1
|
Viseu CKA, Selvander M. A Cross-Sectional Study of Circadian Stimulus in Swedish Radiographers' Light Environment. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2025; 18:59-69. [PMID: 39262317 DOI: 10.1177/19375867241278599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Background: Timely light exposure is a vital aspect to achieve better sleep and well-being. As there are risks with a disturbed circadian rhythm and benefits with light settings that stimulate the rhythm, the circadian effective light, circadian stimulus (CS), for radiographers was examined. Aim: The aim of the study was to compare radiographers' light environment on the workstations, at a university hospital in Southern Sweden in the form of CS and relate that to recommendations published by the Swedish Environmental Protection Agency. Method: A cross-sectional method has been applied. The measurements for CS were collected in all labs in the radiology department in the middle of January. Result: A total of 804 measures were evenly collected resulting in a median for the 19 labs, where the observed median for all labs was 0.091 CS which is significantly lower than the recommended value of 0.3 CS (p < .001). Comparing work light settings with maximum light levels in the brightest and darkest labs showed a significant difference (p < .001). Conclusion: The CS values in the labs, at the radiology department at a university hospital in Southern Sweden, do not reach the recommended values of circadian stimulus published by the Swedish Environmental Protection Agency when the radiographers themselves set the light. There is a potential for improvement as a significant difference could be seen between the chosen level of light and the maximum possible level of light.
Collapse
|
2
|
Yang Z, Zarbl H, Kong B, Taylor R, Black K, Kipen H, Basaly V, Fang M, Guo GL. Liver-gut axis signaling regulates circadian energy metabolism in shift workers. FASEB J 2024; 38:e70203. [PMID: 39588921 PMCID: PMC11590413 DOI: 10.1096/fj.202402102r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Circadian rhythm is critical to maintaining the whole-body metabolic homeostasis of an organism. Chronic disruption of circadian rhythm by shift work is an important risk factor for metabolic diseases. Fibroblast growth factor 15/19 (FGF15/19), a key component in the liver-gut axis, potently suppresses bile acid (BA) synthesis and improves insulin sensitivity. FGF15/19 emerges as a novel pharmaceutical target for prevention and treatment of metabolic diseases. The nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) deacetylase plays an important role in the maintenance of hepatic homeostasis by linking hepatic metabolism to circadian rhythm. Here, our clinical study identified that circadian rhythmicity and levels of plasma FGF19 and BA profiling, and cellular NAD+-dependent SIRT1 signaling were disturbed in night shift (NS, n = 10) compared to day shift (DS, n = 12) nurses. Our in vitro data showed that recombinant FGF19 protein rescued cellular circadian rhythm disrupted by SIRT1 inhibitors. Furthermore, we determined the effect of FGF15 on circadian rhythm and hepatic metabolism in wild-type (WT), Fgf15 knockout (KO), and Fgf15 transgenic (TG) mice. The expressions of circadian-controlled genes (CCGs) involved in SIRT1 signaling, BA and lipid metabolism, and inflammation were disrupted in Fgf15 KO compared to WT and/or Fgf15 TG mice. Moreover, systemic FGF15 deficiency led to the circadian disturbance of NAD+-dependent SIRT1 signaling and significant reduction during nighttime in mice. These findings suggest that FGF15/19 regulates the circadian energy metabolism, which warrants further studies as a putative prognostic biomarker and pharmaceutical target for preventing against metabolic diseases associated with chronic shift work.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- VA New Jersey Health Care SystemVeterans Administration Medical CenterEast OrangeNew JerseyUSA
| |
Collapse
|
3
|
Lin MY, Kang YN, Apriliyasari RW, Tsai PS. Association Between Social Jetlag and Components of Metabolic Syndrome: A Systematic Review and Meta-Analysis. J Nurs Res 2024; 32:e354. [PMID: 39158856 DOI: 10.1097/jnr.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND A mismatch between biological and social time, often referred to as social jetlag (SJL), can lead to inadequate sleep and activities or taking meals at times that do not align with our biological rhythms, increasing the risk of metabolic abnormalities. Although the association between sleep and metabolic syndrome (MetS) is well established, the effects of SJL on MetS and the components of MetS in adults remain unclear. PURPOSE This study was designed to explore the relationship between SJL and MetS components in adults. METHODS A systematic review and meta-analysis was conducted on studies registered in PubMed, Cochrane, Web of Science, and Embase between the inception of each database until November 15, 2023. We focused on studies designed to evaluate the relationship between SJL and either MetS or its components. Only studies using cross-sectional, prospective, or retrospective designs were considered for inclusion. The relationship between SJL and MetS was depicted as an odds ratio with a corresponding 95% confidence interval (CI). We determined the mean differences and 95% CIs to estimate the associations between SJL and MetS components. The Joanna Briggs Institute Critical Appraisal Checklist was used to evaluate the methodological rigor of the selected studies. Data were analyzed using RevMan software Version 5.4. RESULTS The systematic review included 16 studies, with five analyzed via a meta-analysis covering four outcomes, each based on two to three studies. When comparing SJL of less than 1 hour with SJL of 2 hours or more, the latter showed a higher likelihood of MetS (pooled odds ratio: 1.52). Although a significant decrease in systolic blood pressure (pooled mean differences = -3.52 mmHg, 95% CI [-6.41, -0.64]) and a significant increase in waist circumference (pooled mean differences = 2.17 cm, 95% CI [0.61, 3.73]) were observed, the correlation between SJL and diastolic blood pressure failed to reach statistical significance. CONCLUSIONS/IMPLICATIONS FOR PRACTICE The meta-analysis conducted in this study found an association between SJL and MetS. Healthcare practitioners should prioritize the management of sleep quality and duration, especially for individuals exhibiting substantial SJL. Improving sleep can aid in controlling blood pressure and managing weight and should form part of MetS management strategies.
Collapse
Affiliation(s)
- Mei-Yu Lin
- PhD, RN, Assistant Professor, Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC
| | - Yi-No Kang
- MS, Doctoral Student, Institute of Health Policy and Management, College of Public Health, National Taiwan University; Researcher, Cochrane Taiwan, Taipei Medical University; Consultant, Evidence-Based Medicine Center, Wan Fang Hospital, Taiwan, ROC
| | | | - Pei-Shan Tsai
- PhD, RN, Professor, School of Nursing, College of Nursing, Taipei Medical University; Department of Nursing and Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University; and Research Center of Sleep Medicine, Taipei Medical University Hospital, Taiwan, ROC
| |
Collapse
|
4
|
Moreira Gobis MDL, Goulart de Souza-Silva T, de Almeida Paula HA. The impact of a western diet on gut microbiota and circadian rhythm: A comprehensive systematic review of in vivo preclinical evidence. Life Sci 2024; 349:122741. [PMID: 38788974 DOI: 10.1016/j.lfs.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
AIMS Here, we present a systematic review that compiles in vivo experimental data regarding the effect of the WD on the gut microbiota and its impact on the circadian rhythm. Additionally, we reviewed studies evaluating the combined effects of WD and circadian cycle disruption on gut microbiota and circadian cycle markers. MATERIALS AND METHODS The original studies indexed in PubMed/Medline, Scopus, and Web of Science databases were screened according to the PRISMA strategy. KEY FINDINGS Preclinical studies revealed that WD triggers circadian rhythmicity disruption, reduces the alpha-diversity of the microbiota and favors the growth of bacterial groups that are detrimental to intestinal homeostasis, such as Clostridaceae, Enterococcus, Parasutterella and Proteobacteria. When the WD is combined with circadian clock disruption, gut dysbiosis become more pronounced. Reduced cycling of Per3, Rev-erb and CLOCK in the intestine, which are related to dysregulation of lipid metabolism and potential metabolic disease, was observed. SIGNIFICANCE In conclusion, current evidence supports the potential of WD to trigger microbiota dysregulation, disrupt the biological clock, and increase susceptibility to metabolic disorders and potentially chronic diseases.
Collapse
Affiliation(s)
| | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
5
|
Schrader LA, Ronnekleiv-Kelly SM, Hogenesch JB, Bradfield CA, Malecki KM. Circadian disruption, clock genes, and metabolic health. J Clin Invest 2024; 134:e170998. [PMID: 39007272 PMCID: PMC11245155 DOI: 10.1172/jci170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
| | - Sean M Ronnekleiv-Kelly
- Molecular and Environmental Toxicology Center and
- Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin, Madison Wisconsin, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Kristen Mc Malecki
- Molecular and Environmental Toxicology Center and
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Xu Q, Xing J, Wang S, Peng H, Liu Y. The role of the cGAS-STING pathway in metabolic diseases. Heliyon 2024; 10:e33093. [PMID: 38988528 PMCID: PMC11234105 DOI: 10.1016/j.heliyon.2024.e33093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical innate immune pathway primarily due to its vital DNA sensing mechanism in pathogen defence. Recent research advances have shown that excessive activation or damage to the cGAS-STING pathway can exacerbate chronic inflammatory responses, playing a significant role in metabolic dysfunction and aging, leading to the development of related diseases such as obesity, osteoporosis, and neurodegenerative diseases. This article reviews the structure and biological functions of the cGAS-STING signaling pathway and discusses in detail how this pathway regulates the occurrence and development of metabolic and age-related diseases. Additionally, this article introduces potential small molecule drugs targeting cGAS and STING, aiming to provide new research perspectives for studying the pathogenesis and treatment of metabolic-related diseases.
Collapse
Affiliation(s)
- Qian Xu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Jie Xing
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| |
Collapse
|
7
|
Keiser T, Katz S, Robson SM, Greaney JL, Healy S, Malone SK, Farrahi V, Patterson F. Association between time-of-day for eating, exercise, and sleep with blood pressure in adults with elevated blood pressure or hypertension: a systematic review. J Hypertens 2024; 42:951-960. [PMID: 38647159 PMCID: PMC11062822 DOI: 10.1097/hjh.0000000000003732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The purpose of this review is to synthesize results from studies examining the association between time-of-day for eating, exercise, and sleep with blood pressure (BP) in adults with elevated BP or hypertension. Six databases were searched for relevant publications from which 789 were identified. Ten studies met inclusion criteria. Four studies examined time-of-day for eating, five examined time-of-day for exercise, and one examined time-of-day for sleep and their associations with BP. Results suggested that later time-of-day for eating ( n = 2/4) and later sleep mid-point ( n = 1/1) were significantly related to higher BP in multivariable models, whereas morning ( n = 3/5) and evening ( n = 4/5) exercise were associated with significantly lower BP. Although this small body of work is limited by a lack of prospective, randomized controlled study designs and underutilization of 24 h ambulatory BP assessment, these results provide preliminary, hypothesis-generating support for the independent role of time-of-day for eating, exercise, and sleep with lower BP.
Collapse
Affiliation(s)
- Thomas Keiser
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Sarah Katz
- Department of Library, Museums, and Press, University of Delaware, Newark, Delaware, USA
| | - Shannon M Robson
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Jody L Greaney
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Sean Healy
- Department of Physical Education and Sports Science, University of Limerick, Limerick, Ireland
| | - Susan K Malone
- Rory Meyers College of Nursing, New York University, New York, USA
| | - Vahid Farrahi
- Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Freda Patterson
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Cheng H, Zhong D, Tan Y, Huang M, Xijie S, Pan H, Yang Z, Huang F, Li F, Tang Q. Advancements in research on the association between the biological CLOCK and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1320605. [PMID: 38872971 PMCID: PMC11169578 DOI: 10.3389/fendo.2024.1320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the Earth's rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.
Collapse
Affiliation(s)
- Hui Cheng
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dayuan Zhong
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| | - Yimei Tan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Menghe Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Sun Xijie
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hong Pan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zixian Yang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fangmei Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Feifan Li
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qizhi Tang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| |
Collapse
|
9
|
Raza GS, Kaya Y, Stenbäck V, Sharma R, Sodum N, Mutt SJ, Gagnon DD, Tulppo M, Järvelin MR, Herzig KH, Mäkelä KA. Effect of Aerobic Exercise and Time-Restricted Feeding on Metabolic Markers and Circadian Rhythm in Mice Fed with the High-Fat Diet. Mol Nutr Food Res 2024; 68:e2300465. [PMID: 38389173 DOI: 10.1002/mnfr.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/30/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Yağmur Kaya
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, 34406, Turkey
| | - Ville Stenbäck
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Shivaprakash Jagalur Mutt
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, 75123, Sweden
| | - Dominique D Gagnon
- Faculty of Sports and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, Jyväskylä, 40014, Finland
- Clinic for Sports and Exercise Medicine, Department of Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki Mäkelänkatu, Helsinki, 00550, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, SW72AZ, UK
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Kari A Mäkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center, Faculty of Medicine, Biocenter of Oulu, University of Oulu, Aapistie 5, Oulu, 90220, Finland
| |
Collapse
|
10
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
11
|
Wu Y, Zhong M, Yin J, Ou W, Zhuang Y, Zhang N, Lin S, Zhu Y. A novel small-animal locomotor activity recording device for biological clock research. Animal Model Exp Med 2024; 7:71-76. [PMID: 38375555 PMCID: PMC10961864 DOI: 10.1002/ame2.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
The rodent running-wheel recording apparatus is a reliable approach for studying circadian rhythm. This study demonstrated how to construct a simple and intelligent running-wheel recording system. The running wheel was attached to the cage's base, whereas the Hall sensor was attached to the cage's cover. Then, the RJ25 adaptor relayed the running signal to the main control board. Finally, the main control board was connected to the USB port of the computer with the USB connection. Data were collected using the online-accessible, self-created software Magturning. Through Magturning, generated data were saved and exported in real time. Afterward, the device was validated by collecting data on the locomotor activities of mice under different light conditions. In conclusion, this new device can record circadian activity of rodents. Our device is appropriate for interdisciplinary investigations related to biological clock research.
Collapse
Affiliation(s)
- Yi‐Long Wu
- Endoscopy CenterThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Ming Zhong
- Department of EndocrinologyThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Jun Yin
- Chuangke Workshop Technology Co., LtdShenzhenChina
| | - Wei‐Jie Ou
- Department of Digestive NutritionFujian Children's HospitalFuzhouChina
| | - Yu‐Bin Zhuang
- Experimental Animal CenterFujian Medical UniversityFuzhouChina
| | - Nan‐Wen Zhang
- Department of PharmacologyFujian Medical UniversityFuzhouChina
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, Clinical Research Center for Liver and Intestinal Diseases of Fujian ProvinceThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| | - Yue‐Yong Zhu
- Department of Hepatology, Hepatology Research Institute, Clinical Research Center for Liver and Intestinal Diseases of Fujian ProvinceThe First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| |
Collapse
|
12
|
Pavithra S, Aich A, Chanda A, Zohra IF, Gawade P, Das RK. PER2 gene and its association with sleep-related disorders: A review. Physiol Behav 2024; 273:114411. [PMID: 37981094 DOI: 10.1016/j.physbeh.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
The natural circadian rhythm in an individual governs the sleep-wake cycle over 24 h. Disruptions in this internal cycle can lead to major health hazards and sleep disorders. Reports suggest that at least 50 % of people worldwide suffer from sleep-related disorders. An increase in screen time, especially in the wake of the COVID-19 pandemic, is one of the external causative factors for this condition. While many factors govern the circadian clock and its aberrance, the PER2 gene has been strongly linked to chronotypes by many researchers. The current paper provides an extensive examination of key Single Nucleotide Polymorphisms within the PER2 gene and their potential connection to four major types of sleep disorders. This study investigates whether these SNPs play a causative role in sleep disorders or if they are solely associated with these conditions. Additionally, we explore whether these genetic variations exert a lifelong influence on these sleep patterns or if external triggers contribute to the development of sleep disorders. This gene is a crucial regulator of the circadian cycle responsible for the transcription of other clock genes. It regulates a variety of physiological systems such as metabolism, sleep, body temperature, blood pressure, endocrine, immunological, cardiovascular, and renal function. We aim to establish some clarity to the multifaceted nature of this gene, which is often overlooked, and seek to establish the mechanistic role of PER2 gene mutations in sleep disorders. This will improve further understanding, assessment, and treatment of these conditions in future.
Collapse
Affiliation(s)
- S Pavithra
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India; Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Adrija Aich
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Adrita Chanda
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Ifsha Fatima Zohra
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Pranotee Gawade
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Chambers L, Seidler K, Barrow M. Circadian misalignment in obesity: The role for time-restricted feeding. Clin Nutr ESPEN 2023; 57:430-447. [PMID: 37739690 DOI: 10.1016/j.clnesp.2023.07.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS The epidemic of obesity is associated with a substantial, complex and escalating burden of disease. Dietary and lifestyle interventions provide the mainstay of management; however, obesity is multifactorial and challenging to address clinically. Disrupted circadian behaviours, including late eating, are associated with obesity. Time-restricted feeding (TRF), the confinement of calorie intake to a temporal 'eating window', has received growing interest as a weight-loss intervention. Benefits are purported to arise from the fasting period and strengthened circadian metabolism. However, the current evidence-base for TRF is small-scale, limited, and there has been little evaluation of circadian schedule. This research aims to enable evidence-based conclusions regarding circadian-aligned TRF as a weight-loss intervention in obesity. METHODS A systematic three-tranche search strategy was conducted within PubMed. Included studies were critically evaluated. Search tranches scoped: interventional evidence for TRF; evidence linking meal timing, obesity and metabolic function; and evidence linking circadian function, obesity, and dysmetabolism. Results were summarised in a narrative analysis. RESULTS A total of 30 studies were included. From small-scale and short-term evidence, TRF was consistently associated with improved weight, glycaemic and anthropometric outcomes versus baseline or control. Good adherence and safety, and consistency of results between studies, were notable. Earlier ('circadian-aligned') eating was associated with greater diet-induced thermogenesis, and improved weight loss and glycaemic outcomes. Limited evidence suggested meaningful correlations between circadian clock function and obesity/metabolic risk. CONCLUSIONS Circadian-aligned TRF may present a promising intervention for weight loss and metabolic benefits in obese/overweight individuals.
Collapse
Affiliation(s)
- Lydia Chambers
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, RG40 1DH, UK.
| | - Michelle Barrow
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, RG40 1DH, UK.
| |
Collapse
|
14
|
Koning E, McDonald A, Bambokian A, Gomes FA, Vorstman J, Berk M, Fabe J, McIntyre RS, Milev R, Mansur RB, Brietzke E. The concept of "metabolic jet lag" in the pathophysiology of bipolar disorder: implications for research and clinical care. CNS Spectr 2023; 28:571-580. [PMID: 36503605 DOI: 10.1017/s1092852922001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder (BD) is a potentially chronic mental disorder marked by recurrent depressive and manic episodes, circadian rhythm disruption, and changes in energetic metabolism. "Metabolic jet lag" refers to a state of shift in circadian patterns of energy homeostasis, affecting neuroendocrine, immune, and adipose tissue function, expressed through behavioral changes such as irregularities in sleep and appetite. Risk factors include genetic variation, mitochondrial dysfunction, lifestyle factors, poor gut microbiome health and abnormalities in hunger, satiety, and hedonistic function. Evidence suggests metabolic jet lag is a core component of BD pathophysiology, as individuals with BD frequently exhibit irregular eating rhythms and circadian desynchronization of their energetic metabolism, which is associated with unfavorable clinical outcomes. Although current diagnostic criteria lack any assessment of eating rhythms, technological advancements including mobile phone applications and ecological momentary assessment allow for the reliable tracking of biological rhythms. Overall, methodological refinement of metabolic jet lag assessment will increase knowledge in this field and stimulate the development of interventions targeting metabolic rhythms, such as time-restricted eating.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexandra McDonald
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexander Bambokian
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Fabiano A Gomes
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jacob Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Jennifer Fabe
- Department of Neurology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Roger S McIntyre
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roumen Milev
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry, Providence Care Hospital, Kingston, ON, Canada
| | - Rodrigo B Mansur
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Elisa Brietzke
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
15
|
Bijnens S, Depoortere I. Controlled light exposure and intermittent fasting as treatment strategies for metabolic syndrome and gut microbiome dysregulation in night shift workers. Physiol Behav 2023; 263:114103. [PMID: 36731762 DOI: 10.1016/j.physbeh.2023.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The mammalian circadian clocks are entrained by environmental time cues, such as the light-dark cycle and the feeding-fasting cycle. In modern society, circadian misalignment is increasingly more common under the guise of shift work. Shift workers, accounting for roughly 20% of the workforce population, are more susceptible to metabolic disease. Exposure to artificial light at night and eating at inappropriate times of the day uncouples the central and peripheral circadian clocks. This internal circadian desynchrony is believed to be one of the culprits leading to metabolic disease. In this review, we discuss how alterations in the rhythm of gut microbiota and their metabolites during chronodisruption send conflicting signals to the host, which may ultimately contribute to disturbed metabolic processes. We propose two behavioral interventions to improve health in shift workers. Firstly, by carefully timing the moments of exposure to blue light, and hence shifting the melatonin peak, to improve sleep quality of daytime sleeping episodes. Secondly, by timing the daily time window of caloric intake to the biological morning, to properly align the feeding-fasting cycle with the light-dark cycle and to reduce the risk of metabolic disease. These interventions can be a first step in reducing the worldwide burden of health problems associated with shift work.
Collapse
Affiliation(s)
- Sofie Bijnens
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
18
|
Ko FC, Jochum SB, Wilson BM, Adra A, Patel N, Lee H, Wilber S, Shaikh M, Forsyth C, Keshavarzian A, Swanson GR, Sumner DR. Colon epithelial cell-specific Bmal1 deletion impairs bone formation in mice. Bone 2023; 168:116650. [PMID: 36584784 PMCID: PMC9911378 DOI: 10.1016/j.bone.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
The circadian clock system regulates multiple metabolic processes, including bone metabolism. Previous studies have demonstrated that both central and peripheral circadian signaling regulate skeletal growth and homeostasis in mice. Disruption in central circadian rhythms has been associated with a decline in bone mineral density in humans and the global and osteoblast-specific disruption of clock genes in bone tissue leads to lower bone mass in mice. Gut physiology is highly sensitive to circadian disruption. Since the gut is also known to affect bone remodeling, we sought to test the hypothesis that circadian signaling disruption in colon epithelial cells affects bone. We therefore assessed structural, functional, and cellular properties of bone in 8 week old Ts4-Cre and Ts4-Cre;Bmal1fl/fl (cBmalKO) mice, where the clock gene Bmal1 is deleted in colon epithelial cells. Axial and appendicular trabecular bone volume was significantly lower in cBmalKO compared to Ts4-Cre 8-week old mice in a sex-dependent fashion, with male but not female mice showing the phenotype. Similarly, the whole bone mechanical properties were deteriorated in cBmalKO male mice. The tissue level mechanisms involved suppressed bone formation with normal resorption, as evidenced by serum markers and dynamic histomorphometry. Our studies demonstrate that colon epithelial cell-specific deletion of Bmal1 leads to failure to acquire trabecular and cortical bone in male mice.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Sarah B Jochum
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Brittany M Wilson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Amal Adra
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Nikhil Patel
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Hoomin Lee
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Sherry Wilber
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Christopher Forsyth
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Ali Keshavarzian
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Garth R Swanson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - D Rick Sumner
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| |
Collapse
|
19
|
Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int J Mol Sci 2023; 24:ijms24032571. [PMID: 36768893 PMCID: PMC9916946 DOI: 10.3390/ijms24032571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The human circadian system has a period of approximately 24 h and studies on the consequences of "chornodisruption" have greatly expanded. Lifestyle and environmental factors of modern societies (i.e., artificial lighting, jetlag, shift work, and around-the-clock access to energy-dense food) can induce disruptions of the circadian system and thereby adversely affect individual health. Growing evidence demonstrates a complex reciprocal relationship between metabolism and the circadian system, in which perturbations in one system affect the other one. From a nutritional genomics perspective, genetic variants in clock genes can both influence metabolic health and modify the individual response to diet. Moreover, an interplay between the circadian rhythm, gut microbiome, and epigenome has been demonstrated, with the diet in turn able to modulate this complex link suggesting a remarkable plasticity of the underlying mechanisms. In this view, the study of the impact of the timing of eating by matching elements from nutritional research with chrono-biology, that is, chrono-nutrition, could have significant implications for personalized nutrition in terms of reducing the prevalence and burden of chronic diseases. This review provides an overview of the current evidence on the interactions between the circadian system and nutrition, highlighting how this link could in turn influence the epigenome and microbiome. In addition, possible nutritional strategies to manage circadian-aligned feeding are suggested.
Collapse
|
20
|
Otsuka K, Cornelissen G, Weydahl A, Gubin D, Beaty LA, Murase M. Rules of Heliogeomagnetics Diversely Coordinating Biological Rhythms and Promoting Human Health. APPLIED SCIENCES 2023; 13:951. [DOI: 10.3390/app13020951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
This investigation reviews how geomagnetic activity affects the circadian variation in blood pressure (BP) and heart rate (HR) and their variabilities of clinically healthy individuals. A small study in Alta, Norway (latitude of 70.0° N), serves to illustrate the methodology used to outline rules of procedure in exploring heliogeomagnetic effects on human physiology. Volunteers in the Alta study were monitored for at least 2 days between 18 March 2002 and 9 January 2005. Estimates of the circadian characteristics of BP and HR by cosinor and the Maximum Entropy Method (MEM) indicate an increase in the circadian amplitude of systolic (S) BP on geomagnetic-disturbance days compared to quiet days (p = 0.0236). Geomagnetic stimulation was found to be circadian-phase dependent, with stimulation in the evening inducing a 49.2% increase in the circadian amplitude of SBP (p = 0.0003), not observed in relation to stimulation in the morning. In two participants monitored for 7 days, the circadian amplitude of SBP decreased by 23.4% on an extremely disturbed day but increased by 50.3% on moderately disturbed days (p = 0.0044), suggesting a biphasic (hormetic) reaction of the circadian SBP rhythm to geomagnetics. These results indicate a possible role of geomagnetic fluctuations in modulating the circadian system.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andi Weydahl
- School of Sport Sciences, The Arctic University of Norway, Campus Alta, N-9509 Alta, Norway
| | - Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
| | - Larry A. Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masatoshi Murase
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
22
|
Binder-Mendl C, Ekmekcioglu C, Marktl W, Schwerte T. Slim larks and overweight owls? A two years dietary intervention in shift workers. INDUSTRIAL HEALTH 2022; 60:548-558. [PMID: 35095034 PMCID: PMC9726605 DOI: 10.2486/indhealth.2021-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have shown that shift workers are more prone to non-communicable diseases. The aim of the present crossover study is to investigate whether it is possible to improve the health status of shift workers. Nineteen male shift workers (38.5 years ± 7.4) received every other month a dietary counseling for one year. All subjects kept a seven-day diet diary during a night shift, received bioelectrical impedance analysis, and a laboratory examination was performed at the beginning of the study, after one year and at the end of the study. The laboratory blood test included the main metabolic parameters, melatonin and serotonin. Beside subjects were also motivated to incorporate more physical training into their daily routine. After the intervention period, participants reduced energy intake, mean portion size, table salt, consumption of sugar and saturated fat. C-reactive protein (CRP), mean corpuscular volume (MCV), liver enzymes, triglycerides, and uric acid decreased, while melatonin level increased. Participants lost body weight and reduced waist circumference after the intervention. Lifestyle modification and dietary information could contribute to the health of shift workers. However, further studies are needed to investigate whether this can prevent disease and whether melatonin production can be influenced by diet.
Collapse
Affiliation(s)
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Austria
| | - Wolfgang Marktl
- Wiener Internationale Akademie für Ganzheitsmedizin, Otto Wagner Spital, Austria
| | | |
Collapse
|
23
|
Koning E, Vorstman J, McIntyre RS, Brietzke E. Characterizing eating behavioral phenotypes in mood disorders: a narrative review. Psychol Med 2022; 52:2885-2898. [PMID: 36004528 PMCID: PMC9693712 DOI: 10.1017/s0033291722002446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, represent a multidimensional and prevalent group of psychiatric illnesses characterized by disturbances in emotion, cognition and metabolism. Maladaptive eating behaviors in mood disorders are diverse and warrant characterization in order to increase the precision of diagnostic criteria, identify subtypes and improve treatment strategies. The current narrative review synthesizes evidence for Eating Behavioral Phenotypes (EBP) in mood disorders as well as advancements in pathophysiological conceptual frameworks relevant to each phenotype. Phenotypes include maladaptive eating behaviors related to appetite, emotion, reward, impulsivity, diet style and circadian rhythm disruption. Potential treatment strategies for each phenotype are also discussed, including psychotherapeutic, pharmacological and nutritional interventions. Maladaptive eating behaviors related to mood disorders are relevant from both clinical and research perspectives, yet have been somewhat overlooked thus far. A better understanding of this aspect of mood disorders holds promise to improve clinical care in this patient group and contribute to the subtyping of these currently subjectively diagnosed and treated disorders.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
24
|
Bonmatí-Carrión MÁ, Casado-Ramirez E, Moreno-Casbas MT, Campos M, Madrid JA, Rol MA. Living at the Wrong Time: Effects of Unmatching Official Time in Portugal and Western Spain. BIOLOGY 2022; 11:1130. [PMID: 36009758 PMCID: PMC9404853 DOI: 10.3390/biology11081130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Human circadian rhythmicity is subjected to the internal circadian clock, the sun and social clocks (official time, social/work schedules). The discrepancy among these clocks, as occurs when official time does not match its geographical time zone, may produce circadian disruption. Western Spain (GMT+1/+2) and Portugal (GMT0/+1) share similar longitudes (sun time) but have different official times. This provides a unique opportunity to evaluate the effects of official time on circadian rhythmicity and sleep in elderly and retired populations (with no remunerated duties presumed, although other social commitments may be present) at both locations. Although both populations slept enough for their age (7-8 h), circadian robustness (e.g., interdaily stability, relative amplitude) was greater in Portugal, especially during weekdays, while greater desynchronization (both body temperature vs. motor activity and body temperature vs. light exposure) tended to occur in the Spaniards. Once corrected by GMT0, meals took place later in Spain than in Portugal, especially as the day progresses, and a possible interplay between bed/meal timings and internal desynchronization was found. Our results point to the possible deleterious effect on circadian system robustness when official time is misaligned with its geographical time zone.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
| | - Elvira Casado-Ramirez
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
- Unidad de Investigación en Cuidados y Servicios de Salud (Investén-Isciii), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María-Teresa Moreno-Casbas
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
- Unidad de Investigación en Cuidados y Servicios de Salud (Investén-Isciii), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Campos
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
- Artificial Intelligence and Knowledge Engineering Group, INTICO, University of Murcia, 30100 Murcia, Spain
| | | | - Juan Antonio Madrid
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain; (E.C.-R.); (M.-T.M.-C.); (M.C.)
| |
Collapse
|
25
|
Huang S, Si H, Liu J, Qi D, Pei X, Lu D, Zou S, Li Z. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35731510 PMCID: PMC9233287 DOI: 10.1167/iovs.63.6.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Sleep loss markedly affects the structure and function of the lacrimal gland and may cause ocular surface disease as a common public health problem. This study aims to investigate the circadian disturbance caused by sleep loss leading to dysfunction of extraorbital lacrimal glands (ELGs). Methods A mouse sleep deprivation (SD) model for sleep loss studies was built in C57BL/6J male mice. After four weeks, the ELGs were collected at three-hour intervals during a 24-hour period. The Jonckheere-Terpstra-Kendall algorithm was used to determine the composition, phase, and rhythmicity of transcriptomic profiles in ELGs. Furthermore, we compared the non-sleep-deprived and SD-treated mouse ELG (i) reactive oxygen species (ROS) by fluorescein staining, (ii) DNA damage by immunostaining for γ-H2Ax, and (iii) circadian migration of immune cells by immunostaining for CD4, CD8, γδ-TCR, CD64, and CX3CR1. Finally, we also evaluated (i) the locomotor activity and core body temperature rhythm of mice and (ii) the mass, cell size, and tear secretion of the ELGs. Results SD dramatically altered the composition and phase-associated functional enrichment of the circadian transcriptome, immune cell trafficking, metabolism, cell differentiation, and neural secretory activities of mouse ELGs. Additionally, SD caused the ROS accumulation and consequent DNA damage in the ELGs, and the ELG dysfunction caused by SD was irreversible. Conclusions SD damages the structure, function, and diurnal oscillations of ELGs. These results highlight comprehensive characterization of insufficient sleep–affected ELG circadian transcriptome that may provide a new therapeutic approach to counteract the effects of SD on ELG function.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Chambers L, Seidler K, Barrow M. Nutritional entrainment of circadian rhythms under alignment and misalignment: a mechanistic review. Clin Nutr ESPEN 2022; 51:50-71. [DOI: 10.1016/j.clnesp.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
|
27
|
Liu H, Liu Y, Hai R, Liao W, Luo X. The role of circadian clocks in cancer: Mechanisms and clinical implications. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Manoogian ENC, Wei-Shatzel J, Panda S. Assessing temporal eating pattern in free living humans through the myCircadianClock app. Int J Obes (Lond) 2022; 46:696-706. [PMID: 34997205 PMCID: PMC9678076 DOI: 10.1038/s41366-021-01038-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
The quality and quantity of nutrition impact health. However, chrononutrition, the timing, and variation of food intake in relation to the daily sleep-wake cycle are also important contributors to health. This has necessitated an urgent need to measure, analyze, and optimize eating patterns to improve health and manage disease. While written food journals, questionnaires, and 24-hour dietary recalls are acceptable methods to assess the quantity and quality of energy consumption, they are insufficient to capture the timing and day-to-day variation of energy intake. Smartphone applications are novel methods for information-dense real-time food and beverage tracking. Despite the availability of thousands of commercial nutrient apps, they almost always ignore eating patterns, and the raw real-time data is not available to researchers for monitoring and intervening in eating patterns. Our lab developed a smartphone app called myCircadianClock (mCC) and associated software to enable long-term real-time logging that captures temporal components of eating patterns. The mCC app runs on iOS and android operating systems and can be used to track multiple cohorts in parallel studies. The logging burden is decreased by using a timestamped photo and annotation of the food/beverage being logged. Capturing temporal data of consumption in free-living individuals over weeks/months has provided new insights into diverse eating patterns in the real world. This review discusses (1) chrononutrition and the importance of understanding eating patterns, (2) the myCircadianClock app, (3) validation of the mCC app, (4) clinical trials to assess the timing of energy intake, and (5) strengths and limitations of the mCC app.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Salk Institute for Biological Studies, Regulatory Biology, La Jolla, CA, 92037, USA.
| | | | - Satchidananda Panda
- Salk Institute for Biological Studies, Regulatory Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Özata Uyar G, Yildiran H. The association among circadian rhythm, circadian genes and chrononutrition, its effect on obesity: a review of current evidence. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2044631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
30
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [PMID: 34973458 DOI: 10.1016/j.arr.2021.101554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
Collapse
Affiliation(s)
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Peterlee Place NSW2700, Australia; AFNP Med, Haidingergasse 29, 1030 Wien, Austria
| |
Collapse
|
31
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [DOI: https:/doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
34
|
A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23010504. [PMID: 35008933 PMCID: PMC8745289 DOI: 10.3390/ijms23010504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.
Collapse
|
35
|
Schroder EA, Delisle BP. Time Restricted Feeding to the Light Cycle Dissociates Canonical Circadian Clocks and Physiological Rhythms in Heart Rate. Front Pharmacol 2022; 13:910195. [PMID: 35645828 PMCID: PMC9133719 DOI: 10.3389/fphar.2022.910195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms are approximate 24-h biological cycles that optimize molecular and physiological functions to predictable daily environmental changes in order to maintain internal and organismal homeostasis. Environmental stimuli (light, feeding, activity) capable of altering the phase of molecular rhythms are important tools employed by circadian biologists to increase understanding of the synchronization of circadian rhythms to the environment and to each other within multicellular systems. The central circadian clock, located in the suprachiasmatic nucleus (SCN) of the hypothalamus is largely responsive to light and is thought to entrain the phase of peripheral clocks via neurohumoral signals. Mice are nocturnal and consume most of their food during the dark cycle. Early studies demonstrated that altered metabolic cues in the form of time restricted feeding, specifically, feeding mice during the light cycle, resulted in an uncoupling of molecular clocks in peripheral tissues with those from the SCN. These studies showed as much as a 12-h shift in gene expression in some peripheral tissues but not others. The shifts occurred without corresponding changes in the central clock in the brain. More recent studies have demonstrated that changes in cardiac physiology (heart rate, MAP) in response to time of food intake occur independent of the cardiac molecular clock. Understanding differences in the physiology/function and gene expression in other organs both independently and in relation to the heart in response to altered feeding will be important in dissecting the roles of the various clocks throughout the body, as well as, understanding their links to cardiovascular pathology.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY, United States
- *Correspondence: Elizabeth A. Schroder, ; Brian P. Delisle,
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Elizabeth A. Schroder, ; Brian P. Delisle,
| |
Collapse
|
36
|
Rana S, Fatima N, Bhatti AA. Association of CLOCK gene variants with obesity and adiposity-related anthropometric, metabolic, and behavioral parameters. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLOCK gene is a core component of the circadian clock and regulates various aspects of metabolism. Therefore, any variation that affects the function/expression of the CLOCK gene may contribute to the manifestation of metabolic disorders such as obesity. This study investigated whether the CLOCK variants rs4864548 and rs6843722 are associated with obesity and related traits in Pakistanis. A total of 306 overweight/obese cases and 306 age- and gender-matched control subjects were recruited (males 336 and females 276, age range 12–63 years). Anthropometric and metabolic parameters were taken by standard procedures and biochemical analyses, respectively. Behavior-related information was collected with a questionnaire. The genotypes of the variants were determined by allelic discrimination Taqman assays. Both variants were found to have a significant association with overweight/obesity according to the over-dominant model. The rs4864548 and rs6843722 were observed to escalate the risk of overweight/obesity by 1.611 ( p = 0.004) and 1.657 ( p = 0.002) times, respectively. These variants were also seen to be significantly associated with various other adiposity-related anthropometric parameters ( p < 0.05). However, no association of both variants with metabolic and behavioral parameters was observed ( p > 0.05). Thus, these variants may contribute to increasing the risk of overweight/obesity and related anthropometric traits in Pakistanis.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Narjis Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
37
|
Fischer D, Hilditch CJ. Light in ecological settings: Entrainment, circadian disruption, and interventions. PROGRESS IN BRAIN RESEARCH 2022; 273:303-330. [DOI: 10.1016/bs.pbr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Song X, Ma T, Hu H, Zhao M, Bai H, Wang X, Liu L, Li T, Sheng X, Xu X, Zhang X, Gao L. Chronic Circadian Rhythm Disturbance Accelerates Knee Cartilage Degeneration in Rats Accompanied by the Activation of the Canonical Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2021; 12:760988. [PMID: 34858186 PMCID: PMC8632052 DOI: 10.3389/fphar.2021.760988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
With the gradual deepening of understanding of systemic health and quality of life, the factors affecting osteoarthritis (OA) are not limited to mechanical injury, metabolic abnormality, age and obesity, etc., but circadian rhythm, which plays a non-negligible role in human daily life. The purpose of this study was to explore the molecular mechanism of chronic circadian rhythm disturbance (CRD) inducing cartilage OA-like degeneration. Rats with the anterior cruciate ligament excision transection (ACLT) were used to establish the early-stage OA model (6-week). The light/dark (LD) cycle shifted 12 h per week for 22 weeks in order to establish a chronic CRD model. BMAL1 knockdown (KD) and Wnt/β-catenin pathway inhibition were performed in chondrocytes. The contents of proinflammatory factors and OA biomarkers in serum and chondrocyte secretions were detected by ELISA. Pathological and immunohistochemical staining of articular cartilage indicated the deterioration of cartilage. WB and qPCR were used to evaluate the relationship between matrix degradation and the activation of Wnt/β-catenin signaling pathway in chondrocytes. We found that chronic CRD could cause OA-like pathological changes in knee cartilage of rats, accelerating cartilage matrix degradation and synovial inflammation. The expression of MMP-3, MMP-13, ADAMTS-4, and β-catenin increased significantly; BMAL1, Aggrecan, and COL2A1 decreased significantly in either LD-shifted cartilage or BMAL1-KD chondrocytes. The expression of β-catenin and p-GSK-3β elevated, while p-β-catenin and GSK-3β diminished. The inhibitor XAV-939 was able to mitigated the increased inflammation produced by transfected siBMAL1. Our study demonstrates that chronic CRD disrupts the balance of matrix synthesis and catabolic metabolism in cartilage and chondrocytes, and it is related to the activation of the canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaopeng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailong Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ting Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuanbo Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinmin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Adlanmerini M, Krusen BM, Nguyen HCB, Teng CW, Woodie LN, Tackenberg MC, Geisler CE, Gaisinsky J, Peed LC, Carpenter BJ, Hayes MR, Lazar MA. REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. SCIENCE ADVANCES 2021; 7:eabh2007. [PMID: 34705514 PMCID: PMC8550249 DOI: 10.1126/sciadv.abh2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 05/28/2023]
Abstract
Circadian disruption, as occurs in shift work, is associated with metabolic diseases often attributed to a discordance between internal clocks and environmental timekeepers. REV-ERB nuclear receptors are key components of the molecular clock, but their specific role in the SCN master clock is unknown. We report here that mice lacking circadian REV-ERB nuclear receptors in the SCN maintain free-running locomotor and metabolic rhythms, but these rhythms are notably shortened by 3 hours. When housed under a 24-hour light:dark cycle and fed an obesogenic diet, these mice gained excess weight and accrued more liver fat than controls. These metabolic disturbances were corrected by matching environmental lighting to the shortened endogenous 21-hour clock period, which decreased food consumption. Thus, SCN REV-ERBs are not required for rhythmicity but determine the free-running period length. Moreover, these results support the concept that dissonance between environmental conditions and endogenous time periods causes metabolic disruption.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brianna M. Krusen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hoang C. B. Nguyen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clare W. Teng
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N. Woodie
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael C. Tackenberg
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Caroline E. Geisler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jane Gaisinsky
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lindsey C. Peed
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bryce J. Carpenter
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew R. Hayes
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Coletta AM, Playdon MC, Baron KG, Wei M, Kelley K, Vaklavas C, Beck A, Buys SS, Chipman J, Ulrich CM, Walker D, White S, Oza S, Zingg RW, Hansen PA. The association between time-of-day of habitual exercise training and changes in relevant cancer health outcomes among cancer survivors. PLoS One 2021; 16:e0258135. [PMID: 34637457 PMCID: PMC8509995 DOI: 10.1371/journal.pone.0258135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To assess the relationship between time-of-day of exercise training and changes in relevant cancer health outcomes among cancer survivors. METHODS Retrospective analysis of data collected from 2016-2019 from a hospital-based exercise oncology program. Descriptive statistics were calculated for demographic, clinical, and exercise timing characteristics (e.g. AM, PM, or mix) among survivors with available data for exercise training time (n = 233). For the total sample and a breast cancer sub-analysis, univariate analysis of covariance, adjusted for age, was carried out by exercise training time, for change in the following outcomes collected during the program's assessment sessions: cardiorespiratory fitness and muscular endurance (human performance variables), physical function, anthropometrics, self-reported fatigue, and quality of life (QoL). Change in body mass index (BMI) and body weight was included in the breast cancer analysis. RESULTS Overall, 37.3% of survivors habitually engaged in AM exercise (e.g. ≥ 75% AM training), 34.3% in PM exercise, and 28.3% in a mix of AM and PM exercise training throughout the program. Median time in the program was 17 weeks. Significant improvements in most human performance and physical function variables were observed in the total sample regardless of exercise training time-of-day. Among breast cancer survivors, PM but not AM or mixed was associated with improvements in fitness, and lower-body muscular endurance and function. Mixed exercise timing was linked with greater increase in waist circumference (total sample: 3.02cm, 95%CI 1.55, 4.49; breast cancer: 3.57cm 95%CI 0.96, 6.18), body weight (breast cancer: 1.6kg, 95%CI 0.3, 2.8) and BMI (breast cancer: 0.6kg/m2, 95%CI 0.1, 1.0). AM and PM exercise, but not mixed, was associated with improvements in fatigue and QoL. CONCLUSION Time-of-day of exercise training may differentially impact changes in human performance and physical function variables. Mixed exercise training time may result in less favorable outcomes related of weight management variables among cancer survivors.
Collapse
Affiliation(s)
- Adriana M. Coletta
- Department of Health & Kinesiology, The University of Utah, Salt Lake City, UT, United States of America
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
| | - Mary C. Playdon
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, United States of America
| | - Kelly G. Baron
- Department of Family and Preventive Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Mei Wei
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Kristen Kelley
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Christos Vaklavas
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Anna Beck
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Saundra S. Buys
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States of America
| | - Jonathan Chipman
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Population Health Sciences, The University of Utah, Salt Lake City, UT, United States of America
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Department of Population Health Sciences, The University of Utah, Salt Lake City, UT, United States of America
| | - Darren Walker
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
| | - Shelley White
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
| | - Sonal Oza
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Division of Physical Medicine and Rehabilitation, The University of Utah, Salt Lake City, UT, United States of America
| | - Rebecca W. Zingg
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Division of Physical Medicine and Rehabilitation, The University of Utah, Salt Lake City, UT, United States of America
| | - Pamela A. Hansen
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, United States of America
- Division of Physical Medicine and Rehabilitation, The University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
41
|
Abstract
Circadian disruption is pervasive and can occur at multiple organizational levels, contributing to poor health outcomes at individual and population levels. Evidence points to a bidirectional relationship, in that circadian disruption increases disease severity and many diseases can disrupt circadian rhythms. Importantly, circadian disruption can increase the risk for the expression and development of neurologic, psychiatric, cardiometabolic, and immune disorders. Thus, harnessing the rich findings from preclinical and translational research in circadian biology to enhance health via circadian-based approaches represents a unique opportunity for personalized/precision medicine and overall societal well-being. In this Review, we discuss the implications of circadian disruption for human health using a bench-to-bedside approach. Evidence from preclinical and translational science is applied to a clinical and population-based approach. Given the broad implications of circadian regulation for human health, this Review focuses its discussion on selected examples in neurologic, psychiatric, metabolic, cardiovascular, allergic, and immunologic disorders that highlight the interrelatedness between circadian disruption and human disease and the potential of circadian-based interventions, such as bright light therapy and exogenous melatonin, as well as chronotherapy to improve and/or modify disease outcomes.
Collapse
Affiliation(s)
- Anna B Fishbein
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital, and
| | - Kristen L Knutson
- Department of Neurology and Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Phyllis C Zee
- Department of Neurology and Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
42
|
He J, Jiao X, Sun X, Huang Y, Xu P, Xue Y, Fu T, Liu J, Li Z. Short-Term High Fructose Intake Impairs Diurnal Oscillations in the Murine Cornea. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34415987 PMCID: PMC8383902 DOI: 10.1167/iovs.62.10.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Endogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea. Methods Corneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle. Results HFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice. Conclusions HFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.
Collapse
Affiliation(s)
- Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Jiao
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Xin Sun
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yijia Huang
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Sides MB, Johnston SL, Sirek A, Lee PH, Blue RS, Antonsen EL, Basner M, Douglas GL, Epstein A, Flynn-Evans EE, Gallagher MB, Hayes J, Lee SMC, Lockley SW, Monseur B, Nelson NG, Sargsyan A, Smith SM, Stenger MB, Stepanek J, Zwart SR. Bellagio II Report: Terrestrial Applications of Space Medicine Research. Aerosp Med Hum Perform 2021; 92:650-669. [PMID: 34503618 DOI: 10.3357/amhp.5843.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractINTRODUCTION: For over 50 yr, investigators have studied the physiological adaptations of the human system during short- and long-duration spaceflight exposures. Much of the knowledge gained in developing health countermeasures for astronauts onboard the International Space Station demonstrate terrestrial applications. To date, a systematic process for translating these space applications to terrestrial human health has yet to be defined.METHODS: In the summer of 2017, a team of 38 international scientists launched the Bellagio ll Summit Initiative. The goals of the Summit were: 1) To identify space medicine findings and countermeasures with highest probability for future terrestrial applications; and 2) To develop a roadmap for translation of these countermeasures to future terrestrial application. The team reviewed public domain literature, NASA databases, and evidence books within the framework of the five-stage National Institutes of Health (NIH) translation science model, and the NASA two-stage translation model. Teams then analyzed and discussed interdisciplinary findings to determine the most significant evidence-based countermeasures sufficiently developed for terrestrial application.RESULTS: Teams identified published human spaceflight research and applied translational science models to define mature products for terrestrial clinical practice.CONCLUSIONS: The Bellagio ll Summit identified a snapshot of space medicine research and mature science with the highest probability of translation and developed a Roadmap of terrestrial application from space medicine-derived countermeasures. These evidence-based findings can provide guidance regarding the terrestrial applications of best practices, countermeasures, and clinical protocols currently used in spaceflight.Sides MB, Johnston SL III, Sirek A, Lee PH, Blue RS, Antonsen EL, Basner M, Douglas GL, Epstein A, Flynn-Evans EE, Gallagher MB, Hayes J, Lee SMC, Lockley SW, Monseur B, Nelson NG, Sargsyan A, Smith SM, Stenger MB, Stepanek J, Zwart SR; Bellagio II Team. Bellagio II report: terrestrial applications of space medicine research. Aerosp Med Hum Perform. 2021; 92(8):650669.
Collapse
|
44
|
Conard AM, Goodman N, Hu Y, Perrimon N, Singh R, Lawrence C, Larschan E. TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data. Nucleic Acids Res 2021; 49:W641-W653. [PMID: 34125906 PMCID: PMC8262710 DOI: 10.1093/nar/gkab384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
Uncovering how transcription factors regulate their targets at DNA, RNA and protein levels over time is critical to define gene regulatory networks (GRNs) and assign mechanisms in normal and diseased states. RNA-seq is a standard method measuring gene regulation using an established set of analysis stages. However, none of the currently available pipeline methods for interpreting ordered genomic data (in time or space) use time-series models to assign cause and effect relationships within GRNs, are adaptive to diverse experimental designs, or enable user interpretation through a web-based platform. Furthermore, methods integrating ordered RNA-seq data with protein–DNA binding data to distinguish direct from indirect interactions are urgently needed. We present TIMEOR (Trajectory Inference and Mechanism Exploration with Omics data in R), the first web-based and adaptive time-series multi-omics pipeline method which infers the relationship between gene regulatory events across time. TIMEOR addresses the critical need for methods to determine causal regulatory mechanism networks by leveraging time-series RNA-seq, motif analysis, protein–DNA binding data, and protein-protein interaction networks. TIMEOR’s user-catered approach helps non-coders generate new hypotheses and validate known mechanisms. We used TIMEOR to identify a novel link between insulin stimulation and the circadian rhythm cycle. TIMEOR is available at https://github.com/ashleymaeconard/TIMEOR.git and http://timeor.brown.edu.
Collapse
Affiliation(s)
- Ashley Mae Conard
- Computer Science Department, Brown University, Providence, RI 02912, USA.,Center for Computational and Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Nathaniel Goodman
- Computer Science Department, Brown University, Providence, RI 02912, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Director of Bioinformatics DRSC/TRiP Functional Genomics Resources, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ritambhara Singh
- Computer Science Department, Brown University, Providence, RI 02912, USA.,Center for Computational and Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Charles Lawrence
- Center for Computational and Molecular Biology, Brown University, Providence, RI 02912, USA.,Applied Math Department, Brown University, Providence, RI 02912, USA
| | - Erica Larschan
- Center for Computational and Molecular Biology, Brown University, Providence, RI 02912, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
45
|
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, Li L, Ma Z, Pan Q, Qiao Z, Chen K. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med 2021; 22:950. [PMID: 34335892 PMCID: PMC8290466 DOI: 10.3892/etm.2021.10382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Collapse
Affiliation(s)
- Jianbo Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Experimental Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Wen Ai
- Department of Cardiology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Linhao Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zilin Qiao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kan Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
46
|
Wang W, Zhang Y, Ding M, Huang X, Zhang M, Gu Y, Wu L, Zhang C, Lu C, Shen B, Xing C, Song L. Circadian oscillation expression of ornithine carbamoyltransferase and its significance in sleep disturbance. Biochem Biophys Res Commun 2021; 559:217-221. [PMID: 33957483 DOI: 10.1016/j.bbrc.2021.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022]
Abstract
Ornithine transcarbamylases (OTC), a key enzyme in urea cycle, is an important marker for some liver injury or diseases. However, whether OTC could be a sensitive indicator for liver dysfunction under sleep disturbance condition remains unknown. The present study aimed to explore the circadian oscillation expression of OTC and its significance in disturbed sleep condition. Sleep disturbance was conducted by a sleep deprivation (SD) instrument. Our results found that SD for 72h induced abnormal increasing of OTC levels in serum and liver of rats. And, serum OTC concentration and liver OTC expression could return to normal levels after recovery sleep following SD. Moreover, hepatic OTC expression showed circadian oscillation in day and night, characterized with occurrence of a peak between ZT 22 and ZT 2, and a nadir between ZT 14 and ZT 18. Further analysis suggested the existence of ROR response element (RORE) for potential RORɑ binding sites in OTC promoter region, and elevated RORɑ expression in rat livers under sleep disturbance condition. Additionally, oscillation expression of OTC induced by serum shock in HepG2 cells was characterized with a peak occurred between ZT 12 and ZT 16, and RORɑ knockdown at ZT 16 significantly lowered OTC expression. The results together indicate that OTC is closely correlated with circadian clock, and could be a sensitive indicator for sleep disturbance stress.
Collapse
Affiliation(s)
- Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yu Gu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Lin Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Basic Medicine, Henan University, Kaifeng, 475004, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China; Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
47
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
48
|
Charlot A, Hutt F, Sabatier E, Zoll J. Beneficial Effects of Early Time-Restricted Feeding on Metabolic Diseases: Importance of Aligning Food Habits with the Circadian Clock. Nutrients 2021; 13:nu13051405. [PMID: 33921979 PMCID: PMC8143522 DOI: 10.3390/nu13051405] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The importance of metabolic health is a major societal concern due to the increasing prevalence of metabolic diseases such as obesity, diabetes, and various cardiovascular diseases. The circadian clock is clearly implicated in the development of these metabolic diseases. Indeed, it regulates physiological processes by hormone modulation, thus helping the body to perform them at the ideal time of day. Since the industrial revolution, the actions and rhythms of everyday life have been modified and are characterized by changes in sleep pattern, work schedules, and eating habits. These modifications have in turn lead to night shift, social jetlag, late-night eating, and meal skipping, a group of customs that causes circadian rhythm disruption and leads to an increase in metabolic risks. Intermittent fasting, especially the time-restricted eating, proposes a solution: restraining the feeding window from 6 to 10 h per day to match it with the circadian clock. This approach seems to improve metabolic health markers and could be a therapeutic solution to fight against metabolic diseases. This review summarizes the importance of matching life habits with circadian rhythms for metabolic health and assesses the advantages and limits of the application of time-restricted fasting with the objective of treating and preventing metabolic diseases.
Collapse
|
49
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
50
|
Scander H, Lennernäs Wiklund M, Yngve A. Assessing Time of Eating in Commensality Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2941. [PMID: 33805618 PMCID: PMC8000786 DOI: 10.3390/ijerph18062941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
Commensal meals seem to be related to a better nutritional and metabolic health as well as an improved quality of life. The aim of this paper was to examine to what extent research was performed using the search term commensality related to assessment of timing of meals. A scoping review was performed, where 10 papers were identified as specifically addressing the assessment of timing of commensality of meals. Time use studies, questionnaires, and telephone- and person-to-person interviews were used for assessing meal times in relation to commensality. Four of the studies used a method of time use registration, and six papers used interviews or questionnaires. Common meals with family members were the most common, and dinners late at night were often preferred for commensal activities among the working population. In conclusion, the family meal seemed to be the most important commensal meal. It is clear from the collected papers and from previous systematic reviews that more studies of commensal meals in general and about timing aspects in particular and in relation to nutritional health are essential to provide a solid background of knowledge regarding the importance of timing in relation to commensal meals.
Collapse
Affiliation(s)
- Henrik Scander
- School of Hospitality, Culinary Arts and Meal Science, Örebro University, 712 02 Grythyttan, Sweden
| | - Maria Lennernäs Wiklund
- Department of Occupational and Public Health Sciences, Gävle University, 801 76 Gävle, Sweden;
| | - Agneta Yngve
- School of Health Sciences, Örebro University, 702 81 Örebro, Sweden;
- Department of Nutrition, Dietetics and Food Studies, Uppsala University, 751 22 Uppsala, Sweden
| |
Collapse
|