rhythm disruption (SCRD) is commonly observed in aging, especially in individuals who experience progressive cognitive decline to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, precise molecular mechanisms underlying the association between SCRD and aging are not fully understood. Orexin A is a well-characterized "sleep neuropeptide" that is expressed in hypothalamic neurons and evokes wake behavior. The importance of Orexin is exemplified in narcolepsy where it is profoundly down-regulated. Interestingly, the synaptic immediate early gene NPTX2 is co-expressed in Orexin neurons and is similarly reduced in narcolepsy. NPTX2 is also down-regulated in CSF of some cognitively normal older individuals and predicts the time of transition from normal cognition to MCI. The association between Orexin and NPTX2 is further evinced here where we observe that Orexin A and NPTX2 are highly correlated in CSF of cognitively normal aged individuals and raises the question of whether SCRD that are typically attributed to Orexin A loss of function may be modified by concomitant NPTX2 down-regulation. Is NPTX2 an effector of sleep or simply a reporter of orexin-dependent SCRD? To address this question, we examined NPTX2 KO mice and found they retain Orexin expression in the brain and so provide an opportunity to examine the specific contribution of NPTX2 to SCRD. Our results reveal that NPTX2 KO mice exhibit a disrupted circadian onset time, coupled with increased activity during the sleep phase, suggesting difficulties in maintaining states. Sleep EEG indicates distinct temporal allocation shifts across vigilance states, characterized by reduced wake and increased NREM time. Evident sleep fragmentation manifests through alterations of event occurrences during Wake and NREM, notably during light transition periods, in conjunction with an increased frequency of sleep transitions in NPTX2 KO mice, particularly between Wake and NREM. EEG spectral analysis indicated significant shifts in power across various frequency bands in the wake, NREM, and REM states, suggestive of disrupted neuronal synchronicity. An intriguing observation is the diminished occurrence of sleep spindles, one of the earliest measures of human sleep disruption, in NPTX2 KO mice. These findings highlight the effector role of NPTX2 loss of function as an instigator of SCRD and a potential mediator of sleep disruption in aging.
Collapse
Affiliation(s)
- Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meifang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana Delgado
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chuljung Kwak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Neuroanatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Tang M, Wu L, Shen Z, Chen J, Yang Y, Zhang M, Zhao P, Jiang G. Association between Sleep and Alzheimer's Disease: A Bibliometric Analysis from 2003 to 2022. Neuroepidemiology 2023; 57:377-390. [PMID: 37699365 DOI: 10.1159/000533700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) often presents with sleep disorders, which are also an important risk factor for AD, affecting cognitive function to a certain extent. This study aimed to reveal the current global status, present hotspots, and discuss emerging trends of sleep and AD using a bibliometric approach. METHODS Research and review articles related to sleep and AD from 2003 to 2022 were extracted from the Web of Science Core Collection. VOSviewer 1.6.18.0, Scimago Graphica, and CiteSpace 6.2.R2 were used to map the productive and highly cited countries, institutions, journals, authors, references, and keywords in the field. RESULTS Overall, 4,008 publications were included in this bibliometric analysis. The number of publications and citations showed an increasing trend over the past two decades. The USA and China had the largest and second largest, respectively, number of publications and citations and cooperated with other countries more closely. Ancoli-Israel Sonia published the most papers, and Holtzman David M was co-cited most frequently. The most productive journal was Journal of Alzheimer's Disease, and Neurology was the most frequently cited journal. The risk factors, β-amyloid (Aβ), tau, neuroinflammation, astrocytes, glymphatic system, orexin, functional connectivity, and management have been the main research directions of researchers over the past few years and may be the future trend of valuable research. CONCLUSION We identified hotspots and emerging trends including risk factors, Aβ, tau, neuroinflammation, the glymphatic system, orexin, and management, which may help identify new therapeutic targets and improve clinical efficacy of sleep and AD.
Collapse
Affiliation(s)
- Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Li Wu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
12
|
André C, Martineau-Dussault MÈ, Daneault V, Blais H, Frenette S, Lorrain D, Hudon C, Bastien C, Petit D, Lafrenière A, Thompson C, Montplaisir J, Gosselin N, Carrier J. REM sleep is associated with the volume of the cholinergic basal forebrain in aMCI individuals. Alzheimers Res Ther 2023; 15:151. [PMID: 37684650 PMCID: PMC10485959 DOI: 10.1186/s13195-023-01265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep highly depends on the activity of cholinergic basal forebrain (BF) neurons and is reduced in Alzheimer's disease. Here, we investigated the associations between the volume of BF nuclei and REM sleep characteristics, and the impact of cognitive status on these links, in late middle-aged and older participants. METHODS Thirty-one cognitively healthy controls (66.8 ± 7.2 years old, 13 women) and 31 participants with amnestic Mild Cognitive Impairment (aMCI) (68.3 ± 8.8 years old, 7 women) were included in this cross-sectional study. All participants underwent polysomnography, a comprehensive neuropsychological assessment and Magnetic Resonance Imaging examination. REM sleep characteristics (i.e., percentage, latency and efficiency) were derived from polysomnographic recordings. T1-weighted images were preprocessed using CAT12 and the DARTEL algorithm, and we extracted the gray matter volume of BF regions of interest using a probabilistic atlas implemented in the JuBrain Anatomy Toolbox. Multiple linear regressions were performed between the volume of BF nuclei and REM sleep characteristics controlling for age, sex and total intracranial volume, in the whole cohort and in subgroups stratified by cognitive status. RESULTS In the whole sample, lower REM sleep percentage was significantly associated to lower nucleus basalis of Meynert (Ch4) volume (β = 0.32, p = 0.009). When stratifying the cohort according to cognitive status, lower REM sleep percentage was significantly associated to both lower Ch4 (β = 0.48, p = 0.012) and total BF volumes (β = 0.44, p = 0.014) in aMCI individuals, but not in cognitively unimpaired participants. No significant associations were observed between the volume of the BF and wake after sleep onset or non-REM sleep variables. DISCUSSION These results suggest that REM sleep disturbances may be an early manifestation of the degeneration of the BF cholinergic system before the onset of dementia, especially in participants with mild memory deficits.
Collapse
Affiliation(s)
- Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565 Queen-Mary Road, Montreal, QC, H3W 1W5, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Sonia Frenette
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Dominique Lorrain
- Research Centre On Aging, University Institute of Geriatrics of Sherbrooke, CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
- Department of Psychology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carol Hudon
- CERVO Research Centre, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Célyne Bastien
- CERVO Research Centre, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada.
- Department of Psychology, Université de Montréal, Montreal, QC, Canada.
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565 Queen-Mary Road, Montreal, QC, H3W 1W5, Canada.
| |
Collapse
|
13
|
Münzel T, Treede H, Hahad O, Daiber A. Too Loud to Handle? Transportation Noise and Cardiovascular Disease. Can J Cardiol 2023; 39:1204-1218. [PMID: 36858080 DOI: 10.1016/j.cjca.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The World Health Organization reported that more than 1.6 million healthy life-years are lost yearly from traffic-related noise in western Europe. In addition, the number of studies on health side effects in response to traffic noise is steadily growing, mainly cardiovascular disease, such as acute and chronic ischemic heart disease, heart failure, arrhythmia, and stroke. Pathophysiologically nighttime noise has been shown to cause sleep disturbances, including too short sleep periods and frequent interruption of sleep leading to an increase in the levels of circulating stress hormones and subsequently to a significant increase in the production of reactive oxygen species (oxidative stress) and inflammation in the vasculature and the brain. The consequence is arterial hypertension and vascular (endothelial) dysfunction, which might increase the risk of cardiovascular disease. With the present review, we give an overview of the "so-called" nonauditory cardiovascular health effects of noise, which have been proposed to be responsible for the future development of cardiovascular disease. We present epidemiological evidence but also evidence provided by translational human and experimental noise studies. Finally, we discuss manoeuvres to mitigate noise effectively.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.
| | - Hendrik Treede
- Department of Cardiovascular Surgery, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
14
|
Yao AY, Halloran PJ, Ge Y, Singh N, Zhou J, Galske J, He W, Yan R, Hu X. Bace1 Deletion in the Adult Reverses Epileptiform Activity and Sleep-wake Disturbances in AD Mice. J Neurosci 2023; 43:6197-6211. [PMID: 37536983 PMCID: PMC10476643 DOI: 10.1523/jneurosci.2124-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Alzheimer's disease (AD) increases the risk for seizures and sleep disorders. We show here that germline deletion of β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) in neurons, but not in astrocytes, increased epileptiform activity. However, Bace1 deletion at adult ages did not alter the normal EEG waveform, indicating less concern for BACE1 inhibition in patients. Moreover, we showed that deletion of Bace1 in the adult was able to reverse epileptiform activity in 5xFAD mice. Intriguingly, treating 5xFAD and APPNL-G-F/NL-G-F (APP KI) mice of either sex with one BACE1 inhibitor Lanabecestat (AZD3293) dramatically increased epileptiform spiking, likely resulting from an off-target effect. We also monitored sleep-wake pathologies in these mice and showed increased wakefulness, decreased non-rapid eye movement sleep, and rapid eye movement sleep in both 5xFAD and APP KI mice; BACE1 inhibition in the adult 5xFAD mice reversed plaque load and sleep disturbances, but this was not seen in APP KI mice. Further studies with and without BACE1 inhibitor treatment showed different levels of plaque-associated microgliosis and activated microglial proteins in 5xFAD mice compared with APP KI mice. Together, BACE1 inhibition should be developed to avoid off-target effect for achieving benefits in reducing epileptic activity and sleep disturbance in Alzheimer's patients.SIGNIFICANCE STATEMENT BACE1 is widely recognized as a therapeutic target for treating Alzheimer's disease patients. However, BACE1 inhibitors failed in clinical trials because of inability to show cognitive improvement in patients. Here we show that BACE1 inhibition actually reduces sleep disturbances and epileptic seizures; both are seen in AD patients. We further showed that one of clinically tested BACE1 inhibitors does have off-target effects, and development of safer BACE1 inhibitors will be beneficial to AD patients. Results from this study will provide useful guidance for additional drug development.
Collapse
Affiliation(s)
- Annie Y Yao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Patrick J Halloran
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Yingying Ge
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Neeraj Singh
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - John Zhou
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James Galske
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Xiangyou Hu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
15
|
Künstler ECS, Bublak P, Finke K, Koranyi N, Meinhard M, Schwab M, Rupprecht S. The Relationship Between Cognitive Impairments and Sleep Quality Measures in Persistent Insomnia Disorder. Nat Sci Sleep 2023; 15:491-498. [PMID: 37408565 PMCID: PMC10319274 DOI: 10.2147/nss.s399644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/25/2023] [Indexed: 07/07/2023] Open
Abstract
Study Objectives Persistent insomnia disorder (pID) is linked to neurocognitive decline and increased risk of Alzheimer's Disease (AD) in later life. However, research in this field often utilizes self-reported sleep quality data - which may be biased by sleep misperception - or uses extensive neurocognitive test batteries - which are often not feasible in clinical settings. This study therefore aims to assess whether a simple screening tool could uncover a specific pattern of cognitive changes in pID patients, and whether these relate to objective aspect(s) of sleep quality. Methods Neurocognitive performance (Montreal Cognitive Assessment; MoCA), anxiety/depression severity, and subjective sleep quality (Pittsburgh Sleep Quality Index: PSQI; Insomnia Severity Index: ISI) data were collected from 22 middle-aged pID patients and 22 good-sleepers. Patients underwent overnight polysomnography. Results Compared to good-sleepers, patients had lower overall cognitive performance (average: 24.6 versus 26.3 points, Mann-Whitney U = 136.5, p = <0.006), with deficits in clock drawing and verbal abstraction. In patients, poorer overall cognitive performance correlated with reduced subjective sleep quality (PSQI: r(42) = -0.47, p = 0.001; and ISI: r(42) = -0.43, p = 0.004), reduced objective sleep quality (lower sleep efficiency: r(20) = 0.59, p = 0.004 and less REM-sleep: r(20) = 0.52, p = 0.013; and increased sleep latency: r(20) = -0.57, p = 0.005 and time awake: r(20) = -0.59, p = 0.004). Cognitive performance was not related to anxiety/depression scores. Conclusion Using a simple neurocognitive screening tool, we found that pID patients showed cognitive deficiencies that related to both subjective/self-reported and objective/polysomnographic measures of sleep quality. Furthermore, these cognitive changes resembled those seen in preclinical non-amnestic AD, and thus could indicate incumbent neurodegenerative processes in pID. Interestingly, increased REM-sleep was correlated with better cognitive performance. However, whether REM-sleep is protective against neurodegeneration requires further investigation.
Collapse
Affiliation(s)
- Erika C S Künstler
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Peter Bublak
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nicolas Koranyi
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marie Meinhard
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
17
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Bubu OM, Kam K, Parekh A, Ayappa I. Editorial: Additive or synergistic impacts of sleep, circadian rhythm disturbances and other modifiable risk factors on established and novel plasma biomarkers of Alzheimer's disease pathology. Front Aging Neurosci 2023; 15:1168062. [PMID: 36998316 PMCID: PMC10043465 DOI: 10.3389/fnagi.2023.1168062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Omonigho M. Bubu
- Department of Psychiatry, Healthy Brain Aging and Sleep Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, Center for Healthful Behavior Change, New York, NY, United States
| | - Korey Kam
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ankit Parekh
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Indu Ayappa
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Yu Y, Su J, Jerrett M, Paul KC, Lee E, Shih IF, Haan M, Ritz B. Air pollution and traffic noise interact to affect cognitive health in older Mexican Americans. ENVIRONMENT INTERNATIONAL 2023; 173:107810. [PMID: 36870315 PMCID: PMC11121505 DOI: 10.1016/j.envint.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Both air pollution and noise exposures have separately been shown to affect cognitive impairment. Here, we examine how air pollution and noise exposures interact to influence the development of incident dementia or cognitive impairment without dementia (CIND). METHODS We used 1,612 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007. Air pollution (nitrogen dioxides, particulate matter, ozone) and noise exposure levels were modeled with a land-use regression and via the SoundPLAN software package implemented with the Traffic Noise Model applied to the greater Sacramento area, respectively. Using Cox proportional hazard models, we estimated the hazard of incident dementia or CIND from air pollution exposure at the residence up to 5-years prior to diagnosis for the members of each risk set at event time. Further, we investigated whether noise exposure modified the association between air pollution exposure and dementia or CIND. RESULTS In total, 104 incident dementia and 159 incident dementia/CIND cases were identified during the 10 years of follow-up. For each ∼2 µg/m3 increase in time-varying 1- and 5-year average PM2.5 exposure, the hazard of dementia increased 33% (HR = 1.33, 95%CI: 1.00, 1.76). The hazard ratios for NO2-related dementia/CIND and PM2.5-related dementia were stronger in high-noise (≥65 dB) exposed than low-noise (<65 dB) exposed participants. CONCLUSION Our study indicates that PM2.5 and NO2 air pollution adversely affect cognition in elderly Mexican Americans. Our findings also suggest that air pollutants may interact with traffic-related noise exposure to affect cognitive function in vulnerable populations.
Collapse
Affiliation(s)
- Yu Yu
- Center for Health Policy Research, University of California Los Angeles, California, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Jason Su
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, California, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Eunice Lee
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, California, USA
| | - I-Fan Shih
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, California, USA
| | - Mary Haan
- Department of Epidemiology & Biostatistics, University of California San Francisco, California, USA
| | - Beate Ritz
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California, USA; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California, USA; Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, California, USA.
| |
Collapse
|
20
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
21
|
Gregory S, Pullen H, Ritchie CW, Shannon OM, Stevenson EJ, Muniz-Terrera G. Mediterranean diet and structural neuroimaging biomarkers of Alzheimer's and cerebrovascular disease: A systematic review. Exp Gerontol 2023; 172:112065. [PMID: 36529364 DOI: 10.1016/j.exger.2022.112065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Previous studies have demonstrated an association between adherence to the Mediterranean diet (MedDiet) and better cognitive performance, lower incidence of dementia and lower Alzheimer's disease biomarker burden. The aim of this systematic review was to evaluate the evidence base for MedDiet associations with hippocampal volume and white matter hyperintensity volume (WMHV). We searched systematically for studies reporting on MedDiet and hippocampal volume or WMHV in MedLine, EMBASE, CINAHL and PsycInfo. Searches were initially carried out on 21st July 2021 with final searches run on 23rd November 2022. Risk of bias was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Of an initial 112 papers identified, seven papers were eligible for inclusion in the review reporting on 21,933 participants. Four studies reported on hippocampal volume, with inconclusive or no associations seen with MedDiet adherence. Two studies found a significant association between higher MedDiet adherence and lower WMHV, while two other studies found no significant associations. Overall these results highlight a gap in our knowledge about the associations between the MedDiet and AD and cerebrovascular related structural neuroimaging findings.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Hannah Pullen
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Brain Health Scotland, UK.
| | - Oliver M Shannon
- Faculty of Medical Sciences, Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, UK.
| | - Emma J Stevenson
- Faculty of Medical Sciences, Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, UK.
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Social Medicine, Ohio University, OH, USA.
| |
Collapse
|
22
|
Zijlmans JL, Riemens MS, Vernooij MW, Ikram MA, Luik AI. Sleep, 24-Hour Activity Rhythms, and Cognitive Reserve: A Population-Based Study. J Alzheimers Dis 2023; 91:663-672. [PMID: 36463444 PMCID: PMC9912716 DOI: 10.3233/jad-220714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND The cognitive reserve hypothesis aims to explain individual differences in susceptibility to the functional impact of dementia-related pathology. Previous research suggested that poor subjective sleep may be associated with a lower cognitive reserve. OBJECTIVE The objective was to investigate if actigraphy-estimated sleep and 24-hour activity rhythms are associated with cognitive reserve. METHODS This cross-sectional study included 1,002 participants from the Rotterdam Study (mean age: 65.0 years, standard deviation (SD): 7.1) who were assessed with actigraphy, five cognitive tests, and brain-MRI between 2009- 2014. Sleep and 24-hour activity rhythms were measured using actigraphy (mean days: 6.7, SD: 0.5). Cognitive reserve was defined as a latent variable that captures variance across cognitive tests, while adjusting for age, sex, education, total brain volume, intracranial volume, and white matter hyperintensity volume. Associations of sleep and 24-hour activity rhythms with cognitive reserve were assessed using structural equation models. RESULTS Longer sleep onset latency (adjusted mean difference: - 0.16, 95% CI: - 0.24; - 0.08) and lower sleep efficiency (0.14, 95% CI: 0.05; 0.22) were associated with lower cognitive reserve. Total sleep time and wake after sleep onset were not significantly associated with cognitive reserve. After mutual adjustment, only the association of longer sleep onset latency remained significant (- 0.12, 95% CI: - 0.20; - 0.04). The 24-hour activity rhythm was not significantly associated with cognitive reserve. CONCLUSION In conclusion, our study suggests that longer sleep onset latency is particularly associated with lower cognitive reserve. Future longitudinal work is needed to assess whether shortening the sleep onset latency could enhance cognitive reserve, in order to limit the susceptibility to the functional impact of dementia-related pathology.
Collapse
Affiliation(s)
- Jend L. Zijlmans
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mariska S. Riemens
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands,
Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annemarie I. Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands,Correspondence to: Annemarie I. Luik, Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands. Tel.: +31 10 703 21 83; E-mail:
| |
Collapse
|
23
|
Morrone CD, Tsang AA, Giorshev SM, Craig EE, Yu WH. Concurrent behavioral and electrophysiological longitudinal recordings for in vivo assessment of aging. Front Aging Neurosci 2023; 14:952101. [PMID: 36742209 PMCID: PMC9891465 DOI: 10.3389/fnagi.2022.952101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophysiological and behavioral alterations, including sleep and cognitive impairments, are critical components of age-related decline and neurodegenerative diseases. In preclinical investigation, many refined techniques are employed to probe these phenotypes, but they are often conducted separately. Herein, we provide a protocol for one-time surgical implantation of EMG wires in the nuchal muscle and a skull-surface EEG headcap in mice, capable of 9-to-12-month recording longevity. All data acquisitions are wireless, making them compatible with simultaneous EEG recording coupled to multiple behavioral tasks, as we demonstrate with locomotion/sleep staging during home-cage video assessments, cognitive testing in the Barnes maze, and sleep disruption. Time-course EEG and EMG data can be accurately mapped to the behavioral phenotype and synchronized with neuronal frequencies for movement and the location to target in the Barnes maze. We discuss critical steps for optimizing headcap surgery and alternative approaches, including increasing the number of EEG channels or utilizing depth electrodes with the system. Combining electrophysiological and behavioral measurements in preclinical models of aging and neurodegeneration has great potential for improving mechanistic and therapeutic assessments and determining early markers of brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,*Correspondence: Christopher Daniel Morrone,
| | - Arielle A. Tsang
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sarah M. Giorshev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Emily E. Craig
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Wai Haung Yu,
| |
Collapse
|
24
|
Zhang Y, Elgart M, Granot-Hershkovitz E, Wang H, Tarraf W, Ramos AR, Stickel AM, Zeng D, Garcia TP, Testai FD, Wassertheil-Smoller S, Isasi CR, Daviglus ML, Kaplan R, Fornage M, DeCarli C, Redline S, González HM, Sofer T. Genetic associations between sleep traits and cognitive ageing outcomes in the Hispanic Community Health Study/Study of Latinos. EBioMedicine 2023; 87:104393. [PMID: 36493726 PMCID: PMC9732133 DOI: 10.1016/j.ebiom.2022.104393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sleep phenotypes have been reported to be associated with cognitive ageing outcomes. However, there is limited research using genetic variants as proxies for sleep traits to study their associations. We estimated associations between Polygenic Risk Scores (PRSs) for sleep duration, insomnia, daytime sleepiness, and obstructive sleep apnoea (OSA) and measures of cogntive ageing in Hispanic/Latino adults. METHODS We used summary statistics from published genome-wide association studies to construct PRSs representing the genetic basis of each sleep trait, then we studied the association of the PRSs of the sleep phenotypes with cognitive outcomes in the Hispanic Community Healthy Study/Study of Latinos. The primary model adjusted for age, sex, study centre, and measures of genetic ancestry. Associations are highlighted if their p-value <0.05. FINDINGS Higher PRS for insomnia was associated with lower global cognitive function and higher risk of mild cognitive impairment (MCI) (OR = 1.20, 95% CI [1.06, 1.36]). Higher PRS for daytime sleepiness was also associated with increased MCI risk (OR = 1.14, 95% CI [1.02, 1.28]). Sleep duration PRS was associated with reduced MCI risk among short and normal sleepers, while among long sleepers it was associated with reduced global cognitive function and with increased MCI risk (OR = 1.40, 95% CI [1.10, 1.78]). Furthermore, adjustment of analyses for the measured sleep phenotypes and APOE-ε4 allele had minor effects on the PRS associations with the cognitive outcomes. INTERPRETATION Genetic measures underlying insomnia, daytime sleepiness, and sleep duration are associated with MCI risk. Genetic and self-reported sleep duration interact in their effect on MCI. FUNDING Described in Acknowledgments.
Collapse
Affiliation(s)
- Yuan Zhang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael Elgart
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Einat Granot-Hershkovitz
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wassim Tarraf
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ariana M Stickel
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tanya P Garcia
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine at Chicago, Chicago, IL, USA
| | | | - Carmen R Isasi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles DeCarli
- Department of Neurology, Alzheimer's Disease Center, University of California, Davis, Sacramento, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hector M González
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Center, University of California, San Diego, La Jolla, CA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
25
|
Niotis K, Akiyoshi K, Carlton C, Isaacson R. Dementia Prevention in Clinical Practice. Semin Neurol 2022; 42:525-548. [PMID: 36442814 DOI: 10.1055/s-0042-1759580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 55 million people globally are living with dementia and, by 2050, this number is projected to increase to 131 million. This poses immeasurable challenges for patients and their families and a significant threat to domestic and global economies. Given this public health crisis and disappointing results from disease-modifying trials, there has been a recent shift in focus toward primary and secondary prevention strategies. Approximately 40% of Alzheimer's disease (AD) cases, which is the most common form of dementia, may be prevented or at least delayed. Success of risk reduction studies through addressing modifiable risk factors, in addition to the failure of most drug trials, lends support for personalized multidomain interventions rather than a "one-size-fits-all" approach. Evolving evidence supports early intervention in at-risk patients using individualized interventions directed at modifiable risk factors. Comprehensive risk stratification can be informed by emerging principals of precision medicine, and include expanded clinical and family history, anthropometric measurements, blood biomarkers, neurocognitive evaluation, and genetic information. Risk stratification is key in differentiating subtypes of dementia and identifies targetable areas for intervention. This article reviews a clinical approach toward dementia risk stratification and evidence-based prevention strategies, with a primary focus on AD.
Collapse
Affiliation(s)
- Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Kiarra Akiyoshi
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York.,Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| |
Collapse
|
26
|
Minakawa EN. Bidirectional Relationship Between Sleep Disturbances and Parkinson's Disease. Front Neurol 2022; 13:927994. [PMID: 35923835 PMCID: PMC9342689 DOI: 10.3389/fneur.2022.927994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Both diseases share common clinical and pathological features: the gradual progression of neurological and psychiatric symptoms caused by neuronal dysfunction and neuronal cell death due to the accumulation of misfolded and neurotoxic proteins. Furthermore, both of them are multifactorial diseases in which both genetic and non-genetic factors contribute to the disease course. Non-genetic factors are of particular interest for the development of preventive and therapeutic approaches for these diseases because they are modifiable; of these, sleep is a particularly intriguing factor. Sleep disturbances are highly prevalent among both patients with AD and PD. To date, research has suggested that sleep disturbances are a consequence as well as a risk factor for the onset and progression of AD, which implies a bidirectional relationship between sleep and AD. Whether such a relationship exists in PD is less certain, albeit highly plausible given the shared pathomechanisms. This review examines the current evidence for the bidirectional relationship between sleep and PD. It includes research in both humans and animal models, followed by a discussion of the current understanding of the mechanisms underlying this relationship. Finally, potential avenues of research toward achieving disease modification to treat or prevent PD are proposed. Although further efforts are crucial for preventing the onset and slowing the progress of PD, it is evident that sleep is a valuable candidate target for future interventions to improve the outcomes of PD patients.
Collapse
Affiliation(s)
- Eiko N. Minakawa
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Parkinson Disease and Movement Disorder Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Sleep Disorder Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Research Center for Neurocognitive Disorders, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- *Correspondence: Eiko N. Minakawa
| |
Collapse
|
27
|
Ogbeide-Latario OE, Ferrari LL, Gompf HS, Anaclet C. Two novel mouse models of slow-wave-sleep enhancement in aging and Alzheimer's disease. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2022; 3:zpac022. [PMID: 37193408 PMCID: PMC10104383 DOI: 10.1093/sleepadvances/zpac022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Indexed: 05/18/2023]
Abstract
Aging and Alzheimer's disease (AD) are both associated with reduced quantity and quality of the deepest stage of sleep, called slow-wave-sleep (SWS). Slow-wave-sleep deficits have been shown to worsen AD symptoms and prevent healthy aging. However, the mechanism remains poorly understood due to the lack of animal models in which SWS can be specifically manipulated. Notably, a mouse model of SWS enhancement has been recently developed in adult mice. As a prelude to studies assessing the impact of SWS enhancement on aging and neurodegeneration, we first asked whether SWS can be enhanced in animal models of aging and AD. The chemogenetic receptor hM3Dq was conditionally expressed in GABAergic neurons of the parafacial zone of aged mice and AD (APP/PS1) mouse model. Sleep-wake phenotypes were analyzed in baseline condition and following clozapine-N-oxide (CNO) and vehicle injections. Both aged and AD mice display deficits in sleep quality, characterized by decreased slow wave activity. Both aged and AD mice show SWS enhancement following CNO injection, characterized by a shorter SWS latency, increased SWS amount and consolidation, and enhanced slow wave activity, compared with vehicle injection. Importantly, the SWS enhancement phenotypes in aged and APP/PS1 model mice are comparable to those seen in adult and littermate wild-type mice, respectively. These mouse models will allow investigation of the role of SWS in aging and AD, using, for the first time, gain-of SWS experiments.
Collapse
Affiliation(s)
- Oghomwen E Ogbeide-Latario
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Loris L Ferrari
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Heinrich S Gompf
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis CA, USA
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis CA, USA
| |
Collapse
|
28
|
Giannos P, Prokopidis K, Forbes SC, Celoch K, Candow DG, Tartar JL. Gene Expression Changes of Murine Cortex Homeostasis in Response to Sleep Deprivation Hint Dysregulated Aging-like Transcriptional Responses. Brain Sci 2022; 12:825. [PMID: 35884632 PMCID: PMC9313387 DOI: 10.3390/brainsci12070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep deprivation leads to the deterioration in the physiological functioning of the brain, cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age. Sleep insufficiency and impairments in cognitive function are characterized by progressive neuronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-deprived murine models and circadian matched controls to identify genes that might underlie cortical homeostasis in response to sleep deprivation. Screening of the literature resulted in three murine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included cortical tissue biopsies from mice that are sleep deprived for 6 h (n = 15) and from circadian controls that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a network of encoded proteins that are ranked based on their interactome according to 11 topological algorithms. The analysis revealed three genes-NFKBIA, EZR, and SGK1-which exhibited the highest multi-algorithmic topological significance. These genes are strong markers of increased brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply aging-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants further experimental validation.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Kamil Celoch
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Jaime L. Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| |
Collapse
|
29
|
Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: a pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr 2022; 27:298-308. [PMID: 33427150 DOI: 10.1017/s1092852921000018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present paper aims at reviewing and commenting on the relationships between sleep and circadian phasing alterations and neurodegenerative/neuroprogressive processes in mood disorder. We carried out a systematic review, according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, in PubMed, PsycINFO, and Embase electronic databases for literature related to mood disorders, sleep disturbances, and neurodegenerative/neuroprogressive processes in relation to (1) neuroinflammation, (2) activation of the stress system, (3) oxidative stress, (4) accumulation of neurotoxic proteins, and (5) neuroprotection deficit. Seventy articles were collectively selected and analyzed. Experimental and clinical studies revealed that insomnia, conditions of sleep loss, and altered circadian sleep may favor neurodegeneration and neuroprogression in mood disorders. These sleep disturbances may induce a state of chronic inflammation by enhancing neuroinflammation, both directly and indirectly, via microglia and astrocytes activation. They may act as neurobiological stressors that by over-activating the stress system may negatively influence neural plasticity causing neuronal damage. In addition, sleep disturbances may favor the accumulation of neurotoxic proteins, favor oxidative stress, and a deficit in neuroprotection hence contributing to neurodegeneration and neuroprogression. Targeting sleep disturbances in the clinical practice may hold a neuroprotective value for mood disorders.
Collapse
|
30
|
Biomedical Analytics of Four Chinese Medicinals in Treatment of Insomnia Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9414262. [PMID: 35769674 PMCID: PMC9236802 DOI: 10.1155/2022/9414262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Aim. Our aim is to recommend the appropriate Chinese medicinals in clinical treatment of insomnia, which are suānzăorén (Semen Ziziphi Spinosae), chuānxiōng (Rhizoma Chuanxiong), fúlíng (Poria), and báisháo (Radix Paeoniae Alba). Method. Based on network pharmacology, the active molecules and mechanism of these four Chinese medicinals treating insomnia were sought and analyzed. The components of the four Chinese medicinals with potential activity were collected and screened. Moreover, the recollected human disease-related targets were correlated through Cytoscape 3.8.2, and the network diagram of drug component disease targets was drawn. Based on the human protein-protein interaction database, the above network diagram was imported to establish the protein-protein interaction (PPI) and composite target pathway (C-T-P) networks. After selecting important information, the pathway analysis was carried out to show the biological process, core target, and core pathway of insomnia treatment. Result. In this study, 44 active components and 81 drug-disease common targets were obtained; 307 key targets were found in the PPI network; a core cluster composed of 14 nodes and 50 functional associations was found. Conclusion. In summary, the four Chinese medicinals’ effective components and main mechanism of in the treatment of insomnia may be related to their participation in the regulation of endocrine. Compared with the existing network pharmacological analysis results of SuānZăoRénTāng (Sour Jujube Decoction), which is commonly used in insomnia, they have similar effects on the immune system and HPA axis, while the focus of the four Chinese medicinals is mainly on endocrine regulation, and SuānZăoRénTāng (Sour Jujube Decoction) is mainly on anti-inflammatory effect.
Collapse
|
31
|
Ayenigbara IO. Preventive Measures against the Development of Dementia in Old Age. Korean J Fam Med 2022; 43:157-167. [PMID: 35610962 PMCID: PMC9136504 DOI: 10.4082/kjfm.21.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2022] [Indexed: 11/03/2022] Open
Abstract
Dementia is a neurological condition characterized by numerous types of central nervous system diseases, which gradually deteriorates an individual’s reasoning, rational thinking, and judgment abilities. As a serious public health concern that currently affects more than 50 million older adults, dementia is one of the most significant causes of incapacity, disability, and dependency among older adults. As new cases are expected to increase exponentially in the next three decades, dementia, which is not a normal feature of healthy aging despite the fact that it generally affects older adults disproportionately, requires enormous management and care efforts due to its associated socioeconomic, psychological, and physical burdens that involve the patient, their caregivers, guardians, family members, and society at large. Presently, there is no cure for dementia; however, this condition could be prevented. This narrative review aimed to provide a broad overview of studies detailing the alternative lifestyle modification-centered preventive measures against dementia. A comprehensive search of key databases to find articles related to this topic revealed that participating in regular physical activities, healthy eating and dieting, avoiding all forms of smoking, avoiding air pollutants, halting or reducing alcohol consumption, exercising the mind and being socially dynamic, getting enough rest and establishing good sleeping habits, infection prevention, stress prevention, avoidance of injuries, preventing the effects of social isolation and lockdowns, continuing education, and depression prevention are protective measures against the development of dementia.
Collapse
Affiliation(s)
- Israel Oluwasegun Ayenigbara
- School and Community Health Education Unit, Department of Health Education, University of Ibadan, Ibadan, Nigeria
- *Corresponding Author: Israel Oluwasegun Ayenigbara Tel: +234-8139177538, Fax: +234-809-810-3043, E-mail:
| |
Collapse
|
32
|
Dunn T, Howlett SE, Stanojevic S, Shehzad A, Stanley J, Rockwood K. Patterns of Symptom Tracking by Caregivers and Patients With Dementia and Mild Cognitive Impairment: Cross-sectional Study. J Med Internet Res 2022; 24:e29219. [PMID: 35084341 PMCID: PMC8832273 DOI: 10.2196/29219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/13/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Individuals with dementia and mild cognitive impairment (MCI) experience a wide variety of symptoms and challenges that trouble them. To address this heterogeneity, numerous standardized tests are used for diagnosis and prognosis. myGoalNav Dementia is a web-based tool that allows individuals with impairments and their caregivers to identify and track outcomes of greatest importance to them, which may be a less arbitrary and more sensitive way of capturing meaningful change. OBJECTIVE We aim to explore the most frequent and important symptoms and challenges reported by caregivers and people with dementia and MCI and how this varies according to disease severity. METHODS This cross-sectional study involved 3909 web-based myGoalNav users (mostly caregivers of people with dementia or MCI) who completed symptom profiles between 2006 and 2019. To make a symptom profile, users selected their most personally meaningful or troublesome dementia-related symptoms to track over time. Users were also asked to rank their chosen symptoms from least to most important, which we called the symptom potency. As the stage of disease for these web-based users was unknown, we applied a supervised staging algorithm, previously trained on clinician-derived data, to classify each profile into 1 of 4 stages: MCI and mild, moderate, and severe dementia. Across these stages, we compared symptom tracking frequency, symptom potency, and the relationship between frequency and potency. RESULTS Applying the staging algorithm to the 3909 user profiles resulted in 917 (23.46%) MCI, 1596 (40.83%) mild dementia, 514 (13.15%) moderate dementia, and 882 (22.56%) severe dementia profiles. We found that the most frequent symptoms in MCI and mild dementia profiles were similar and comprised early hallmarks of dementia (eg, recent memory and language difficulty). As the stage increased to moderate and severe, the most frequent symptoms were characteristic of loss of independent function (eg, incontinence) and behavioral problems (eg, aggression). The most potent symptoms were similar between stages and generally reflected disruptions in everyday life (eg, problems with hobbies or games, travel, and looking after grandchildren). Symptom frequency was negatively correlated with potency at all stages, and the strength of this relationship increased with increasing disease severity. CONCLUSIONS Our results emphasize the importance of patient-centricity in MCI and dementia studies and illustrate the valuable real-world evidence that can be collected with digital tools. Here, the most frequent symptoms across the stages reflected our understanding of the typical disease progression. However, the symptoms that were ranked as most personally important by users were generally among the least frequently selected. Through individualization, patient-centered instruments such as myGoalNav can complement standardized measures by capturing these infrequent but potent outcomes.
Collapse
Affiliation(s)
| | - Susan E Howlett
- Ardea Outcomes, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sanja Stanojevic
- Ardea Outcomes, Halifax, NS, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Kenneth Rockwood
- Ardea Outcomes, Halifax, NS, Canada
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
- Geriatric Medicine Research Unit, Nova Scotia Health Authority, Halifax, NS, Canada
| |
Collapse
|
33
|
Geng D, Wang Y, Gao Z, Wang J, Liu X, Pang G. Effects of Alzheimer's disease of varying severity on cardiac and autonomic function. Braz J Med Biol Res 2022; 55:e11504. [PMID: 35019033 PMCID: PMC8851908 DOI: 10.1590/1414-431x2021e11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in the elderly. The aim of this study was to explore the effects of AD on cardiac function and autonomic nervous function, and the feasibility of electrocardiogram (ECG) in monitoring the development of AD. APP/PS1 double transgenic mice were used in the Morris water maze (MWM) experiment to evaluate the changes of cognitive ability of AD mice, then the non-invasive ECG acquisition system was used and the changes of ECG intervals and heart rate variability (HRV) were analyzed. AD mice already had cognitive dysfunction at the age of 5 months, reaching the level of mild dementia, and the degree of dementia increased with the course of disease. There were no significant changes in ECG intervals in the AD group at each month. The mean square of successive RR interval differences, percentage of intervals >6 ms different from preceding interval, and normalized high frequency power component in the AD group were decreased and low-to-high frequency power ratio and normalized low frequency power component were increased. Combined with the results of the MWM, it was shown that the regulation mechanism of sympathetic and parasympathetic nerves in mice was already imbalanced in early stage AD, which was manifested as the increase of excessive activity of sympathetic nerves and the inhibition of parasympathetic activities. Therefore, ECG-based analysis of HRV may become a means of daily monitoring of AD and provide an auxiliary basis for clinical diagnosis.
Collapse
Affiliation(s)
- Duyan Geng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yan Wang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Zeyu Gao
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Jiaxing Wang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Xuanyu Liu
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Geng Pang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
34
|
Zhang M, Liu Y, Teng P, Yang Q. Differential Expression of miR-381-3p in Alzheimer's Disease Patients and Its Role in Beta-Amyloid-Induced Neurotoxicity and Inflammation. Neuroimmunomodulation 2022; 29:211-219. [PMID: 34749366 DOI: 10.1159/000519780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This study aimed to explore the diagnostic value and effect of miR-381-3p on Alzheimer's disease (AD). METHODS RT-qPCR was used for the measurement of miR-381-3p levels. Pearson correlation coefficient was used for the correlation analysis. Receiver operating characteristic (ROC) curve was constructed to assess the distinct ability of miR-381-3p for AD. SH-SY5Y cells were treated with Aβ25-35 to establish an AD cell model. The role of miR-381-3p on cell proliferation and apoptosis was detected. ELISA was applied to detect the protein levels of inflammatory cytokine expression. The target relationship of miR-381-3p with PTGS2 was verified by luciferase reporter gene assay. RESULTS Low expression of miR-381-3p was detected in the serum of AD patients and cell models. There was a negative association of serum miR-381-3p with the serum inflammatory cytokines. The ROC curve demonstrated the distinct ability of serum miR-381-3p for AD, with the AUC value of 0.898, with a sensitivity of 87.5%, and a specificity of 77.7%. Overexpression of miR-381-3p reversed the influence of Aβ25-35 on cell proliferation and apoptosis, but miR-381-3p downregulation exacerbated the influence. miR-381-3p overexpression inhibited the release of IL-6, IL-1β, and TNF-α induced by Aβ25-35 treatment, whereas miR-381-3p downregulation further promoted the release of inflammatory cytokines. PTGS2 was the target gene of miR-381-3p and was upregulated in AD cell models. CONCLUSION miR-381-3p is less expressed in the serum of AD patients and has potential diagnostic values for AD. Overexpression of miR-381-3p may attenuate Aβ25-35-induced neurotoxicity and inflammatory responses via targeting PTGS2 in SH-SY5Y cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yonglei Liu
- Department of Cardiology First Ward, Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Teng
- Department of General Health and Geriatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Qing Yang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
35
|
Palagini L, Geoffroy PA, Riemann D. Sleep markers in psychiatry: do insomnia and disturbed sleep play as markers of disrupted neuroplasticity in mood disorders? A proposed model. Curr Med Chem 2021; 29:5595-5605. [PMID: 34906053 DOI: 10.2174/0929867328666211214164907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Since insomnia and disturbed sleep may affect neuroplasticity, we aimed at reviewing their potential role as markers of disrupted neuroplasticity involved in mood disorders. METHOD We performed a systematic review, according to PRIMA, on PubMed, PsycINFO and Embase electronic databases for literature regarding mood disorders, insomnia, sleep loss/deprivation in relation to different pathways involved in the impairment of neuroplasticity in mood disorders such as 1] alterations in neurodevelopment 2] activation of the stress system 3] neuroinflammation 4] neurodegeneration/neuroprogression, 4] deficit in neuroprotection. RESULTS Sixty-five articles were analyzed and a narrative/ theoretical review was conducted. Studies showed that insomnia, sleep loss and sleep deprivation might impair brain plasticity of those areas involved in mood regulation throughout different pathways. Insomnia and disrupted sleep may act as neurobiological stressors that by over-activating the stress and inflammatory systems may affect neural plasticity causing neuronal damage. In addition, disturbed sleep may favor a deficit in neuroprotection hence contributing to impaired neuroplasticity. CONCLUSIONS Insomnia and disturbed sleep may play a role as markers of alteration in brain plasticity in mood disorders. Assessing and targeting insomnia in the clinical practice may potentially play a neuroprotective role, contributing to "repairing" alterations in neuroplasticity or to the functional recovery of those areas involved in mood and emotion regulation.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100, Pisa. Italy
| | - Pierre Alexis Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université de Paris, NeuroDiderot, Inserm U1141, F-75019 Paris. France
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg. Germany
| |
Collapse
|
36
|
Falter A, Van Den Bossche MJA. How non-rapid eye movement sleep and Alzheimer pathology are linked. World J Psychiatry 2021; 11:1027-1038. [PMID: 34888171 PMCID: PMC8613758 DOI: 10.5498/wjp.v11.i11.1027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by the presence of senile plaques and neurofibrillary tangles. Research attempts to identify characteristic factors that are associated with the presence of the AD pathology on the one hand and that increase the risk of developing AD on the other. Changes in non-rapid eye movement (NREM) sleep may meet both requirements for various reasons. First, NREM-sleep is important for optimal memory function. In addition, studies report that the presence of AD pathology is associated with NREM-sleep changes. Finally, more and more results appear to suggest that sleep problems are not only a symptom of AD but can also increase the risk of AD. Several of these studies suggest that it is primarily a lack of NREM-sleep that is responsible for this increased risk. However, the majority investigated sleep only through subjective reporting, as a result of which NREM-sleep could not be analyzed separately. The aim of this literature study is therefore to present the results of the studies that relate the AD pathology and NREM-sleep (registered by electroencephalography). Furthermore, we try to evaluate whether NREM-sleep analysis could be used to support the diagnosis of AD and whether NREM-sleep deficiency could be a causal factor in the development of AD.
Collapse
Affiliation(s)
- Annelies Falter
- Department of Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Department of Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
- Center for Neuropsychiatry, Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
37
|
Jagirdar R, Fu CH, Park J, Corbett BF, Seibt FM, Beierlein M, Chin J. Restoring activity in the thalamic reticular nucleus improves sleep architecture and reduces Aβ accumulation in mice. Sci Transl Med 2021; 13:eabh4284. [PMID: 34731016 PMCID: PMC8985235 DOI: 10.1126/scitranslmed.abh4284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sleep disruptions promote increases of amyloid β (Aβ) and tau in the brain and increase Alzheimer’s disease (AD) risk, but the precise mechanisms that give rise to sleep disturbances have yet to be defined. The thalamic reticular nucleus (TRN) is essential for sleep maintenance and for the regulation of slow-wave sleep (SWS). We examined the TRN in transgenic mice that express mutant human amyloid precursor protein (APP) and found reduced neuronal activity, increased sleep fragmentation, and decreased SWS time as compared to nontransgenic littermates. Selective activation of the TRN using excitatory DREADDs restored sleep maintenance, increased time in SWS, and reduced amyloid plaque load in both hippocampus and cortex. Our findings suggest that the TRN may play a major role in symptoms associated with AD. Enhancing TRN activity might be a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Rohan Jagirdar
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Chia-Hsuan Fu
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Jin Park
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Brian F. Corbett
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Frederik M. Seibt
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, TX 77030
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, TX 77030
| | - Jeannie Chin
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
38
|
Dumitrescu C, Costea IM, Cormos AC, Semenescu A. Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals. SENSORS 2021; 21:s21217230. [PMID: 34770537 PMCID: PMC8587652 DOI: 10.3390/s21217230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Evoked and spontaneous K-complexes are thought to be involved in sleep protection, but their role as biomarkers is still under debate. K-complexes have two major functions: first, they suppress cortical arousal in response to stimuli that the sleeping brain evaluates to avoid signaling danger; and second, they help strengthen memory. K-complexes also play an important role in the analysis of sleep quality, in the detection of diseases associated with sleep disorders, and as biomarkers for the detection of Alzheimer’s and Parkinson’s diseases. Detecting K-complexes is relatively difficult, as reliable methods of identifying this complex cannot be found in the literature. In this paper, we propose a new method for the automatic detection of K-complexes combining the method of recursion and reallocation of the Cohen class and the deep neural networks, obtaining a recursive strategy aimed at increasing the percentage of classification and reducing the computation time required to detect K-complexes by applying the proposed methods.
Collapse
Affiliation(s)
- Catalin Dumitrescu
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
- Correspondence:
| | - Ilona-Madalina Costea
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
| | - Angel-Ciprian Cormos
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
| | - Augustin Semenescu
- Department Engineering and Management for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
39
|
Cantuaria ML, Waldorff FB, Wermuth L, Pedersen ER, Poulsen AH, Thacher JD, Raaschou-Nielsen O, Ketzel M, Khan J, Valencia VH, Schmidt JH, Sørensen M. Residential exposure to transportation noise in Denmark and incidence of dementia: national cohort study. BMJ 2021; 374:n1954. [PMID: 34497091 PMCID: PMC8424489 DOI: 10.1136/bmj.n1954] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the association between long term residential exposure to road traffic and railway noise and risk of incident dementia. DESIGN Nationwide prospective register based cohort study. SETTING Denmark. PARTICIPANTS 1 938 994 adults aged ≥60 years living in Denmark between 1 January 2004 and 31 December 2017. MAIN OUTCOME MEASURES Incident cases of all cause dementia and dementia subtypes (Alzheimer's disease, vascular dementia, and Parkinson's disease related dementia), identified from national hospital and prescription registries. RESULTS The study population included 103 500 participants with incident dementia, and of those, 31 219 received a diagnosis of Alzheimer's disease, 8664 of vascular dementia, and 2192 of Parkinson's disease related dementia. Using Cox regression models, 10 year mean exposure to road traffic and railway noise at the most (Ldenmax) and least (Ldenmin) exposed façades of buildings were associated with a higher risk of all cause dementia. These associations showed a general pattern of higher hazard ratios with higher noise exposure, but with a levelling off or even small declines in risk at higher noise levels. In subtype analyses, both road traffic noise and railway noise were associated with a higher risk of Alzheimer's disease, with hazard ratios of 1.16 (95% confidence interval 1.11 to 1.22) for road Ldenmax ≥65 dB compared with <45 dB, 1.27 (1.22 to 1.34) for road Ldenmin ≥55 dB compared with <40 dB, 1.16 (1.10 to 1.23) for railway Ldenmax ≥60 dB compared with <40 dB, and 1.24 (1.17 to 1.30) for railway Ldenmin ≥50 dB compared with <40 dB. Road traffic, but not railway, noise was associated with an increased risk of vascular dementia. Results indicated associations between road traffic Ldenmin and Parkinson's disease related dementia. CONCLUSIONS This nationwide cohort study found transportation noise to be associated with a higher risk of all cause dementia and dementia subtypes, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Manuella Lech Cantuaria
- The Mærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frans Boch Waldorff
- Department of Public Health, The Research Unit for General Practice and Section of General Practice, University of Copenhagen, Copenhagen, Denmark
- Research Unit of General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lene Wermuth
- Department of Neurology, Slagelse Hospital, Slagelse, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ellen Raben Pedersen
- The Mærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Aslak Harbo Poulsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesse Daniel Thacher
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Victor H Valencia
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
40
|
Novozhilova M, Mishchenko T, Kondakova E, Lavrova T, Gavrish M, Aferova S, Franceschi C, Vedunova M. Features of age-related response to sleep deprivation: in vivo experimental studies. Aging (Albany NY) 2021; 13:19108-19126. [PMID: 34320466 PMCID: PMC8386558 DOI: 10.18632/aging.203372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Insomnia is currently considered one of the potential triggers of accelerated aging. The frequency of registered sleep-wake cycle complaints increases with age and correlates with the quality of life of elderly people. Nevertheless, whether insomnia is actually an age-associated process or whether it acts as an independent stress-factor that activates pathological processes, remains controversial. In this study, we analyzed the effects of long-term sleep deprivation modeling on the locomotor and orienting-exploratory activity, spatial learning abilities and working memory of C57BL/6 female mice of different ages. We also evaluated the modeled stress influence on morphological changes in brain tissue, the functional activity of the mitochondrial apparatus of nerve cells, and the level of DNA methylation and mRNA expression levels of the transcription factor HIF-1α (Hif1) and age-associated molecular marker PLIN2. Our findings point to the age-related adaptive capacity of female mice to the long-term sleep deprivation influence. For young (1.5 months) mice, the modeled sleep deprivation acts as a stress factor leading to weight loss against the background of increased food intake, the activation of animals' locomotor and exploratory activity, their mnestic functions, and molecular and cellular adaptive processes ensuring animal resistance both to stress and risk of accelerated aging development. Sleep deprivation in adult (7-9 months) mice is accompanied by an increase in body weight against the background of active food intake, increased locomotor and exploratory activity, gross disturbances in mnestic functions, and decreased adaptive capacity of brain cells, that potentially increasing the risk of pathological reactions and neurodegenerative processes.
Collapse
Affiliation(s)
- Maria Novozhilova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Kondakova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Tatiana Lavrova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maria Gavrish
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Svetlana Aferova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics (ITMM), National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
41
|
An Observational, Longitudinal Study of Cognition in Medical Cannabis Patients over the Course of 12 Months of Treatment: Preliminary Results. J Int Neuropsychol Soc 2021; 27:648-660. [PMID: 34261553 DOI: 10.1017/s1355617721000114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cannabis use has increased dramatically across the country; however, few studies have assessed the long-term impact of medical cannabis (MC) use on cognition. Studies examining recreational cannabis users generally report cognitive decrements, particularly in those with adolescent onset. As MC patients differ from recreational consumers in motives for use, product selection, and age of onset, we assessed cognitive and clinical measures in well-characterized MC patients over 1 year. Based on previous findings, we hypothesized MC patients would not show decrements and might instead demonstrate improvements in executive function over time. METHOD As part of an ongoing study, MC patients completed a baseline visit prior to initiating MC and evaluations following 3, 6, and 12 months of treatment. At each visit, patients completed a neurocognitive battery assessing executive function, verbal learning/memory, and clinical scales assessing mood, anxiety, and sleep. Exposure to delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) was also quantified. RESULTS Relative to baseline, MC patients demonstrated significant improvements on measures of executive function and clinical state over the course of 12 months; verbal learning/memory performance generally remained stable. Improved cognitive performance was not correlated with MC use; however, clinical improvement was associated with higher CBD use. Analyses suggest cognitive improvements were associated with clinical improvement. CONCLUSIONS Study results extend previous pilot findings, indicating that MC patients may exhibit enhanced rather than impaired executive function over time. Future studies should examine distinctions between recreational and MC use to identify potential mechanisms related to cognitive changes and the role of clinical improvement.
Collapse
|
42
|
Lee EJ, Kim SJ, Lee SH, Jang JW, Jhoo JH, Lee JH. Relationship of Subjective and Objective Sleep Quality with Caregiver Burden in Patients with Alzheimer’s Disease. SLEEP MEDICINE RESEARCH 2021. [DOI: 10.17241/smr.2020.00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Specific cortical and subcortical grey matter regions are associated with insomnia severity. PLoS One 2021; 16:e0252076. [PMID: 34038462 PMCID: PMC8153469 DOI: 10.1371/journal.pone.0252076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background There is an increasing awareness that sleep disturbances are a risk factor for dementia. Prior case-control studies suggested that brain grey matter (GM) changes involving cortical (i.e, prefrontal areas) and subcortical structures (i.e, putamen, thalamus) could be associated with insomnia status. However, it remains unclear whether there is a gradient association between these regions and the severity of insomnia in older adults who could be at risk for dementia. Since depressive symptoms and sleep apnea can both feature insomnia-related factors, can impact brain health and are frequently present in older populations, it is important to include them when studying insomnia. Therefore, our goal was to investigate GM changes associated with insomnia severity in a cohort of healthy older adults, taking into account the potential effect of depression and sleep apnea as well. We hypothesized that insomnia severity is correlated with 1) cortical regions responsible for regulation of sleep and emotion, such as the orbitofrontal cortex and, 2) subcortical regions, such as the putamen. Methods 120 healthy subjects (age 74.8±5.7 years old, 55.7% female) were recruited from the Hillblom Healthy Aging Network at the Memory and Aging Center, UCSF. All participants were determined to be cognitively healthy following a neurological evaluation, neuropsychological assessment and informant interview. Participants had a 3T brain MRI and completed the Insomnia Severity Index (ISI), Geriatric Depression Scale (GDS) and Berlin Sleep Questionnaire (BA) to assess sleep apnea. Cortical thickness (CTh) and subcortical volumes were obtained by the CAT12 toolbox within SPM12. We studied the correlation of CTh and subcortical volumes with ISI using multiple regressions adjusted by age, sex, handedness and MRI scan type. Additional models adjusting by GDS and BA were also performed. Results ISI and GDS were predominantly mild (4.9±4.2 and 2.5±2.9, respectively) and BA was mostly low risk (80%). Higher ISI correlated with lower CTh of the right orbitofrontal, right superior and caudal middle frontal areas, right temporo-parietal junction and left anterior cingulate cortex (p<0.001, uncorrected FWE). When adjusting by GDS, right ventral orbitofrontal and temporo-parietal junction remained significant, and left insula became significant (p<0.001, uncorrected FWE). Conversely, BA showed no effect. The results were no longer significant following FWE multiple comparisons. Regarding subcortical areas, higher putamen volumes were associated with higher ISI (p<0.01). Conclusions Our findings highlight a relationship between insomnia severity and brain health, even with relatively mild insomnia, and independent of depression and likelihood of sleep apnea. The results extend the previous literature showing the association of specific GM areas (i.e, orbitofrontal, insular and temporo-parietal junction) not just with the presence of insomnia, but across the spectrum of severity itself. Moreover, our results suggest subcortical structures (i.e., putamen) are involved as well. Longitudinal studies are needed to clarify how these insomnia-related brain changes in healthy subjects align with an increased risk of dementia.
Collapse
|
44
|
McConnell BV, Kronberg E, Teale PD, Sillau SH, Fishback GM, Kaplan RI, Fought AJ, Dhanasekaran AR, Berman BD, Ramos AR, McClure RL, Bettcher BM. The Aging Slow Wave: A Shifting Amalgam of Distinct Slow Wave and Spindle Coupling Subtypes Define Slow Wave Sleep Across the Human Lifespan. Sleep 2021; 44:6276901. [PMID: 33999194 PMCID: PMC8503831 DOI: 10.1093/sleep/zsab125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Slow wave and spindle coupling supports memory consolidation, and loss of coupling is linked with cognitive decline and neurodegeneration. Coupling is proposed to be a possible biomarker of neurological disease, yet little is known about the different subtypes of coupling that normally occur throughout human development and aging. Here we identify distinct subtypes of spindles within slow wave upstates and describe their relationships with sleep stage across the human lifespan. METHODS Coupling within a cross-sectional cohort of 582 subjects was quantified from stages N2 and N3 sleep across ages 6-88 years old. Results were analyzed across the study population via mixed model regression. Within a subset of subjects, we further utilized coupling to identify discrete subtypes of slow waves by their coupled spindles. RESULTS Two different subtypes of spindles were identified during the upstates of (distinct) slow waves: an "early-fast" spindle, more common in stage N2 sleep, and a "late-fast" spindle, more common in stage N3. We further found stages N2 and N3 sleep contain a mixture of discrete subtypes of slow waves, each identified by their unique coupled-spindle timing and frequency. The relative contribution of coupling subtypes shifts across the human lifespan, and a deeper sleep phenotype prevails with increasing age. CONCLUSIONS Distinct subtypes of slow waves and coupled spindles form the composite of slow wave sleep. Our findings support a model of sleep-dependent synaptic regulation via discrete slow wave/spindle coupling subtypes and advance a conceptual framework for the development of coupling-based biomarkers in age-associated neurological disease.
Collapse
Affiliation(s)
- Brice V McConnell
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Eugene Kronberg
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter D Teale
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stefan H Sillau
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Grace M Fishback
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rini I Kaplan
- Psychological & Brain Sciences Boston University, Boston, MA, USA
| | - Angela J Fought
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Brian D Berman
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.,Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Alberto R Ramos
- Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Brianne M Bettcher
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
45
|
Association between sleep quality and subjective cognitive decline: evidence from a community health survey. Sleep Med 2021; 83:123-131. [PMID: 33993029 DOI: 10.1016/j.sleep.2021.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Little is known concerning whether subjective cognitive decline (SCD) is associated with sleep quality. This study aimed to identify the association between self-reported quality of sleep and SCD in a large population of middle-aged and older adults in Korea. METHODS We conducted this study based on data collected from the 2018 Korean Community Health Survey. Individuals aged 40 years and older who responded to the Behavioral Risk Factor Surveillance System (BRFSS) and Pittsburgh Sleep Quality Index (PSQI) assessments and did not lack data about multiple covariates were included. A total of 37,712 respondents with SCD and 135,119 those without SCD were included. Sleep quality was estimated using the PSQI, which includes seven self-reported components for sleep health assessment. SCD was assessed using the BRFSS. Logistic regression models adjusted for confounders were used to examine whether each component of the sleep quality index was related to SCD. Additional analysis of the correlation between quantified scores for each component and SCD-related functional limitations as ordinal variables was performed. RESULTS The mean age was 62.7 years in the SCD group and 56.4 years in the control group. In total, 13,777 (28.9%) respondents were male in the SCD group and 62,439 (50.7%) in the control group. The adjusted odds ratios of SCD were 1.25 for very bad sleep quality, 1.26 for long sleep latency, 1.16 for <5 h of sleep duration, 1.08 for <65% habitual sleep efficiency, 2.29 for high sleep disturbance, 1.26 for use of sleep medication ≥3 times a week, and 2.47 for high daytime dysfunction due to sleep problems compared to good sleep conditions. Furthermore, a higher score for each component of the sleep quality index correlated with greater SCD-related functional limitations. CONCLUSIONS Our study provides evidence that poor sleep quality is closely related to both SCD and SCD-related functional limitations.
Collapse
|
46
|
Cordone S, Scarpelli S, Alfonsi V, De Gennaro L, Gorgoni M. Sleep-Based Interventions in Alzheimer's Disease: Promising Approaches from Prevention to Treatment along the Disease Trajectory. Pharmaceuticals (Basel) 2021; 14:ph14040383. [PMID: 33921870 PMCID: PMC8073746 DOI: 10.3390/ph14040383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The multifactorial nature of Alzheimer’s disease (AD) has led scientific researchers to focus on the modifiable and treatable risk factors of AD. Sleep fits into this context, given the bidirectional relationship with AD confirmed by several studies over the last years. Sleep disorders appear at an early stage of AD and continue throughout the entire course of the pathology. Specifically, sleep abnormalities, such as more fragmented sleep, increase in time of awakenings, worsening of sleep quality and primary sleep disorders raise with the severity and progression of AD. Intervening on sleep, therefore, means acting both with prevention strategies in the pre-clinical phase and with treatments during the course of the disease. This review explores sleep disturbances in the different stages of AD, starting from the pre-clinical stage. Particular attention is given to the empirical evidence investigating obstructive sleep apnea (OSA) disorder and the mechanisms overlapping and sharing with AD. Next, we discuss sleep-based intervention strategies in the healthy elderly population, mild cognitive impairment (MCI) and AD patients. We mention interventions related to behavioral strategies, combination therapies, and bright light therapy, leaving extensive space for new and raising evidence on continuous positive air pressure (CPAP) treatment effectiveness. Finally, we clarify the role of NREM sleep across the AD trajectory and consider the most recent studies based on the promising results of NREM sleep enhancement, which use innovative experimental designs and techniques.
Collapse
Affiliation(s)
- Susanna Cordone
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Serena Scarpelli
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| | | | - Luigi De Gennaro
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Correspondence:
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| |
Collapse
|
47
|
Herrero MA, Gallego R, Ramos M, Lopez JM, de Arcas G, Gonzalez-Nieto D. Sleep-Wake Cycle and EEG-Based Biomarkers during Late Neonate to Adult Transition. Brain Sci 2021; 11:brainsci11030298. [PMID: 33673399 PMCID: PMC7996792 DOI: 10.3390/brainsci11030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022] Open
Abstract
During the transition from neonate to adulthood, brain maturation establishes coherence between behavioral states—wakefulness, non-rapid eye movement, and rapid eye movement sleep. In animal models few studies have characterized and analyzed cerebral rhythms and the sleep–wake cycle in early ages, in relation to adulthood. Since the analysis of sleep in early ages can be used as a predictive model of brain development and the subsequent emergence of neural disturbances in adults, we performed a study on late neonatal mice, an age not previously characterized. We acquired longitudinal 24 h electroencephalogram and electromyogram recordings and performed time and spectral analyses. We compared both age groups and found that late neonates: (i) spent more time in wakefulness and less time in non-rapid eye movement sleep, (ii) showed an increased relative band power in delta, which, however, reduced in theta during each behavioral state, (iii) showed a reduced relative band power in beta during wakefulness and non-rapid eye movement sleep, and (iv) manifested an increased total power over all frequencies. The data presented here might have implications expanding our knowledge of cerebral rhythms in early ages for identification of potential biomarkers in preclinical models of neurodegeneration.
Collapse
Affiliation(s)
- Miguel A. Herrero
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.A.H.); (R.G.); (M.R.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Topografía, Universidad Politécnica de Madrid, 28031 Madrid, Spain;
- Laboratorio de Neuroacústica, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Rebeca Gallego
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.A.H.); (R.G.); (M.R.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.A.H.); (R.G.); (M.R.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Juan Manuel Lopez
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Topografía, Universidad Politécnica de Madrid, 28031 Madrid, Spain;
- Laboratorio de Neuroacústica, Universidad Politécnica de Madrid, 28031 Madrid, Spain
- Departamento de Ingeniería Telemática y Electrónica, ETSI Sistemas de Telecomunicación, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Guillermo de Arcas
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Topografía, Universidad Politécnica de Madrid, 28031 Madrid, Spain;
- Laboratorio de Neuroacústica, Universidad Politécnica de Madrid, 28031 Madrid, Spain
- Departamento de Ingeniería Mecánica, ETSI Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
- Correspondence: (G.d.A.); (D.G.-N.); Tel.: +34-910678951 (G.d.A.); +34-910679280 (D.G.-N.)
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.A.H.); (R.G.); (M.R.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Laboratorio de Neuroacústica, Universidad Politécnica de Madrid, 28031 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (G.d.A.); (D.G.-N.); Tel.: +34-910678951 (G.d.A.); +34-910679280 (D.G.-N.)
| |
Collapse
|
48
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
49
|
Holton CM, Hanley N, Shanks E, Oxley P, McCarthy A, Eastwood BJ, Murray TK, Nickerson A, Wafford KA. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration. ALZHEIMERS RESEARCH & THERAPY 2020; 12:84. [PMID: 32669112 PMCID: PMC7364634 DOI: 10.1186/s13195-020-00651-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 01/13/2023]
Abstract
Background Disturbed sleep is associated with cognitive decline in neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The progressive sequence of how neurodegeneration affects aspects of sleep architecture in conjunction with behavioural changes is not well understood. Methods We investigated changes in sleep architecture, spectral power and circadian rhythmicity in the tet-off rTg4510 mouse overexpressing human P301L tau within the same subjects over time. Doxycycline-induced transgene-suppressed rTg4510 mice, tTa carriers and wild-type mice were used as comparators. Spectral power and sleep stages were measured from within the home cage environment using EEG electrodes. In addition, locomotor activity and performance during a T-maze task were measured. Results Spectral power in the delta and theta bands showed a time-dependent decrease in rTg4510 mice compared to all other groups. After the initial changes in spectral power, wake during the dark period increased whereas NREM and number of REM sleep bouts decreased in rTg4510 compared to wild-type mice. Home cage locomotor activity in the dark phase significantly increased in rTg4510 compared to wild-type mice by 40 weeks of age. Peak-to-peak circadian rhythm amplitude and performance in the T-maze was impaired throughout the experiment independent of time. At 46 weeks, rTG4510 mice had significant degeneration in the hippocampus and cortex whereas doxycycline-treated rTG4510 mice were protected. Pathology significantly correlated with sleep and EEG outcomes, in addition to locomotor and cognitive measures. Conclusions We show that reduced EEG spectral power precedes reductions in sleep and home cage locomotor activity in a mouse model of tauopathy. The data shows increasing mutant tau changes sleep architecture, EEG properties, behaviour and cognition, which suggest tau-related effects on sleep architecture in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- C M Holton
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - N Hanley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E Shanks
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - P Oxley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A McCarthy
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - B J Eastwood
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Nickerson
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - K A Wafford
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK.
| |
Collapse
|
50
|
Um YH, Lim HK. Orexin and Alzheimer's Disease: A New Perspective. Psychiatry Investig 2020; 17:621-626. [PMID: 32517419 PMCID: PMC7385219 DOI: 10.30773/pi.2020.0136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Orexin's role in human cognition has recently been emphasized and emerging evidences indicate its close relationship with Alzheimer's disease (AD). This review aimed to demonstrate recent research on the relationship between orexin and AD. Orexin's role in stress regulation and memory is discussed, with significant findings related to sexual disparities in stress response, with potential clinical implications pertaining to AD pathology. There are controversies regarding the orexin levels in AD patients, but the role of orexin in the trajectory of AD is still emphasized in recent literatures. Orexin is also accentuated in the context of tau pathology, and orexin as a potential therapeutic target for AD is frequently discussed. Future directions with regard to the relationship between orexin and AD are suggested: 1) consideration for AD trajectory in the measurement of orexin levels, 2) the need for objective measure such as polysomnography and actigraphy, 3) the need for close observation of cognitive profiles of orexin-deficient narcolepsy patients, 4) the need for validation studies by neuroimaging 5) the need for taking account sexual disparities in orexinergic activiation, and 6) consideration for orexin's role as a stress regulator. The aforementioned new perspectives could help unravel the relationship between orexin and AD.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|