1
|
Xu H, Chen Y, Li J, Li M, Sun M, Chen J, Li L, Xue Q, Ma H. Altering the competitive environment of B cell epitopes significantly extends the duration of antibody production. Int Immunol 2024; 36:517-528. [PMID: 38708774 DOI: 10.1093/intimm/dxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/04/2024] [Indexed: 05/07/2024] Open
Abstract
Persistent immunoglobulin G (IgG) production (PIP) provides long-term vaccine protection. While variations in the duration of protection have been observed with vaccines prepared from different pathogens, little is known about the factors that determine PIP. Here, we investigated the impact of three parameters on the duration of anti-peptide IgG production, namely amino acid sequences, protein carriers, and immunization programs. We show that anti-peptide IgG production can be transformed from transient IgG production (TIP) to PIP, by placing short peptides (Pi) containing linear B cell epitopes in different competitive environments using bovine serum albumin (BSA) conjugates instead of the original viral particles. When goats were immunized with the peste des petits ruminants (PPR) live-attenuated vaccine (containing Pi as the constitutive component) and BSA-Pi conjugate, anti-Pi IgG production exhibited TIP (duration < 60 days) and PIP (duration > 368 days), respectively. Further, this PIP was unaffected by subsequent immunization with the PPR live-attenuated vaccine in the same goat. When goats were coimmunized with PPR live-attenuated vaccine and BSA-Pi, the induced anti-Pi IgG production showed a slightly extended TIP (from ~60 days to ~100 days). This discovery provides new perspectives for studying the fate of plasma cells in humoral immune responses and developing peptide vaccines related to linear neutralizing epitopes from various viruses.
Collapse
Affiliation(s)
- Hongke Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mengyu Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Ling Li
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
2
|
Huang CY, Su SB, Chen KT. A review of enterovirus-associated hand-foot and mouth disease: preventive strategies and the need for a global enterovirus surveillance network. Pathog Glob Health 2024:1-11. [PMID: 39229797 DOI: 10.1080/20477724.2024.2400424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Enterovirus (EV)-associated hand, foot, and mouth disease (HFMD) is a significant public health issue worldwide, commonly occurring in children five years of age or younger. The leading causes of most HFMD cases are EVs, which are members of the Picornaviridae family. The typical clinical manifestations of EV-associated HFMD are febrile presentations with mucosal herpangina, oral ulcerations, and skin rashes on the hands and feet. The majority of HFMD cases resolve without consequence; however, a subset progresses to severe neurological and cardiopulmonary complications, which can be fatal. In the past two decades, EV-associated HFMD has received significant attention. In this review, we organize published papers and provide updates on epidemiology, pathogenesis, surveillance, and vaccine developments for EV-associated HFMD. The impact of EV-associated HFMD is increasing globally. Developing efficacious vaccines has become a priority for preventing EV infections without adequate treatment. Simultaneously, emerging EV infections (including EV-D68, EV-A71, Coxsackieviruses, and echoviruses) are increasing, highlighting the need to create a vigilant surveillance system for EV infections worldwide.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Chen Y, Nguyet LA, Nhan LNT, Qui PT, Nhu LNT, Hong NTT, Ny NTH, Anh NT, Thanh LK, Phuong HT, Vy NHT, Thanh NTL, Khanh TH, Hung NT, Viet DC, Nam NT, Chau NVV, van Doorn HR, Tan LV, Clapham H. Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity. Epidemics 2024; 46:100754. [PMID: 38428358 PMCID: PMC10945305 DOI: 10.1016/j.epidem.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
Collapse
Affiliation(s)
- Yining Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - Phan Tu Qui
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | | | | | - Do Chau Viet
- Children's Hospital 2, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Van Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
4
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
5
|
Wang Y, Ji W, Li D, Sun T, Zhu P, Li J, Zhang L, Zhang Y, Yang H, Chen S, Jin Y, Duan G. Active inoculation with an inactivated Coxsackievirus A2 vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2023; 41:6470-6482. [PMID: 37718187 DOI: 10.1016/j.vaccine.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
7
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Hand-Foot-and-Mouth Disease-Associated Enterovirus and the Development of Multivalent HFMD Vaccines. Int J Mol Sci 2022; 24:ijms24010169. [PMID: 36613612 PMCID: PMC9820767 DOI: 10.3390/ijms24010169] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is an infectious disease of children caused by more than 20 types of enteroviruses, with most cases recovering spontaneously within approximately one week. Severe HFMD in individual children develops rapidly, leading to death, and is associated with other complications such as viral myocarditis and type I diabetes mellitus. The approval and marketing of three inactivated EV-A71 vaccines in China in 2016 have provided a powerful tool to curb the HFMD epidemic but are limited in cross-protecting against other HFMD-associated enteroviruses. This review focuses on the epidemiological analysis of HFMD-associated enteroviruses since the inactivated EV-A71 vaccine has been marketed, collates the progress in the development of multivalent enteroviruses vaccines in different technical routes reported in recent studies, and discusses issues that need to be investigated for safe and effective HFMD multivalent vaccines.
Collapse
|
9
|
Novikov DV, Melentev DA. [Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines]. Vopr Virusol 2022; 67:185-192. [PMID: 35831961 DOI: 10.36233/0507-4088-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
Collapse
Affiliation(s)
- D V Novikov
- 1Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
| | - D A Melentev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology; N.I. Lobachevsky State University of Nizhny Novgorod
| |
Collapse
|
10
|
Setia A, Bhatia J, Bhattacharya S. An Overview of Acute Flaccid Myelitis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:774-794. [PMID: 34823462 DOI: 10.2174/1871527320666211125101424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Acute Flaccid Myelitis is defined by the presence of Acute Flaccid Paralysis (AFP) and a spinal cord lesion on magnetic resonance imaging that is primarily limited to the grey matter. AFM is a difficult situation to deal with when you have a neurologic illness. According to the Centers for Disease Control and Prevention (CDC), a large number of cases were discovered in the United States in 2014, with 90% of cases occurring in children. Although the exact cause of AFM is unknown, mounting evidence suggests a link between AFM and enterovirus D68 (EV-D68). In 2014, an outbreak of AFM was discovered in the United States. The condition was initially linked to polioviruses; however, it was later found that the viruses were caused by non-polioviruses Enteroviruses D-68 (EV-D68). The number of cases has increased since 2014, and the disease has been declared pandemic in the United States. The sudden onset of muscle weakness, usually in an arm or leg, as well as pain throughout the body, the change in patient's facial expression (facial weakness), and shortness of breath, ingesting, and speaking are all common symptoms in patients suffering from neurologic disease. This article includes graphic and histogram representations of reported AFM incidents and criteria for causality, epidemiology, various diagnostic approaches, signs and symptoms, and various investigational guidelines. It also includes key statements about recent clinical findings related to AFM disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Jasween Bhatia
- Department of Masters in Public Health Science, Symbiosis Institute of Health Science, Pune-411042, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management Shirpur, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
11
|
Poh CL, Lalani S. Strategies to identify and develop antiviral peptides. VITAMINS AND HORMONES 2021; 117:17-46. [PMID: 34420580 DOI: 10.1016/bs.vh.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence and re-emergence of viral pathogens capable of causing epidemics or pandemics pose a serious healthcare burden. Small molecule antivirals used in conventional therapy have given rise to the severe problem of viral resistance against them. Peptides are generally considered safe, effective and are less likely to induce viral resistance. Antiviral peptides can be identified from screening of phage display of combinational peptide libraries, peptide array libraries or designed against viral targets. Limitations of peptides such as bioavailability can be improved with chemical modifications. Nanotechnology can further improve the stability of peptides in systemic circulation and enhance the antiviral activity of peptides, making them an appealing therapeutic option.
Collapse
Affiliation(s)
- Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Salima Lalani
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia; Department of Biological Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
12
|
Luo J, Huo C, Qin H, Hu J, Lei L, Pan Z. Chimeric enterovirus 71 virus-like particle displaying conserved coxsackievirus A16 epitopes elicits potent immune responses and protects mice against lethal EV71 and CA16 infection. Vaccine 2021; 39:4135-4143. [PMID: 34116877 DOI: 10.1016/j.vaccine.2021.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Hand-foot-and-mouth disease (HFMD) is an infectious disease of infants and young children frequently caused by the enterovirus A species, mainly enterovirus 71 (EV71) and coxsackievirus A16 (CA16). In this study, we prepared the EV71 virus-like particle (EV71-VLP) and its chimeras using recombinant baculovirus (Bac-P1-3CD) co-expressing EV71 P1 (under polyhedrin promoter) and 3CD (under CMV-IE promoter) proteins in Sf9 cells. EV71-VLP chimera ChiEV71(1E)-VLP or ChiEV71(4E)-VLP displayed single CA16 PEP71 epitope in VP1 or four conserved CA16 neutralizing epitopes (PEP71 in VP1, aa136-150 in VP2, aa176-190 in VP3 and aa48-62 in VP4) by substitution of the corresponding regions of EV71 structure proteins, respectively. In mice, EV71-VLP and its chimeras elicited similar EV71-specific IgG and neutralizing antibody (NAb) titers compared to inactivated EV71. Expectedly, vaccination of ChiEV71(1E)-VLP or ChiEV71(4E)-VLP resulted in significantly increased CA16-specific IgG and NAb production and improved cross-protection against CA16 infection compared to EV71-VLP. Interestingly, the VLPs induced potent cellular immune responses and significantly decreased Th2 type (IL-4 and IL-10) cytokines secretion in the splenocytes of immunized mice compared to inactivated EV71 or inactivated CA16. Neonatal mice born to dams immunized with the chimeric VLPs or neonatal mice passively transferred with sera of immunized mice were completely protected from lethal EV71 challenge and partially protected from lethal CA16 infection. Our study provides a novel bivalent or multivalent vaccine strategy to prevent EV71 and related-enterovirus infections.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunling Huo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junhong Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Shi W, Qiu Q, Feng Z, Tong Z, Guo W, Zou F, Yue N, Huang W, Qian H. Design, synthesis and immunological evaluation of self-assembled antigenic peptides from dual-antigen targets: a broad-spectrum candidate for an effective antibreast cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002523. [PMID: 34083420 PMCID: PMC8183215 DOI: 10.1136/jitc-2021-002523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Considering the narrow immune response spectrum of a single epitope, and the nanoparticles (NPs) as a novel adjuvant can achieve efficient delivery of antigenic peptides safely, a nano-system (denoted as DSPE-PEG-Man@EM-NPs) based on cathepsin B-responsive antigenic peptides was designed and synthesized. Methods Highly affinitive antigenic peptides were delivered by self-assembled NPs, and targeted erythrocyte membranes acted as a peptide carrier to improve antigenic peptides presentation and to strengthen cytotoxic T-cells reaction. Cathepsin B coupling could release antigenic peptides rapidly in dendritic cells. Results Evaluations showed that DSPE-PEG-Man@EM-NPs had obvious inhibitory effects towards both MCF-7 and MDA-MB-231 human breast cancer cell lines. Conclusion Overall, this strategy provides a novel strategy for boosting cytotoxic T lymphocytes response, thereby expanding the adaptation range of tumor antigenic peptides and improving the therapeutic effect of tumor immunotherapy with nanomedicine.
Collapse
Affiliation(s)
- Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.,School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng 224002, China
| | - Ziying Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhenzhen Tong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Weiwei Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China .,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| |
Collapse
|
14
|
Böhnke J, Pinkert S, Schmidt M, Binder H, Bilz NC, Jung M, Reibetanz U, Beling A, Rujescu D, Claus C. Coxsackievirus B3 Infection of Human iPSC Lines and Derived Primary Germ-Layer Cells Regarding Receptor Expression. Int J Mol Sci 2021; 22:1220. [PMID: 33513663 PMCID: PMC7865966 DOI: 10.3390/ijms22031220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The association of members of the enterovirus family with pregnancy complications up to miscarriages is under discussion. Here, infection of two different human induced pluripotent stem cell (iPSC) lines and iPSC-derived primary germ-layer cells with coxsackievirus B3 (CVB3) was characterized as an in vitro cell culture model for very early human development. Transcriptomic analysis of iPSC lines infected with recombinant CVB3 expressing enhanced green fluorescent protein (EGFP) revealed a reduction in the expression of pluripotency genes besides an enhancement of genes involved in RNA metabolism. The initial distribution of CVB3-EGFP-positive cells within iPSC colonies correlated with the distribution of its receptor coxsackie- and adenovirus receptor (CAR). Application of anti-CAR blocking antibodies supported the requirement of CAR, but not of the co-receptor decay-accelerating factor (DAF) for infection of iPSC lines. Among iPSC-derived germ-layer cells, mesodermal cells were especially vulnerable to CVB3-EGFP infection. Our data implicate further consideration of members of the enterovirus family in the screening program of human pregnancies. Furthermore, iPSCs with their differentiation capacity into cell populations of relevant viral target organs could offer a reliable screening approach for therapeutic intervention and for assessment of organ-specific enterovirus virulence.
Collapse
Affiliation(s)
- Janik Böhnke
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| | - Sandra Pinkert
- Institute of Biochemistry, Berlin Institute of Health (BIH) and Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.P.); (A.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Side, 10115 Berlin, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Nicole Christin Bilz
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| | - Matthias Jung
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Martin Luther University Halle Wittenberg, Julius-Kuehn-Strasse 7, 06112 Halle (Saale), Germany; (M.J.); (D.R.)
| | - Uta Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Antje Beling
- Institute of Biochemistry, Berlin Institute of Health (BIH) and Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.P.); (A.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Side, 10115 Berlin, Germany
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Martin Luther University Halle Wittenberg, Julius-Kuehn-Strasse 7, 06112 Halle (Saale), Germany; (M.J.); (D.R.)
| | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| |
Collapse
|
15
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
16
|
Hoa-Tran TN, Dao ATH, Nguyen AT, Kataoka C, Takemura T, Pham CH, Vu HM, Hong TTT, Ha NTV, Duong TN, Thanh NTH, Shimizu H. Coxsackieviruses A6 and A16 associated with hand, foot, and mouth disease in Vietnam, 2008-2017: Essential information for rational vaccine design. Vaccine 2020; 38:8273-8285. [PMID: 33223308 DOI: 10.1016/j.vaccine.2020.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Development of multivalent hand, foot, and mouth disease (HFMD) vaccines against enterovirus A71 (EV-A71) and several non-EV-A71 enteroviruses is needed for this life-threatening disease with a huge economic burden in Asia-Pacific countries. Comprehensive studies on the molecular epidemiology and genetic and antigenic characterization of major causative enteroviruses will provide information for rational vaccine design. Compared with molecular studies on EV-A71, that for non-EV-A71 enteroviruses remain few and limited in Vietnam. Therefore, we conducted a 10-year study on the circulation and genetic characterization of coxsackievirus A16 (CV-A16) and CV-A6 isolated from patients with HFMD in Northern Vietnam between 2008 and 2017. Enteroviruses were detected in 2228 of 3212 enrolled patients. Of the 42 serotypes assigned, 28.4% and 22.4% accounted for CV-A6 and CV-A16, being the second and the third dominant serotypes after EV-A71 (31.7%), respectively. The circulation of CV-A16 and CV-A6 showed a wide geographic distribution and distinct periodicity. Phylogenetic analyses revealed that the majority of Vietnamese CV-A6 and CV-A16 strains were located within the largest sub-genotypes or sub-genogroups. These comprised strains isolated from patients with HFMD worldwide during the past decade and the Vietnamese strains have been evolving in a manner similar to the strains circulating worldwide. Amino acid sequences of the putative functional loops on VP1 and other VPs among Vietnamese CV-A6 and CV-A16 isolates were highly conserved. Moreover, the functional loop patterns of VP1 were similar to the dominant patterns found worldwide, except for the T164K substitution on the EF loop in Vietnamese CV-A16. The findings suggest that the development of a universal HFMD vaccine, at least in Vietnam, must target CV-A6 and CV-A16 as two of the three major HFMD-causing serotypes. Vietnamese isolates or their genome sequences can be considered for rational vaccine design.
Collapse
Affiliation(s)
| | - Anh Thi Hai Dao
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anh The Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Chikako Kataoka
- The Research Foundation for Microbial Diseases of Osaka University, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chau Ha Pham
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hung Manh Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Ta Thi Thu Hong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Nguyen Thi Viet Ha
- Hanoi Medical University, Hanoi, Viet Nam; National Children's Hospital, Hanoi, Viet Nam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Kim S, Bae KS, Kim JH, Kang JH, Choi UY. Seroprevalence of Neutralizing Antibodies Against Candidate Serotypes of Enterovirus Vaccines Among Korean Children. Viral Immunol 2020; 34:62-67. [PMID: 33030408 DOI: 10.1089/vim.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a pediatric public health concern in Asia. Surveillance data on the circulating serotypes of HFMD suggest that Enterovirus A71 (EV-A71) and coxsackieviruses A6, A10, and A16 (CVA6, CVA10, and CVA16) are the major serotypes causing HFMD. Asian countries, including Korea, are currently developing a multivalent vaccine targeting these serotypes. However, the immunity of children against specific serotypes, indicating past infection, should also be considered while selecting candidate serotypes for vaccine development. Therefore, we aimed to identify the age-stratified serological statuses of Korean children to determine candidate serotypes for HFMD vaccine development. This study included 220 participants, categorized into four age groups, 7 months-2 years, 3-5 years, 6-10 years, and 11-15 years. A neutralization test was performed to quantitate the neutralizing antibodies (NtAbs) in the sera of the participants. Only EV-A71 and CVA6 were found suitable as candidate serotypes for vaccine development, whereas further study is needed for CVA10 and CVA16. The highest seropositivity and NtAb titer ranges were observed for CVA6 in all age groups, suggesting that the participants had been predominantly exposed to CVA6. For EV-A71, seropositivity and NtAb titer ranges steadily increased with age, suggesting that children were currently exposed to EV-A71. For CVA10, the 3-5 years group showed the highest seropositivity rate and higher NtAb titer ranges than the older age groups, indicating that the exposure to CVA10 had mainly occurred in recent years. Future studies will identify whether the exposure to CVA10 was transient or will continue. For CVA16, seropositivity and NtAb titer ranges were generally low, indicating that only a few participants had been exposed to CVA16. We identified discrepancies between the sentinel surveillance data and our findings. This study provides a new perspective for HFMD vaccine development and policy making in Asian countries.
Collapse
Affiliation(s)
- Sol Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kil Seong Bae
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Pediatrics, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Hyun Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Han Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ui Yoon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Pediatrics, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
18
|
From Monovalent to Multivalent Vaccines, the Exploration for Potential Preventive Strategies Against Hand, Foot, and Mouth Disease (HFMD). Virol Sin 2020; 36:167-175. [PMID: 32997323 PMCID: PMC7525078 DOI: 10.1007/s12250-020-00294-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) recently emerged as a global public threat. The licensure of inactivated enterovirus A71 (EV-A71) vaccine was the first step in using a vaccine to control HFMD. New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage. The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines. The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes. The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a cross-protective antibody response.
Collapse
|
19
|
Mishu ID, Akter S, Alam ASMRU, Hossain MA, Sultana M. In silico Evolutionary Divergence Analysis Suggests the Potentiality of Capsid Protein VP2 in Serotype-Independent Foot-and-Mouth Disease Virus Detection. Front Vet Sci 2020; 7:592. [PMID: 33102548 PMCID: PMC7546019 DOI: 10.3389/fvets.2020.00592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 02/03/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an economically devastating disease of the livestock worldwide and caused by the FMD virus (FMDV), which has seven immunologically distinct serotypes (O, A, Asia1, C, and SAT1-SAT3). Studies suggest that VP2 is relatively conserved among three surface-exposed capsid proteins (VP1-VP3) of FMDV, but the level of conservation has not yet been reported. Here we analyzed the comparative evolutionary divergence of VP2 and VP1 to determine the level of conservation in VP2 at different hierarchical levels of three FMDV serotypes (O, A, and Asia1) currently circulating in Asia through an in-depth computational analysis of 14 compiled datasets and designed a consensus VP2 protein that can be used for the development of a serotype-independent FMDV detection tool. The phylogenetic analysis clearly represented a significant level of conservation in VP2 over VP1 at each subgroup level. The protein variability analysis and mutational study showed the presence of 67.4% invariant amino acids in VP2, with the N-terminal end being highly conserved. Nine inter-serotypically conserved fragments located on VP2 have been identified, among which four sites showed promising antigenicity value and surface exposure. The designed 130 amino acid long consensus VP2 protein possessed six surface-exposed B cell epitopes, which suggests the possible potentiality of the protein for the development of a serotype-independent FMDV detection tool in Asia. Conclusively, this is the first study to report the comparative evolutionary divergence between VP2 and VP1, along with proposing the possible potentiality of a designed protein candidate in serotype-independent FMDV detection.
Collapse
Affiliation(s)
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
20
|
Song Y, Zhang Y, Han Z, Xu W, Xiao J, Wang X, Wang J, Yang J, Yu Q, Yu D, Chen J, Huang W, Li J, Xie T, Lu H, Ji T, Yang Q, Yan D, Zhu S, Xu W. Genetic recombination in fast-spreading coxsackievirus A6 variants: a potential role in evolution and pathogenicity. Virus Evol 2020; 6:veaa048. [PMID: 34804589 PMCID: PMC8597624 DOI: 10.1093/ve/veaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common global epidemic. From 2008
onwards, many HFMD outbreaks caused by coxsackievirus A6 (CV-A6) have been
reported worldwide. Since 2013, with a dramatically increasing number of
CV-A6-related HFMD cases, CV-A6 has become the predominant HFMD pathogen in
mainland China. Phylogenetic analysis based on the VP1 capsid
gene revealed that subtype D3 dominated the CV-A6 outbreaks. Here, we performed
a large-scale (near) full-length genetic analysis of global and Chinese CV-A6
variants, including 158 newly sequenced samples collected extensively in
mainland China between 2010 and 2018. During the global transmission of subtype
D3 of CV-A6, the noncapsid gene continued recombining, giving rise to a series
of viable recombinant hybrids designated evolutionary lineages, and each lineage
displayed internal consistency in both genetic and epidemiological features. The
emergence of lineage –A since 2005 has triggered CV-A6 outbreaks
worldwide, with a rate of evolution estimated at
4.17 × 10−3 substitutions
site-1 year−1 based on a
large number of monophyletic open reading frame sequences, and created a series
of lineages chronologically through varied noncapsid recombination events. In
mainland China, lineage –A has generated another two novel widespread
lineages (–J and –L) through recombination within the
enterovirus A gene pool, with robust estimates of occurrence time. Lineage
–A, –J, and –L infections presented dissimilar clinical
manifestations, indicating that the conservation of the CV-A6 capsid gene
resulted in high transmissibility, but the lineage-specific noncapsid gene might
influence pathogenicity. Potentially important amino acid substitutions were
further predicted among CV-A6 variants. The evolutionary phenomenon of noncapsid
polymorphism within the same subtype observed in CV-A6 was uncommon in other
leading HFMD pathogens; such frequent recombination happened in fast-spreading
CV-A6, indicating that the recovery of deleterious genomes may still be ongoing
within CV-A6 quasispecies. CV-A6-related HFMD outbreaks have caused a
significant public health burden and pose a great threat to children’s
health; therefore, further surveillance is greatly needed to understand the full
genetic diversity of CV-A6 in mainland China.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianfang Yang
- Shanxi Center for Disease Control and Prevention, Taiyuan, Shanxi Province, China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Jianhua Chen
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - Tong Xie
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China.,Anhui University of Science and Technology, Anhui Province, China
| |
Collapse
|
21
|
Houen G, Trier N. Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting. Int J Mol Sci 2020; 21:ijms21041405. [PMID: 32092996 PMCID: PMC7073054 DOI: 10.3390/ijms21041405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Molecular recognition, the specific interaction between molecules by a combination of physical forces, has been a subject of scientific investigation for decades [...].
Collapse
|
22
|
Genetic characterization of VP1 of coxsackieviruses A2, A4, and A10 associated with hand, foot, and mouth disease in Vietnam in 2012-2017: endemic circulation and emergence of new HFMD-causing lineages. Arch Virol 2020; 165:823-834. [PMID: 32008121 DOI: 10.1007/s00705-020-04536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
While conducting sentinel surveillance of hand, foot, and mouth disease (HFMD) in Vietnam, we found a sudden increase in the prevalence of coxsackievirus A10 (CV-A10) in 2016 and CV-A2 and CV-A4 in 2017, the emergence of which has been reported recently to be associated with various clinical manifestations in other countries. However, there have been only a limited number of molecular studies on those serotypes, with none being conducted in Vietnam. Therefore, we sequenced the entire VP1 genes of CV-A10, CV-A4, and CV-A2 strains associated with HFMD in Vietnam between 2012 and 2017. Phylogenetic analysis revealed a trend of endemic circulation of Vietnamese CV-A10, CV-A4, and CV-A2 strains and the emergence of thus-far undescribed HFMD-causing lineages of CV-A4 and CV-A2. The Vietnamese CV-A10 strains belonged to a genotype comprising isolates from patients with HFMD from several other countries; however, most of the Vietnamese strains were grouped into a local lineage. Recently, emerging CV-A4 strains in Vietnam were grouped into a unique lineage within a genotype comprising strains isolated from patients with acute flaccid paralysis from various countries. New substitutions were detected in the putative BC and HI loops in the Vietnamese CV-A4 strains. Except for one strain, Vietnamese CV-A2 isolates were grouped into a unique lineage of a genotype that includes strains from various countries that are associated with other clinical manifestations. Enhanced surveillance is required to monitor their spread and to specify their roles as etiological agents of HFMD or "HFMD-like" diseases, especially for CV-A4 and CV-A2. Further studies including whole-genome sequencing should be conducted to fully understand the evolutionary changes occurring in these newly emerging strains.
Collapse
|
23
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|
24
|
Lim HX, Poh CL. Insights into innate and adaptive immune responses in vaccine development against EV-A71. Ther Adv Vaccines Immunother 2019; 7:2515135519888998. [PMID: 31799495 PMCID: PMC6873268 DOI: 10.1177/2515135519888998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, infecting mostly infants and young children (<5 years of age) in Asia. Approximately 2 million cases of HFMD were reported in China each year, of which approximately 45-50% were due to EV-A71. Most of the HFMD infections caused by EV-A71 usually result in mild symptoms with rashes and ulcers in the mouth. However, virulent strains of EV-A71 can infect the central nervous system and cause severe neurologic diseases, leading to reduced cognitive ability, acute flaccid paralysis and death. The lack of understanding of cellular immunity for long-term protection from the HFMD disease represents a major obstacle for vaccine development. In particular, the role of innate and T cell immunity during HFMD infection remains unclear and there is evidence suggesting the importance of CD4+ and CD8+ T cells for protective immunity. Currently, no US FDA-approved vaccine is available for EV-A71. Although the inactivated vaccines produced in China are highly effective (vaccine efficacy >95%), they lack the cellular immunity required for long-term protection. In this review, we discuss the findings that support the protective roles of innate and T cell immunity against EV-A71 infection, which will provide the knowledge needed for the urgent development of efficacious vaccines that will confer long-term protection.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|