1
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
2
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
3
|
Rhein S, Inderhees J, Herrmann O, Othman A, Begemann K, Fleming T, Nawroth PP, Klika KD, Isa R, König IR, Royl G, Schwaninger M. Glyoxal in hyperglycaemic ischemic stroke - a cohort study. Cardiovasc Diabetol 2023; 22:173. [PMID: 37438755 DOI: 10.1186/s12933-023-01892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Herrmann
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
- German Research Centre for Diabetes Research, Düsseldorf, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rakad Isa
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Inke R König
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
4
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
5
|
Chaurasiya A, Jaiswal MR, Bayatigeri S, Kahar S, Tiwari S, Unnikrishnan AG, Kulkarni MJ. Elevated Level of Glycated KQTALVELVK Peptide of Albumin Is Associated with the Risk of Diabetic Nephropathy. ACS OMEGA 2023; 8:20654-20660. [PMID: 37332825 PMCID: PMC10268606 DOI: 10.1021/acsomega.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. Hence, early detection of diabetic nephropathy is essential to mitigate the disease burden. Microalbuminuria, the currently used diagnostic marker of diabetic nephropathy, is not efficient in detecting it at an early stage. Therefore, we explored the utility of glycated human serum albumin (HSA) peptides for risk prediction of diabetic nephropathy. Three glycation-sensitive HSA peptides, namely, FKDLGEENFK, KQTALVELVK, and KVPQVSTPTLVEVSR, with deoxyfructosyllysine (DFL) modification were quantified by targeted mass spectrometry (MS) in a study population comprising healthy and type II diabetes subjects with and without nephropathy. Mass spectrometry, receiver operating characteristic (ROC) curve, and correlation analysis revealed that the DFL-modified KQTALVELVK peptide was better than other glycated HSA peptides and HbA1c for identifying diabetic nephropathy. DFL-modified KQTALVELVK could be a potential marker for risk prediction of diabetic nephropathy.
Collapse
Affiliation(s)
- Arvindkumar
H. Chaurasiya
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R. Jaiswal
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santhakumari Bayatigeri
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Center
for Materials Characterization, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Shweta Kahar
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Shalbha Tiwari
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Ambika G. Unnikrishnan
- Department
of Diabetes and Endocrine Research, Chellaram
Diabetes Institute, Pune 411021, India
| | - Mahesh J. Kulkarni
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
8
|
Hossain S, Satter S, Kwon TH, Kim KD. Optical Measurement of Molar Absorption Coefficient of HbA1c: Comparison of Theoretical and Experimental Results. SENSORS (BASEL, SWITZERLAND) 2022; 22:8179. [PMID: 36365877 PMCID: PMC9658719 DOI: 10.3390/s22218179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Diabetes can cause dangerous complications if not diagnosed in a timely manner. The World Health Organization accepts glycated hemoglobin (HbA1c) as a measure of diagnosing diabetes as it provides significantly more information on the glycemic behavior from a single blood sample than the fasting blood sugar reading. The molar absorption coefficient of HbA1c is needed to quantify the amount of HbA1c present in a blood sample. In this study, we measured the molar absorption coefficient of HbA1c in the range of 450 nm to 700 nm using optical methods experimentally. We observed that the characteristic peaks of the molar absorption coefficient of HbA1c (at 545 nm and 579 nm for level 1, at 544 nm and 577 nm for level 2) are in close agreement with those reported in previous studies. The molar absorption coefficient values were also found to be close to those of earlier reports. The average molar absorption coefficient values of HbA1c were found to be 804,403.5 M−1cm−1 at 545 nm and 703,704.5 M−1cm−1 at 579 nm for level 1 as well as 503,352.4 M−1cm−1 at 544 nm and 476,344.6 M−1cm−1 at 577 nm for level 2. Our experiments focused on calculating the molar absorption coefficients of HbA1c in the visible wavelength region, and the proposed experimental method has an advantage of being able to easily obtain the molar absorption coefficient at any wavelength in the visible wavelength region. The results of this study are expected to help future investigations on noninvasive methods of estimating HbA1c levels.
Collapse
Affiliation(s)
- Shifat Hossain
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Shama Satter
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| | - Tae-Ho Kwon
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| | - Ki-Doo Kim
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
9
|
Rescalli A, Varoni EM, Cellesi F, Cerveri P. Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection. BIOSENSORS 2022; 12:bios12090687. [PMID: 36140073 PMCID: PMC9496022 DOI: 10.3390/bios12090687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a worldwide-spread chronic metabolic disease that occurs when the pancreas fails to produce enough insulin levels or when the body fails to effectively use the secreted pancreatic insulin, eventually resulting in hyperglycemia. Systematic glycemic control is the only procedure at our disposal to prevent diabetes long-term complications such as cardiovascular disorders, kidney diseases, nephropathy, neuropathy, and retinopathy. Glycated albumin (GA) has recently gained more and more attention as a control biomarker thanks to its shorter lifespan and wider reliability compared to glycated hemoglobin (HbA1c), currently the “gold standard” for diabetes screening and monitoring in clinics. Various techniques such as ion exchange, liquid or affinity-based chromatography and immunoassay can be employed to accurately measure GA levels in serum samples; nevertheless, due to the cost of the lab equipment and complexity of the procedures, these methods are not commonly available at clinical sites and are not suitable to home monitoring. The present review describes the most up-to-date advances in the field of glycemic control biomarkers, exploring in particular the GA with a special focus on the recent experimental analysis techniques, using enzymatic and affinity methods. Finally, analysis steps and fundamental reading technologies are integrated into a processing pipeline, paving the way for future point-of-care testing (POCT). In this view, we highlight how this setup might be employed outside a laboratory environment to reduce the time from measurement to clinical decision, and to provide diabetic patients with a brand-new set of tools for glycemic self-monitoring.
Collapse
Affiliation(s)
- Andrea Rescalli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Resistance to glycation in the zebra finch: Mass spectrometry-based analysis and its perspectives for evolutionary studies of aging. Exp Gerontol 2022; 164:111811. [PMID: 35472570 DOI: 10.1016/j.exger.2022.111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
In humans, hyperglycemia is associated with protein glycation, which may contribute to aging. Strikingly, birds usually outlive mammals of the same body mass, while exhibiting high plasma glucose levels. However, how birds succeed in escaping pro-aging effects of glycation remains unknown. Using a specific mass spectrometry-based approach in captive zebra finches of known age, we recorded high glycaemia values but no glycated hemoglobin form was found. Still, we showed that zebra finch hemoglobin can be glycated in vitro, albeit only to a limited extent compared to its human homologue. This may be due to peculiar structural features, as supported by the unusual presence of three different tetramer populations with balanced proportions and a still bound cofactor that could be inositol pentaphosphate. High levels of the glycated forms of zebra finch plasma serotransferrin, carbonic anhydrase 2, and albumin were measured. Glucose, age or body mass correlations with either plasma glycated proteins or hemoglobin isoforms suggest that those variables may be future molecular tools of choice to monitor glycation and its link with individual fitness. Our molecular advance may help determine how evolution succeeded in associating flying ability, high blood glucose and long lifespan in birds.
Collapse
|
11
|
Kijewska M, Zawadzka M, Włodarczyk K, Stefanowicz P. HPLC-free method of synthesis of isotopically labeled deoxyfructosylated peptides. Anal Bioanal Chem 2022; 414:3803-3811. [PMID: 35316349 DOI: 10.1007/s00216-022-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
The biomarker strategy, based on multiple specific glycation sites in plasma proteins, could essentially increase the efficiency of glycemic control and disease prediction. Besides glycated albumin being a potential biomarker of early states of diabetes mellitus and control of short-term, it has been shown that the glycation of fibrinogen may also impact the formation of the fibrin network, while quantification of glycation of the CD59 protein allows for early detection of glucose intolerance in pregnant women. A different level of glycation of individual lysine residues in proteins has a crucial influence on the stages of the disease. The quantification of new biomarkers of different stages of diabetes requires appropriate isotope-labeled analogs that may improve biomarker search by providing more accurate quantitative data and by more robust detection/quantitation of low-abundance biomarkers. In the presented work, we proposed a fast and simple protocol for the synthesis of isotopically labeled and bi-labeled deoxyfructosylated peptide based on a combination of microwave-assisted synthesis and boronic affinity chromatography using functionalized resin (PhB-Lys(PhB)-ChemMatrix® Rink resin) developed by us. Our method is focused on the synthesis of glycated peptides identified in glycated albumin (GA) after enzymatic hydrolysis catalyzed by trypsin after arginine residues. Thereby, the standard peptides comprised [13C6]-deoxyfructose attached to lysine residue side chain, a dabcyl moiety for determination of standard amounts, and a cleavable linker. Moreover, we applied bi-labeled deoxyfructosylated peptide to determine the concentration of appropriate analog in a sample of human serum albumin glycated in vitro.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Michalina Zawadzka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Karolina Włodarczyk
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
12
|
Zhang W, Lu J, Qing Z, Zhang X, Zhao H, Bi Y, Zhang B. Effects of Subcortical Atrophy and Alzheimer’s Pathology on Cognition in Elderly Type 2 Diabetes: The Alzheimer’s Disease Neuroimaging Initiative Study. Front Aging Neurosci 2022; 14:781938. [PMID: 35173604 PMCID: PMC8841716 DOI: 10.3389/fnagi.2022.781938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Subcortical atrophy and increased cerebral β-amyloid and tau deposition are linked to cognitive decline in type 2 diabetes. However, whether and how subcortical atrophy is related to Alzheimer’s pathology in diabetes remains unclear. This study therefore aimed to investigate subcortical structural alterations induced by diabetes and the relationship between subcortical alteration, Alzheimer’s pathology and cognition. Methods Participants were 150 patients with type 2 diabetes and 598 propensity score-matched controls without diabetes from the Alzheimer’s Disease Neuroimaging Initiative. All subjects underwent cognitive assessments, magnetic resonance imaging (MRI), and apolipoprotein E (ApoE) genotyping, with a subset that underwent amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) assays to determine cerebral β-amyloid deposition (n = 337) and CSF p-tau (n = 433). Subcortical structures were clustered into five modules based on Pearson’s correlation coefficients of volumes across all subjects: the ventricular system, the corpus callosum, the limbic system, the diencephalon, and the striatum. Using structural equation modeling (SEM), we investigated the relationships among type 2 diabetes, subcortical structural alterations, and AD pathology. Results Compared with the controls, the diabetic patients had significant reductions in the diencephalon and limbic system volumes; moreover, patients with longer disease duration (>6 years) had more severe volume deficit in the diencephalon. SEM suggested that type 2 diabetes, age, and the ApoE ε4 allele (ApoE-ε4) can affect cognition via reduced subcortical structure volumes (total effect: age > ApoE-ε4 > type 2 diabetes). Among them, age and ApoE-ε4 strongly contributed to AD pathology, while type 2 diabetes neither directly nor indirectly affected AD biomarkers. Conclusion Our study suggested the subcortical atrophy mediated the association of type 2 diabetes and cognitive decline. Although both type 2 diabetes and AD are correlated with subcortical neurodegeneration, type 2 diabetes have no direct or indirect effect on the cerebral amyloid deposition and CSF p-tau.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Bing Zhang,
| | | |
Collapse
|
13
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
14
|
Ma Y, Zhou Q, Zhao P, Lv X, Gong C, Gao J, Liu J. Effect of transferrin glycation induced by high glucose on HK-2 cells in vitro. Front Endocrinol (Lausanne) 2022; 13:1009507. [PMID: 36778593 PMCID: PMC9909336 DOI: 10.3389/fendo.2022.1009507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Glycation is a common post-transcriptional modification of proteins. Previous studies have shown that advanced glycation end modified transferrin (AGE-Tf) levels in diabetic rat kidney tissues were increased; however, its role in diabetic nephropathy remains unclear. In this study, differences in glycation degree and Tf sites induced by differing high glucose concentrations in vitro and the effect on total iron binding capacity (TIBC) were observed. Moreover, the effect of AGE-Tf on human renal tubular epithelial cells (HK-2) was investigated. METHODS In vitro Tf was incubated with increasing glucose concentrations (0 mM, 5.6 mM, 11.1 mM, 33.3 mM, 100 mM, 500 mM, and 1,000 mM) for AGE-Tf. Differences in AGE-Tf glycation degree and TIBC level were analyzed via colorimetric method. The AGE-Tf glycation sites were identified with LC-MS/MS. HK-2 cells were treated with AGE-Tf prepared with different glucose concentrations (33.3 mM and 500 mM) in vitro. The effects of AGE-Tf on HK-2 cell viability, proliferation, oxidative stress index, and Tf receptor expression levels were then observed. RESULTS With increasing glucose concentrations (100 mM, 500 mM, and 1,000 mM) in vitro, Tf glycation degree was significantly increased. The TIBC levels of AGE-Tf were decreased significantly with increasing glucose concentrations (33.3 mM, 100 mM, 500 mM, and 1,000 mM). Four glycated modification sites in Tf and 17 glycated modification sites were detected in AGE-Tf (500 mM) by LC-MS/MS. The structural types of AGEs were CML, G-H1, FL-1H2O, FL, and MG-H1. No significant differences were found in the survival rate of HK-2 cells among the AGE-Tf (500 mM), AGE-Tf (33.3 mM), and Tf groups (all p > 0.05). The apoptosis rate of HK-2 cells in the AGE-Tf (500 mM) group was significantly higher than that in the AGE-Tf (33.3 mM) group. Additionally, both of them were significantly higher than that in the Tf group (both p < 0.05). The MDA levels of HK-2 cells in the AGE-Tf (500 mM) and AGE-Tf (33.3 mM) groups were higher than that in the Tf group, but not significantly (both p > 0.05). The T-AOC level of HK-2 in the AGE-Tf (500 mM) group was significantly lower than that in the AGE-Tf (33.3 mM) and Tf groups (both p < 0.001). The GSH level of HK-2 cells in the AGE-Tf (500 mM) group was significantly lower than that in the Tf group (p < 0.05). The expression level of TfR in the AGE-Tf (500 mM) group was also significantly lower than that in the Tf group (p < 0.05). CONCLUSION The degree and sites of Tf glycation were increased in vitro secondary to high-glucose exposure; however, the binding ability of Tf to iron decreased gradually. After HK-2 was stimulated by AGE-Tf in vitro, the apoptosis of cells was increased, antioxidant capacity was decreased, and TfR expression levels were downregulated.
Collapse
Affiliation(s)
- Yanqi Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qikai Zhou
- Tianjin Normal University, Tianjin, China
| | - Pingping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyu Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Caixia Gong
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jie Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Jingfang Liu,
| |
Collapse
|
15
|
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J EVOL BIOCHEM PHYS+ 2021; 57:1419-1448. [PMID: 34955553 PMCID: PMC8685822 DOI: 10.1134/s002209302106020x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Being one of the main proteins in the human body and many
animal species, albumin plays a crucial role in the transport of
various ions, electrically neutral molecules and in maintaining
the colloidal osmotic pressure of the blood. Albumin is able to
bind almost all known drugs, many nutraceuticals and toxic substances,
determining their pharmaco- and toxicokinetics. However, albumin
is not only the passive but also the active participant of the pharmacokinetic
and toxicokinetic processes possessing a number of enzymatic activities.
Due to the thiol group of Cys34, albumin can serve as a trap for
reactive oxygen and nitrogen species, thus participating in redox
processes. The interaction of the protein with blood cells, blood
vessels, and also with tissue cells outside the vascular bed is
of great importance. The interaction of albumin with endothelial glycocalyx
and vascular endothelial cells largely determines its integrative
role. This review provides information of a historical nature, information
on evolutionary changes, inflammatory and antioxidant properties
of albumin, on its structural and functional modifications and their significance
in the pathogenesis of some diseases.
Collapse
Affiliation(s)
- D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P. A. Voronina
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| |
Collapse
|
16
|
Hossain S, Kim KD. Noninvasive Estimation of Glycated Hemoglobin In-Vivo Based on Photon Diffusion Theory and Genetic Symbolic Regression Models. IEEE Trans Biomed Eng 2021; 69:2053-2064. [PMID: 34905488 DOI: 10.1109/tbme.2021.3135305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The diagnosis and management of diabetes require frequent monitoring of blood sugar levels. Prolonged exposure of most of the monosaccharides in the bloodstream results in the glycation of hemoglobin. This glycated hemoglobin (HbA1c) based test plays an important role to avoid diabetic complications. However, noninvasive estimation of HbA1c is a very new, promising, and challenging topic in modern bioengineering scopes. The purpose of this study is to develop and verify mathematical models in order to quantify the glycated hemoglobin in-vivo percentage non-invasively. This research utilized photon diffusion theory to develop the finger models and genetic symbolic regression methods to solve the models to estimate the level of glycated hemoglobin in the blood. The validation of these models with human participants indicated a high degree of correlation (0.887 and 0.907 Pearsons r value), and high precision (2.56% and 2.96% coefficient of variation (%CV)) for transmission and reflection type noninvasive digital volume pulse-based signals. This research will be a breakthrough for the application of noninvasive HbA1c estimation.
Collapse
|
17
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
18
|
Tabang DN, Ford M, Li L. Recent Advances in Mass Spectrometry-Based Glycomic and Glycoproteomic Studies of Pancreatic Diseases. Front Chem 2021; 9:707387. [PMID: 34368082 PMCID: PMC8342852 DOI: 10.3389/fchem.2021.707387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Modification of proteins by glycans plays a crucial role in mediating biological functions in both healthy and diseased states. Mass spectrometry (MS) has emerged as the most powerful tool for glycomic and glycoproteomic analyses advancing knowledge of many diseases. Such diseases include those of the pancreas which affect millions of people each year. In this review, recent advances in pancreatic disease research facilitated by MS-based glycomic and glycoproteomic studies will be examined with a focus on diabetes and pancreatic cancer. The last decade, and especially the last five years, has witnessed developments in both discovering new glycan or glycoprotein biomarkers and analyzing the links between glycans and disease pathology through MS-based studies. The strength of MS lies in the specificity and sensitivity of liquid chromatography-electrospray ionization MS for measuring a wide range of biomolecules from limited sample amounts from many sample types, greatly enhancing and accelerating the biomarker discovery process. Furthermore, imaging MS of glycans enabled by matrix-assisted laser desorption/ionization has proven useful in complementing histology and immunohistochemistry to monitor pancreatic disease progression. Advances in biological understanding and analytical techniques, as well as challenges and future directions for the field, will be discussed.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Ahmad S, Khan MS, Alouffi S, Khan S, Khan M, Akashah R, Faisal M, Shahab U. Gold Nanoparticle-Bioconjugated Aminoguanidine Inhibits Glycation Reaction: An In Vivo Study in a Diabetic Animal Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5591851. [PMID: 34055984 PMCID: PMC8137289 DOI: 10.1155/2021/5591851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Proteins undergo glycation resulting in the generation of advanced glycation end products (AGEs) that play a central role in the onset and advancement of diabetes-associated secondary complications. Aminoguanidine (AG) acts as an antiglycating agent by inhibiting AGE generation by blocking reactive carbonyl species (RCS) like, methylglyoxal (MGO). Previous studies on antiglycating behavior of AG gave promising results in the treatment of diabetes-associated microvascular complications, but it was discontinued as it was found to be toxic at high concentrations (>10 mmol/L). The current article aims at glycation inhibition by conjugating gold nanoparticles (Gnp) with less concentration of AG (0.5-1.0 mmol/L). The HPLC results showed that AG-Gnp fairly hampers the formation of glycation adducts. Moreover, the in vivo studies revealed AG-Gnp mediated inhibition in the production of total-AGEs and -N ε -(carboxymethyl)lysine (CML) in the diabetic rat model. This inhibition was found to be directly correlated with the antioxidant parameters, blood glucose, insulin, and glycosylated hemoglobin levels. Furthermore, the histopathology of AG-Gnp-treated rats showed good recovery in the damaged pancreatic tissue as compared to diabetic rats. We propose that this approach might increase the efficacy of AG at relatively low concentrations to avoid toxicity and might facilitate to overcome the hazardous actions of antiglycating drugs.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohd. Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Ha'il 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, Ha'il 2440, Saudi Arabia
| | - Rihab Akashah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Uzma Shahab
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Sitapur-Hardoi Bypass Road, Lucknow 226013, India
| |
Collapse
|
21
|
Ma Y, Cai J, Wang Y, Liu J, Fu S. Non-Enzymatic Glycation of Transferrin and Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:2539-2548. [PMID: 34135606 PMCID: PMC8197663 DOI: 10.2147/dmso.s304796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Diabetes is a metabolic disease characterized by high blood sugar. Its complications may damage multiple organs, such as eyes, kidneys, heart, blood vessels, and nerves, severely threatening human health. Transferrin (Tf) is a major iron transport protein in the body. Recent studies have shown that the degree of non-enzymatic glycated modification of Tf is increased in diabetic patients, and glycated Tf is closely related to the occurrence and development of diabetes and diabetic complications. However, the molecular mechanisms underlying this glycated modification in diabetes and diabetic complications are still unclear. It is speculated that the mechanism may be that glycated modification reduces the binding ability of Tf and its receptor TfR, followed by excessive iron accumulation in the body. Iron overload in the body may further lead to the death of pancreatic beta cells and insulin resistance by increasing oxidative stress, inducing iron death, interfering with the insulin signaling pathway, and causing autophagy deficiency. In addition, non-enzymatic glycation affects the binding of Tf with chromium and reduces the ability of Tf to transport chromium into tissues, resulting in a decrease in the levels of chromium in tissues and ultimately affecting the sensitivity of tissues to insulin. In diabetic patients, the concentrations of glycated Tf in serum were significantly correlated with those of fructosamine.Tf has a shorter half-life, and not affected by anemia or hypoalbuminemia and less negative charge under physiological conditions, while glycated modification could not change the isoelectric point of Tf, which easily passes through the negatively charged basement membrane of the glomerulus. Therefore, compared to glucosamine, HbA1C, etc., glycated Tf may be a future biomarker for evaluating short-term glycemic control and early renal damage in diabetic patients.
Collapse
Affiliation(s)
- Yanqi Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jing Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Ying Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Endocrinology,The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Correspondence: Jingfang Liu Department of Endocrinology, The FirstHospital of Lanzhou University, 1 Donggang West Road, Lanzhou, Gansu, 730000, People’s Republic of ChinaTel +86-931-8356242 Email
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Endocrinology,The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
22
|
Frolova N, Soboleva A, Nguyen VD, Kim A, Ihling C, Eisenschmidt-Bönn D, Mamontova T, Herfurth UM, Wessjohann LA, Sinz A, Birkemeyer C, Frolov A. Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chem 2020; 347:128951. [PMID: 33493836 DOI: 10.1016/j.foodchem.2020.128951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023]
Abstract
Glycation is referred to as the interaction of protein amino and guanidino groups with reducing sugars and carbonyl products of their degradation. Resulting advanced glycation end-products (AGEs) contribute to pathogenesis of diabetes mellitus and neurodegenerative disorders. Upon their intestinal absorption, dietary sugars and α-dicarbonyl compounds interact with blood proteins yielding AGEs. Although the differences in glycation potential of monosaccharides are well characterized, the underlying mechanisms are poorly understood. To address this question, d-glucose, d-fructose and l-ascorbic acid were incubated with human serum albumin (HSA). The sugars and α-dicarbonyl intermediates of their degradation were analyzed in parallel to protein glycation patterns (exemplified with hydroimidazolone modifications of arginine residues and products of their hydrolysis) by bottom-up proteomics and computational chemistry. Glycation of HSA with sugars revealed 9 glyoxal- and 14 methylglyoxal-derived modification sites. Their dynamics was sugar-specific and depended on concentrations of α-dicarbonyls, their formation kinetics, and presence of stabilizing residues in close proximity to the glycation sites.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| | - Viet Duc Nguyen
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | | | - Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Germany
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, St. Petersburg State University, Russia.
| |
Collapse
|
23
|
Khan ZA, Park S. An Electrochemical Chip to Monitor In Vitro Glycation of Proteins and Screening of Antiglycation Potential of Drugs. Pharmaceutics 2020; 12:E1011. [PMID: 33113943 PMCID: PMC7690698 DOI: 10.3390/pharmaceutics12111011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia and the production of advanced glycation end products (AGEs) are the primary factors for the development of chronic complications in diabetes. The level of protein glycation is proportional to the glucose concentration and represents mean glycemia. In this study, we present an electrochemical chip-based method for in vitro glycation monitoring and the efficacy evaluation of an antiglycation compound. An electrochemical chip consisting of five microchambers and embedded microelectrodes was designed for parallel measurements of capacitance signals from multiple solutions at different concentrations. The feasibility of glycation monitoring was then investigated by measuring the capacitance signal at 0.13 MHz with bovine serum albumin and gelatin samples in the presence of various glucose concentrations over 28 days. A significant change in the capacitance due to protein glycation was observed through measurements conducted within 30 s and 21 days of incubation. Finally, we demonstrated that the chip-based capacitance measurement can be utilized for the selection of an antiglycation compound by supplementing the protein solution and hyperglycemic concentration of glucose with an inhibitory concentration of the standard antiglycation agent aspirin. The lack of a significant change in the capacitance over 28 days proved that aspirin is capable of inhibiting protein glycation. Thus, a strong relationship exists between glycation and capacitance, suggesting the application of an electrochemical chip for evaluating glycation and novel antiglycation agents.
Collapse
Affiliation(s)
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chunggnam 31253, Korea;
| |
Collapse
|
24
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
25
|
Zhang L, Zhang Q. Glycated Plasma Proteins as More Sensitive Markers for Glycemic Control in Type 1 Diabetes. Proteomics Clin Appl 2020; 14:e1900104. [PMID: 31868294 DOI: 10.1002/prca.201900104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Glycated hemoglobin (HbA1c) is used clinically for diagnosis and therapeutic management of diabetes. However, HbA1c reflects average blood glucose level over a long period. The aim of this study is to look for short period, more sensitive protein markers that correlate better with glycemic level. EXPERIMENTAL DESIGN The glycated proteome of human plasma from type 1 diabetic individuals with good and poor (n = 20 each) glycemic control are analyzed using an online two-dimensional proteomics approach. Selected glycated peptides are further validated for their potential as candidate biomarkers using parallel reaction monitoring. RESULTS 305 glycated peptides are quantified and 290 are significantly increased in samples with poor glycemic control. 76 of the 88 selected glycated peptides have receiver operating characteristic area under curve (AUC) values greater than 0.8. Six validated glycated peptides with high AUC show high correlation with HbA1c and have higher fold changes between poor and good glycemic control than HbA1c. The parent proteins have half-lives shorter than HbA1c. CONCLUSIONS AND CLINICAL RELEVANCE Using an advanced proteomics platform for protein glycation analysis, glycated peptides and proteins are identified that are promising as more sensitive, shorter term indicators of glycemic control in diabetic patients than the commonly used HbA1c.
Collapse
Affiliation(s)
- Lina Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.,State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| |
Collapse
|