1
|
Cao Y, Yang Q, Mai Q, Wuliu J, Deng K. Relationship between triglyceride-glucose index and endometriosis: a cross-sectional analysis. BMC Womens Health 2024; 24:447. [PMID: 39118074 PMCID: PMC11308201 DOI: 10.1186/s12905-024-03287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The link between insulin resistance and endometriosis is not well established. The triglyceride-glucose (TyG) index serves as a straightforward and economical indicator of insulin resistance. This study examines the link between the TyG index and the prevalence of endometriosis in a U.S. COHORT METHODS This cross-sectional study analyzed data from the NHANES conducted between 1999 and 2006. Reproductive health was assessed through questionnaires, and the TyG index was derived from fasting triglyceride and glucose measurements. Weighted logistic regression models were used to analyze the relationship between the TyG index and endometriosis. Restricted cubic spline (RCS) curves explored the linear relationship, while stratified and sensitivity analyses assessed potential interactions and the robustness of the findings. RESULTS The study included 2,346 women, with 176 diagnosed with endometriosis and 2,170 without. Women with endometriosis exhibited an elevated TyG index compared to those without the condition. The weighted logistic regression analysis revealed that the TyG index is an independent risk factor for endometriosis (OR = 1.58, 95% CI 1.17-2.14, p = 0.004). RCS analysis indicated a significant positive linear association between the TyG index and endometriosis, with a turning point at 8.51. Subgroup analysis indicated a stronger association in certain populations. The post-propensity score matching analysis confirmed the robustness of these findings. CONCLUSION In the U.S. population, a higher TyG index is positively and linearly associated with endometriosis prevalence. Effective management of blood glucose and lipid levels may reduce the prevalence of endometriosis.
Collapse
Affiliation(s)
- Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Foshan, 528308, P. R. China
| | - Qian Yang
- Department of Gynecology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Foshan, 528308, P. R. China
| | - Qiqing Mai
- Department of Gynecology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Foshan, 528308, P. R. China
| | - Jianxiong Wuliu
- Department of Gynecology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Foshan, 528308, P. R. China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Foshan, 528308, P. R. China.
| |
Collapse
|
2
|
Jia X, Mao D, Guo J, Ke J, Zhu Y, Zhao X, Luo Z, Liu X, Tang R, Hou R, Lan H, Zheng Q. Epigallocatechin gallate attenuated high glucose-induced pancreatic beta cell dysfunction by modulating DRP1-mediated mitochondrial apoptosis pathways. Sci Rep 2024; 14:16809. [PMID: 39039202 PMCID: PMC11263710 DOI: 10.1038/s41598-024-67867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Long-term exposure to hyperglycemic conditions leads to β-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of β-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Danting Mao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianwei Guo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Jiangyu Ke
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Yanlin Zhu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoyang Zhao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziren Luo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Xinghai Liu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Rui Tang
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Ruihan Hou
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Haitao Lan
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Li G, Zhang J, Cui H, Feng Z, Gao Y, Wang Y, Chen J, Xu Y, Niu D, Yin J. Research Progress on the Effect and Mechanism of Tea Products with Different Fermentation Degrees in Regulating Type 2 Diabetes Mellitus. Foods 2024; 13:221. [PMID: 38254521 PMCID: PMC10814445 DOI: 10.3390/foods13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A popular non-alcoholic beverage worldwide, tea can regulate blood glucose levels, lipid levels, and blood pressure, and may even prevent type 2 diabetes mellitus (T2DM). Different tea fermentation levels impact these effects. Tea products with different fermentation degrees containing different functional ingredients can lower post-meal blood glucose levels and may prevent T2DM. There are seven critical factors that shed light on how teas with different fermentation levels affect blood glucose regulation in humans. These factors include the inhibition of digestive enzymes, enhancement of cellular glucose uptake, suppression of gluconeogenesis-related enzymes, reduction in the formation of advanced glycation end products (AGEs), inhibition of dipeptidyl peptidase-4 (DPP-4) activity, modulation of gut flora, and the alleviation of inflammation associated with oxidative stress. Fermented teas can be used to lower post-meal blood glucose levels and can help consumers make more informed tea selections.
Collapse
Affiliation(s)
- Guangneng Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530003, China
| | - Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Yuwan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530003, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| |
Collapse
|
4
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Potential roles of circulating microRNAs in the healing of type 1 diabetic wounds treated with green tea extract: molecular and biochemical study. Heliyon 2023; 9:e22020. [PMID: 38027999 PMCID: PMC10665742 DOI: 10.1016/j.heliyon.2023.e22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Circulating miRNAs have been implicated in various aspects of diabetic wound healing, including inflammation, angiogenesis, and extracellular matrix remodeling. Thus, in alternative herbal medicine strategies, miRNAs will be potential therapeutic molecular targets in nonhealing wounds. These could be valuable elements for understanding the molecular basis of diabetic wound healing and could be used as good elements in bioinformatics. Objectives To elucidate the molecular mechanisms of microRNAs in association with apoptosis-inducing genes in controlling skin wound healing in diabetic wounds treated with green tea polyphenols (GTPs). Methods Green tea hydro extract (GTE) at doses of100-200 mg/ml was topically applied to the skin tissues of rats with T1DM induced by a single dose of streptozotocin (STZ; 100 mg/kg, in 0.01 M sodium citrate, pH 4.3-4.5) injected intraperitoneally for seven consecutive days to induce T1DM. The rats were treated with green tea for three weeks. A sterile surgical blade was used to inflict a circular wound approximately 2 cm in diameter on the anterior-dorsal side of previously anesthetized rats by a combination of ketamine hydrochloride (50 mg/kg, i.e., body weight) and xylazine hydrochloride. Afterward, the molecular roles of the circulating miRNAs miR-21, miR-23a, miR-146a, and miR-29b and apoptotic genes were determined by quantitative real-time PCR to evaluate Bax, Caspase-3, and Bcl-2 in wound healing. In addition, HPLC analysis was also performed to estimate the active polyphenols (GTPs) present in the hydro extract of green tea leaves. Results Wound healing was improved in diabetic skin wounds following treatment with GTE at doses of 100-200 mg/dl for three weeks. The wound parameters contraction, epithelialization, and scar formation significantly improved in a short time (14 days) compared to the longer periods identified in diabetic non-treated rats (20 days) and the standard control (15.5 days). Molecular analyses reported a significant increase in the levels of miR-21, miR-23a, and miR-146a and a decrease in the levels of miR-29b in green tea-treated diabetic rats compared to those in the standard control and STZ-diabetic non-treated rats. In addition, the molecular apoptotic genes Bax and caspase-3 significantly increased, and the BcL-2 gene significantly decreased following treatment with green tea polyphenols. Conclusions The data showed that active green tea polyphenols (GTPs) present in GTE significantly improved diabetic wound healing by controlling apoptotic genes and the circulating microRNAs miR-21, miR-23a, miR-146a, and miR-29b, which might be involved in cellular apoptosis and angiogenesis processes. Thus, to establish a future model for the treatment of diabetic wounds, further studies are needed to understand the potential association of these biological parameters with the wound-healing process in diabetic wounds.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Liang Z, Jin C, Bai H, Liang G, Su X, Wang D, Yao J. Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:1-8. [PMID: 36873600 PMCID: PMC9981809 DOI: 10.1016/j.aninu.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Since starch digestion in the small intestine provides more energy than digestion in the rumen of ruminants, reducing dietary rumen degradable starch (RDS) content is beneficial for improving energy utilization of starch in ruminants. The present study tested whether the reduction of rumen degradable starch by restricting dietary corn processing for growing goats could improve growth performance, and further investigated the possible underlying mechanism. In this study, twenty-four 12-wk-old goats were selected and randomly allocated to receive either a high RDS diet (HRDS, crushed corn-based concentrate, the mean of particle sizes of corn grain = 1.64 mm, n = 12) or a low RDS diet (LRDS, non-processed corn-based concentrate, the mean of particle sizes of corn grain >8 mm, n = 12). Growth performance, carcass traits, plasma biochemical indices, gene expression of glucose and amino acid transporters, and protein expression of the AMPK-mTOR pathway were measured. Compared to the HRDS, LRDS tended to increase the average daily gain (ADG, P = 0.054) and decreased the feed-to-gain ratio (F/G, P < 0.05). Furthermore, LRDS increased the net lean tissue rate (P < 0.01), protein content (P < 0.05) and total free amino acids (P < 0.05) in the biceps femoris (BF) muscle of goats. LRDS increased the glucose concentration (P < 0.01), but reduced total amino acid concentration (P < 0.05) and tended to reduce blood urea nitrogen (BUN) concentration (P = 0.062) in plasma of goats. The mRNA expression of insulin receptors (INSR), glucose transporter 4 (GLUT4), L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in BF muscle, and sodium-glucose cotransporters 1 (SGLT1) and glucose transporter 2 (GLUT2) in the small intestine were significantly increased (P < 0.05) in LRDS goats. LRDS also led to marked activation of p70-S6 kinase (S6K) (P < 0.05), but lower activation of AMP-activated protein kinase (AMPK) (P < 0.05) and eukaryotic initiation factor 2α (P < 0.01). Our findings suggested that reducing the content of dietary RDS enhanced postruminal starch digestion and increased plasma glucose, thereby improving amino acid utilization and promoting protein synthesis in the skeletal muscle of goats via the AMPK-mTOR pathway. These changes may contribute to improvement in growth performance and carcass traits in LRDS goats.
Collapse
Affiliation(s)
- Ziqi Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanxun Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gaofeng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaodong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
7
|
Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components. J Nutr Biochem 2023; 112:109210. [PMID: 36395969 DOI: 10.1016/j.jnutbio.2022.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Obesity caused by poor eating habits has become a great challenge faced by public health organizations worldwide. Optimizing dietary intake and ingesting special foods containing biologically active substances (such as polyphenols, alkaloids, and terpenes) is a safe and effective dietary intervention to prevent the occurrence and development of obesity. Tea contains several active dietary factors, and daily tea consumption has been shown to have various health benefits, especially in regulating human metabolic diseases. Here, we reviewed recent advances in research on tea and its functional components in improving obesity-related metabolic dysfunction, and gut microbiota homeostasis and related clinical research. Furthermore, the potential mechanisms by which the functional components of tea could promote lipid-lowering and weight-loss effects by regulating fat synthesis/metabolism, glucose metabolism, gut microbial homeostasis, and liver function were summarized. The research results showing a "positive effect" or "no effect" objectively evaluates the lipid-lowering and weight-loss effects of the functional components of tea. This review provides a new scientific basis for further research on the functional ingredients of tea for lipid lowering and weight loss and the development of lipid-lowering and weight-loss functional foods and beverages derived from tea.
Collapse
|
8
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
9
|
Martínez-Solís J, Calzada F, Barbosa E, Gutiérrez-Meza JM. Antidiabetic and Toxicological Effects of the Tea Infusion of Summer Collection from Annona cherimola Miller Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233224. [PMID: 36501263 PMCID: PMC9740447 DOI: 10.3390/plants11233224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Annona cherimola Miller (Ac) is a plant used in Mexican traditional medicine for the treatment of diabetes. In this work, the tea infusion extracts obtained from 1.5 g of leaf powder from Ac collected in May (AcMa), June (AcJun), July (AcJul), and August (AcAu) were evaluated on streptozocin-induced diabetic (STID) mice and for subchronic toxicity in STID and non-diabetic (ND) mice. In addition, extracts were subjected to high-performance liquid chromatography with diode array detection (HPLC-DAD). Results showed that the tea infusion extract of the sample collected in August (AcAu) exhibited the most significant antihyperglycemic activity during all acute assays. The analysis of the extracts (AcMa, AcJu, AcJul, and AcAu) by HPLC-DAD revealed that flavonoid glycosides, rutin, narcissin, and nicotiflorin were the major components. In addition, the sample AcAu contained the best concentration of flavonoids. In the case of subchronic oral toxicity, the AcAu sample did not cause mortality in STID mice, and histopathological analysis revealed significant improvement in the changes associated with diabetes in the liver and kidneys. These findings suggest that the Ac leaves collected in August may be a source of flavonoids such as rutin, with antidiabetic potential. In addition, these findings support the use of Ac to treat diabetes in traditional medicine.
Collapse
Affiliation(s)
- Jesús Martínez-Solís
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| |
Collapse
|
10
|
Zhang M, Wang L, Chen Z. Research progress of extracellular vesicles in type 2 diabetes and its complications. Diabet Med 2022; 39:e14865. [PMID: 35509124 PMCID: PMC9543097 DOI: 10.1111/dme.14865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
Type 2 diabetes is one of the most common chronic diseases in modern society. However, there is still insufficient research on the pathogenesis, diagnosis and treatment of type 2 diabetes and its complications. Extracellular vesicles are small bilayer vesicles secreted by cells. In recent years, the effect of extracellular vesicles in type 2 diabetes and its complications has aroused extensive attention. The research on the influence of protein and nucleic acids carried by extracellular vesicles secreted by stem cells and inflammatory cells on the pathogenesis of type 2 diabetes and its complications provides new ideas for its diagnosis and treatment. This review focuses on the influence of extracellular vesicles on insulin resistance by regulating inflammation and glucose transporter 4 expression. The second part mainly discusses the research progress and limitations of extracellular vesicles use in treating and diagnosing type 2 diabetes and its complications. This review introduces the current research status of type 2 diabetes and its complications, illustrates the biogenesis of extracellular vesicles, their effect on type 2 diabetes pathogenesis and its complications and their potential as therapeutic tools and diagnostic markers in type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Mengting Zhang
- First Clinical Medical CollegeGannan Medical UniversityGanzhouJiangxi ProvinceChina
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Lanfeng Wang
- Department of NephrologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Zhiping Chen
- First Clinical Medical CollegeGannan Medical UniversityGanzhouJiangxi ProvinceChina
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| |
Collapse
|
11
|
Hypoglycemic effects of black brick tea with fungal growth in hyperglycemic mice model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Li Q, Qiu Z, Wang Y, Guo C, Cai X, Zhang Y, Liu L, Xue H, Tang J. Tea polyphenols alleviate hydrogen peroxide-induced oxidative stress damage through the Mst/Nrf2 axis and the Keap1/Nrf2/HO-1 pathway in murine RAW264.7 cells. Exp Ther Med 2021; 22:1473. [PMID: 34737813 PMCID: PMC8561765 DOI: 10.3892/etm.2021.10908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Tea polyphenols (TPs) are the major bioactive extract from green tea that have been extensively reported to prevent and treat oxidative stress damage. In previous studies, TPs have been demonstrated to protect cells against oxidative injury induced by hydrogen peroxide (H2O2). However, the underlying mechanism remains unclear. The aim of the current study was to investigate whether the protective and regulatory effects of TPs on oxidative stress damage were dependent on the mammalian STE20-like protein kinase (Mst)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis and the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2/heme oxygenase 1 (HO-1) pathway in RAW264.7 cells, a murine macrophage cell line. Maintaining a certain range of intracellular reactive oxygen species (ROS) levels is critical to basic cellular activities, while excessive ROS generation can override the antioxidant capacity of the cell and result in oxidative stress damage. The inhibition of ROS generation offers an effective target for preventing oxidative damage. The results of the present study revealed that pretreatment with TPs inhibited the production of intracellular ROS and protected RAW264.7 cells from H2O2-induced oxidative damage. TPs was also demonstrated to attenuate the production of nitric oxide and malondialdehyde and increase the levels of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). In addition, following TPs treatment, alterations in Mst1/2 at the mRNA and protein level inhibited the production of ROS and promoted the self-regulation of antioxidation. TPs-induced Keap1 gene downregulation also increased the expression of Nrf2 and HO-1. Collectively, the results of the present study demonstrated that TPs provided protection against H2O2-induced oxidative injury in RAW264.7 cells.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Zhaoyan Qiu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, P.R. China
| | - Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xu Cai
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Yandong Zhang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, P.R. China
| | - Hongkun Xue
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Mattei L, Francisqueti-Ferron FV, Garcia JL, Ferron AJT, Silva CCVDA, Gregolin CS, Nakandakare-Maia ET, Silva JDCP, Moreto F, Minatel IO, Corrêa CR. Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol Cell Endocrinol 2021; 537:111423. [PMID: 34400258 DOI: 10.1016/j.mce.2021.111423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Skeletal muscle is the most important organ for whole-body glucose homeostasis. However, it has been suggested that obesity-related inflammation could be involved in insulin resistance and diabetes mellitus type 2 (DM2) development due several mechanisms, among them, the reduced expression of the glucose transporter type 4 (GLUT-4). Gamma-oryzanol (γOz) is a compound present in the whole grain of rice that presents anti-inflammatory and antioxidant activities. The aim of this study was to verify if the effect antioxidant and anti-inflammatory of yOz attenuate insulin resistance in skeletal muscle of obese rats by increasing GLUT- 4 expression. METHODS Male Wistar rats (±187 g) were initially randomly distributed into 2 experimental groups (control, n = 6, and high sugar-fat diet (HSF), n = 12) for 20 weeks. At week 20th of this study, once obesity and insulin resistance were detected in the HSF group, animals were divided to begin the treatment with γOz or continue receiving HSF for 10 more weeks. At the end it was analyzed nutritional, metabolic, inflammatory and oxidative stress parameters and GLUT-4 protein expression. RESULTS The treatment improved insulin resistance, reduced inflammation, increased antioxidant response and GLUT-4 expression. CONCLUSION It is possible to conclude that the antioxidant and anti-inflammatory activity of yOz attenuates insulin resistance by increasing GLUT-4 expression in skeletal muscle of obese animals.
Collapse
Affiliation(s)
- Letícia Mattei
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Igor Otávio Minatel
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | |
Collapse
|
14
|
Guimarães-Ervilha LO, Ladeira LCM, Carvalho RPR, Bento IPDS, Bastos DSS, Souza ACF, Santos EC, de Oliveira LL, Maldonado IRDSC, Machado-Neves M. Green Tea Infusion Ameliorates Histological Damages in Testis and Epididymis of Diabetic Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 34184626 DOI: 10.1017/s1431927621012071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green tea is a popular drink used for therapeutic purposes to mitigate the consequences of diabetes. In this study, we aimed at evaluating the potential of green tea infusion to ameliorate structural and enzymatic damages caused by hyperglycemia in the testis and epididymis of Wistar rats. For that, nondiabetic and streptozotocin-induced diabetic rats (negative control and diabetes control, respectively) received 0.6 mL of water by gavage. Another set of diabetic animals received 100 mg/kg of green tea infusion diluted in 0.6 mL of water/gavage (diabetes + green tea) daily. After 42 days of treatment, the testes and epididymides were removed and processed for histopathological analysis, micromineral determination, and enzymatic assays. The results showed that treatment with green tea infusion preserved the testicular and epididymal histoarchitecture, improving the seminiferous epithelium and the sperm production previously affected by diabetes. Treatment with green tea reduced tissue damages caused by this metabolic condition. Given the severity of hyperglycemia, there was no efficacy of the green tea infusion in maintaining the testosterone levels, antioxidant enzyme activity, and microminerals content. Thus, our findings indicate a protective effect of this infusion on histological parameters, with possible use as a complementary therapy for diabetes.
Collapse
Affiliation(s)
| | - Luiz Carlos Maia Ladeira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | | | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro23897-000, Brazil
| | - Eliziária Cardoso Santos
- Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais39100-000, Brazil
| | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| |
Collapse
|
15
|
Lee CY, Oh JH, Chung JO, Rha CS, Park MY, Hong YD, Kim WK, Shim SM. Effect of whole green tea products including catechins, polysaccharides, and flavonols on the metabolism of added sugars. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Gogga P, Szałajda M, Janczy A. Green tea and obesity: Effects of catechins on the
energetic metabolism. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity is a metabolic disease which has now reached epidemic proportions, becoming a major
health, social, and economic problem worldwide. Untreated obesity is associated with decreased
quality of life and is a significant risk factor for the development of other serious health problems,
such as diabetes and cardiovascular diseases. For this reason, new approaches to prevent
excess body mass and to support its reduction if necessary are being examined. Catechins extracted
from green tea – especially epigallocatechin gallate (EGCG) – are one of the most widely
investigated biologically active substances. In addition to the antioxidant, anti-inflammatory,
and anticarcinogenic properties of the catechins, they also exhibit a role in maintaining normal
fat mass and body mass. There are numerous research studies showing that regular green tea
consumption is associated with lower body mass, BMI, and waist circumference. In vitro and
animal experiments confirm beneficial effects of catechins on the energetic metabolism. These
compounds lower lipid and carbohydrates absorption in the intestine. Additionally, they affect
the energetic metabolism, lowering the rate of lipogenesis and adipogenesis, while stimulating
lipolysis and fatty acid oxidation, and increasing energy expenditure. Moreover, it has been established that green tea catechins have an effect on the glucose uptake in the insulin-dependent
manner – by GLUT4. The aim of the following paper was to review and summarize the literature
data concerning the role of green tea catechins in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Patrycja Gogga
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| | - Monika Szałajda
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| | - Agata Janczy
- Zakład Biochemii Żywienia, Wydział Nauk o Zdrowiu z Instytutem Medycyny Morskiej i Tropikalnej, Gdański Uniwersytet Medyczny
| |
Collapse
|
17
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
18
|
Jung SR, Park SY, Koh JH, Kim JY. Lithium enhances exercise-induced glycogen breakdown and insulin-induced AKT activation to facilitate glucose uptake in rodent skeletal muscle. Pflugers Arch 2021; 473:673-682. [PMID: 33660027 PMCID: PMC8049887 DOI: 10.1007/s00424-021-02543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the effect of lithium on glucose disposal in a high-fat diet-induced type 2 diabetes mellitus (T2DM) and streptozotocin-induced type 1 diabetes mellitus (T1DM) animal model along with low-volume exercise and low-dose insulin. Lithium decreased body weight, fasting plasma glucose, and insulin levels when to treat with low-volume exercise training; however, there were no adaptive responses like an increase in GLUT4 content and translocation factor levels. We discovered that lithium enhanced glucose uptake by acute low-volume exercise-induced glycogen breakdown, which was facilitated by the dephosphorylation of serine 473-AKT (Ser473-AKT) and serine 9-GSK3β. In streptozotocin-induced T1DM mice, Li/low-dose insulin facilitates glucose uptake through increase the level of exocyst complex component 7 (Exoc7) and Ser473-AKT. Thus, lithium enhances acute exercise-induced glycogen breakdown and insulin-induced AKT activation and could serve as a candidate therapeutic target to regulate glucose level of DM patients.
Collapse
Affiliation(s)
- Su-Ryun Jung
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sol-Yi Park
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Ho Koh
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
19
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
20
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
21
|
Glucose-lowering activity of dark tea protein extract by modulating spleen–brain axis of diabetic mice. Br J Nutr 2020; 126:961-969. [DOI: 10.1017/s0007114520005012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThe present study aims to explore the glucose-lowering effects of the previously characterised dark tea (Camellia sinensis L.) protein extract (DTPE) from Heimaojian on the spleen–brain axis of diabetic mice. DTPE was orally administrated (50–100 mg/kg) to alloxan-induced mice for 21 d; a biochemical assay and transcriptome profiling (RNA sequencing (RNA-Seq)) were performed. The results showed that DTPE can improve glucose tolerance. Compared with the model group, at day 21, the fasting blood glucose values were significantly (P < 0·05) decreased by 44·9 % (13·8 v. 7·6 mmol/l) and 51·4 % (13·8 v. 6·7 mmol/l) for high dose of DTPE (100 mg/kg) and drug metformin (125 mg/kg) groups, respectively. Subsequently, transcriptome profiling (RNA-Seq) was performed on the spleen and brain of diabetic mice. Totally, fifty-two spleen-derived and forty-seven brain-derived differentially expressed genes related to the synthesis, transport and metabolism of glucose were identified. The regulatory network analysis indicated that DTPE may exert glucose-lowering effects through a thirty-seven-gene sub-network related to metabolism, Parkinson’s disease, oxidative phosphorylation and immunity. In summary, for the first time, the present data revealed that dark tea-derived DTPE could exert a potential anti-hyperglycaemic effect by modulating the spleen–brain axis.
Collapse
|
22
|
Kodidela S, Shaik FB, Chinta V, Mohammad SA, Pasala C, Mittameedi CM, Maddu N, Wudayagiri R, Nallanchakravarthula V. Possible ameliorative role of green tea on chronic alcohol mediated renal toxicity of STZ -induced diabetic rats. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
24
|
Das PR, Park MJ, Lee CM, Nam SH, Kim YM, Kim DI, Eun JB. Aqueous green tea infusion extracted by ultra-sonication method, but not by conventional method, facilitates GLUT4 membrane translocation in adipocytes which potently ameliorates high-fat diet-induced obesity. J Food Biochem 2020; 45:e13561. [PMID: 33179282 DOI: 10.1111/jfbc.13561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Green tea contains bioactive compounds, such as polyphenols, responsible for its health-promoting effects, including antiobesity and antidiabetic effects. We previously reported that ultra-sonication extraction (UE) could efficiently increase the extraction yield of green tea compounds. In the present study, we found that the extract obtained using UE contained higher phenolic and flavonoid contents than that obtained using the conventional method. We therefore considered the extract as a bioactive metabolite-rich functional green tea extract (BMF-GTE), and tested its glucose-lowering effect by generating an adipocyte cell line stably expressing 7myc-GLUT4-GFP. We found that BMF-GTE treatment increased GLUT4 translocation to the plasma membrane. Moreover, BMF-GTE administration attenuated weight gain in mice fed a high-fat diet (HFD). Importantly, HFD-induced glucose tolerance was ameliorated in the mice receiving BMF-GTE. Therefore, we conclude that BMF-GTE worked against obesity and diabetes, at least partially, by enhancing GLUT4 translocation in adipocytes. PRACTICAL APPLICATIONS: As green tea is one of the most consumed beverages worldwide, its health effects have been widely tested. In our previous studies, we found that ultra-sonication extraction (UE) has the potential to increase the aqueous extraction yield of green tea compounds compared to conventional extraction techniques. In this study, we examined the biological effect of bioactive metabolite-rich functional green tea extract (BMF-GTE) obtained using UE; we observed that administering BMF-GTE lowered the body weight and increased insulin sensitivity in mice fed a high-fat diet, potentially by facilitating the membrane translocation of GLUT4 in adipocytes. Therefore, this study suggests that the extract obtained with UE had antiobesity and antidiabetic properties, indicative of a potential application of UE in maximizing the beneficial effects of green tea on human health.
Collapse
Affiliation(s)
- Protiva Rani Das
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea.,Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, USA
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Chang-Min Lee
- Department of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| |
Collapse
|
25
|
Li W, Zhu C, Liu T, Zhang W, Liu X, Li P, Zhu T. Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats. Diab Vasc Dis Res 2020; 17:1479164120966998. [PMID: 33280417 PMCID: PMC7919214 DOI: 10.1177/1479164120966998] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS The objective of this study was to explore the effects of epigallocatechin-3-gallate (EGCG) on type 2 diabetes mellitus (T2DM). MAIN METHODS Male Sprague-Dawley rats were allocated into six groups. The control group received a conventional diet. The diabetic group received a high-sucrose high-fat (HSHF) diet for 4 weeks and then was fasted and injected with streptozotocin (STZ); subsequently, the rats received a HSHF diet for another 4 weeks to develop diabetes. The four treatment groups were diabetic rats that received intragastric metformin (500 mg/kg/day) or EGCG (25, 50, and 100 mg/kg/day) for 10 weeks. All groups except the control group received a HSHF diet throughout the experiment. Several biochemical parameters such as fasting blood glucose (FBG), postprandial blood glucose (PBG), liver glycogen, muscle glycogen, fasting serum insulin (FSI), homeostasis model of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured to assess the effects of EGCG on glycemic control, insulin resistance, lipid profile, and oxidative stress. Furthermore, oxidative stress in pancreatic islet β cells was detected by dihydroethidium staining. KEY FINDINGS A HSHF diet and STZ injection induced T2DM, as indicated by changed blood glucose and body weight, which was accompanied by insulin resistance, an altered lipid profile, and oxidative stress. Interestingly, EGCG treatment dose-dependently recovered these indexes. SIGNIFICANCE EGCG successfully ameliorated glycemic control and insulin sensitivity while reducing the lipid profile and oxidative stress in a T2DM rat model.
Collapse
Affiliation(s)
- Wenru Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaonan Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Department of pharmacy, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianheng Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang, Henan, China
- Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang, Henan, China
- Tiantian Zhu, College of Pharmacy, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, Henan 453003, China.
| |
Collapse
|
26
|
Park JM, Shin Y, Kim SH, Jin M, Choi JJ. Dietary Epigallocatechin-3-Gallate Alters the Gut Microbiota of Obese Diabetic db/db Mice: Lactobacillus Is a Putative Target. J Med Food 2020; 23:1033-1042. [PMID: 33054538 DOI: 10.1089/jmf.2020.4700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity results in the progression of metabolic disorders, and especially type 2 diabetes mellitus (T2DM), and the gut microbiota have been implicated in the development of T2DM. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on structural changes to the gut microbiota of obese diabetic db/db mice. db/db mice were subjected to a control and EGCG (10, 50, and 100 mg/kg) diet for 8 weeks. Glucose homeostasis and the structure and composition of the gut microbiota were measured. EGCG inhibited the increases in body weight and fasting blood glucose levels. Similarly, it resulted in remarkable improvements in glucose tolerance. Based on lipid profiles, EGCG decreased serum cholesterol and low-density lipoprotein (LDL) levels, and increased the high-density lipoprotein/LDL ratio. In addition, upon fecal microbiota analysis, this compound significantly increased the Firmicutes:Bacteroidetes ratio at the phylum level and increased Lactobacillus abundance at the genus level. Especially, its administration increased abundances of the Lactobacillus gasseri, Lactobacillus intestinalis, and Lactobacillus reuteri. We also found that EGCG increased Christensenellaceae abundance and decreased Enterobacteriaceae and Proteobacteria abundance at the family level. EGCG improves glucose homeostasis in diabetic mice. Its beneficial effects on glucose homeostasis are likely associated with alterations to the gut microbiota. Furthermore, the enrichment of probiotics (Lactobacillus) might be a potential mechanism underlying the effects of EGCG on glucose homeostasis.
Collapse
Affiliation(s)
- Jong-Min Park
- College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Younmin Shin
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Mirim Jin
- College of Medicine, Gachon University, Incheon, Korea
| | - Jeong June Choi
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
27
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
28
|
Yuan H, Li Y, Ling F, Guan Y, Zhang D, Zhu Q, Liu J, Wu Y, Niu Y. The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 2020; 19:e13199. [PMID: 32729662 PMCID: PMC7511879 DOI: 10.1111/acel.13199] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
We have recently reported that epigallocatechin gallate (EGCG) could extend lifespan in healthy rats. This study aimed to investigate the effects and mechanisms of a high dose of EGCG in extending the lifespan of obese rats. Ninety adult male Wistar rats were randomly divided into the control (NC), high-fat (HF) and EGCG groups. Serum glucose and lipids, inflammation and oxidative stress were dynamically determined from adulthood to death, and the transcriptome and proteome of the liver were also examined. The median lifespans of the NC, HF and EGCG groups were 693, 599 and 683 days, respectively, and EGCG delayed death by 84 days in obese rats. EGCG improved serum glucose and lipids and reduced inflammation and oxidative stress associated with aging in obese rats induced by a high-fat diet. EGCG also significantly decreased the levels of total free fatty acids (FFAs), SFAs and the n-6/n-3 ratio but significantly increased the n-3 FFAs related to longevity. The joint study of the transcriptome and proteome in liver found that EGCG exerted its effects mainly by regulating the suppression of hydrogen peroxide and oxygen species metabolism, suppression of oxidative stress, activation of fatty acid transport and oxidation and cholesterol metabolism. EGCG significantly increased the protein expression of FOXO1, Sirt1, CAT, FABP1, GSTA2, ACSL1 and CPT2 but significantly decreased NF-κB, ACC1 and FAS protein levels in the livers of rats. All the results indicate that EGCG extends lifespan by improving FFA metabolism and reducing the levels of inflammatory and oxidative stress in obese rats.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
- Heilongjiang Health Development Research Center Heilongjiang China
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Fan Ling
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yue Guan
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Dandan Zhang
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Jinxiao Liu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yuqing Wu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene College of Public Health Harbin Medical University HarbinHeilongjiang China
| |
Collapse
|
29
|
D-galactose: a model of accelerated ageing sufficiently sensitive to reflect preventative efficacy of an antioxidant treatment. Biogerontology 2020; 21:745-761. [PMID: 32638260 DOI: 10.1007/s10522-020-09891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Considering that the phenomenon of accelerated ageing contributes to early onset of various chronic diseases, modelling of the relevant dysregulated systems or responses is vital for research aimed at identification of potential therapeutic targets. Here, we aimed to establish a model capable of simulating the redox and inflammatory changes of accelerated ageing-specifically, the aim was early phase accelerated ageing, which would allow therapeutic intervention in a preventative approach prior to clinical disease manifestation. A secondary aim was to evaluate the sensitivity of the model to reflect preventative treatment efficacy. Daily D-galactose injections (250 mg/kg body mass/day) for 8 weeks in 9-week-old male Wistar rats induced a model of early accelerated ageing (decreased plasma FRAP; P < 0.05 and altered inflammatory signalling) and an aged profile in lymph node ultrastructure, but did not yet result in telomere shortening. Preventative daily oral antioxidant administration (grape seed-derived polyphenol, 100 mg/kg body mass) prevented tissue ageing, beneficially modulated the inflammatory response, including neutrophil chemokinetic capacity, and tended to increase absolute telomere length. Data suggests that using a mild model of D-galactose administration than those employed to induce neurodegeneration, simulated the point where oxidative stress starts to overwhelm the endogenous antioxidant response and where a pro-inflammatory phenotype switch manifests. Furthermore, despite the expected small effect size, the model was sufficiently sensitive to reflect benefits of preventative antioxidant treatment in the context of ageing. This model presents a practical model for use in drug discovery, particularly in the context of preventative medicine aimed at limiting oxidative stress-associated ageing. Since this starting point of accelerated ageing as illustrated by current data, is not expected to reflect major ageing-associated changes yet, we recommend that future preventative drug discovery studies employ a longitudinal study design in order to clearly demonstrate the delay of this starting point by preventative strategies.
Collapse
|
30
|
Ofosu FK, Elahi F, Daliri EBM, Yeon SJ, Ham HJ, Kim JH, Han SI, Oh DH. Flavonoids in Decorticated Sorghum Grains Exert Antioxidant, Antidiabetic and Antiobesity Activities. Molecules 2020; 25:E2854. [PMID: 32575757 PMCID: PMC7355972 DOI: 10.3390/molecules25122854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023] Open
Abstract
Eight new genotypes of brown sorghum grain were decorticated and assessed for their antioxidant, antidiabetic and antiobesity activities in vitro. The DPPH and ABTS radical scavenging assays of the soluble fractions were evaluated, followed by digestive enzymes and advanced glycation end-products (AGEs) formation inhibition assays. DSOR 33 and DSOR 11 exhibited the highest DPPH (IC50 = 236.0 ± 1.98 µg/mL and 292.05 ± 2.19 µg/mL, respectively) and ABTS radical scavenging activity (IC50 = 302.50 ± 1.84 µg/mL and 317.05 ± 1.06 µg/mL, respectively). DSOR 17, DSOR 11 and DSOR 33 showed significantly higher inhibitory activity of both α-glucosidase and α-amylase (IC50 = 31.86, 35.10 and 49.40 µg/mL; and 15.87, 22.79 and 37.66 µg/mL, respectively) compared to acarbose (IC50 = 59.34 and 27.73 µg/mL, respectively). Similarly, DSOR 33, DSOR 11 and DSOR 17 showed potent inhibition of both AGEs and lipase with IC50 values of 18.25, 19.03 and 38.70 µg/mL; and 5.01, 5.09 and 4.94 µg/mL, respectively, compared to aminoguanidine (52.30 µg/mL) and orlistat (5.82 µg/mL). Flavonoids were the predominant compounds identified, with flavones being the major subclass in these three extracts. Our findings suggest that decorticated sorghum grains contain substantial amounts of flavonoids and could be promising candidates for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea; (F.K.O.); (F.E.); (E.B.-M.D.)
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea; (F.K.O.); (F.E.); (E.B.-M.D.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea; (F.K.O.); (F.E.); (E.B.-M.D.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, Kangwon Institute of Inclusive Technology, Kangwon National University; Chuncheon, Gangwon-do 24341, Korea;
| | - Hun Ju Ham
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea;
| | - Joong-Hark Kim
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea;
| | - Sang-Ik Han
- Department of Southern Area Crop Science, NICS Upland Crop Breeding Res. Div., 181, Hyeoksin-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea; (F.K.O.); (F.E.); (E.B.-M.D.)
| |
Collapse
|
31
|
Márquez Campos E, Jakobs L, Simon MC. Antidiabetic Effects of Flavan-3-ols and Their Microbial Metabolites. Nutrients 2020; 12:nu12061592. [PMID: 32485837 PMCID: PMC7352288 DOI: 10.3390/nu12061592] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Diet is one of the pillars in the prevention and management of diabetes mellitus. Particularly, eating patterns characterized by a high consumption of foods such as fruits or vegetables and beverages such as coffee and tea could influence the development and progression of type 2 diabetes. Flavonoids, whose intake has been inversely associated with numerous negative health outcomes in the last few years, are a common constituent of these food items. Therefore, they could contribute to the observed positive effects of certain dietary habits in individuals with type 2 diabetes. Of all the different flavonoid subclasses, flavan-3-ols are consumed the most in the European region. However, a large proportion of the ingested flavan-3-ols is not absorbed. Therefore, the flavan-3-ols enter the large intestine where they become available to the colonic bacteria and are metabolized by the microbiota. For this reason, in addition to the parent compounds, the colonic metabolites of flavan-3-ols could take part in the prevention and management of diabetes. The aim of this review is to present the available literature on the effect of both the parent flavan-3-ol compounds found in different food sources as well as the specific microbial metabolites of diabetes in order to better understand their potential role in the prevention and treatment of the disease.
Collapse
|
32
|
Candela L, Formato M, Crescente G, Piccolella S, Pacifico S. Coumaroyl Flavonol Glycosides and More in Marketed Green Teas: An Intrinsic Value beyond Much-Lauded Catechins. Molecules 2020; 25:molecules25081765. [PMID: 32290396 PMCID: PMC7221963 DOI: 10.3390/molecules25081765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Marketed green teas (GTs) can highly vary in their chemical composition, due to different origins, processing methods, and a lack of standardization of GT-based products. Consequently, biological activities become difficult to correlate to the presence/content of certain constituents. Herein, ultra-high-performance liquid chromatography (UHPLC) combined with high-resolution tandem mass spectrometry (HR MS/MS) was successfully applied to six commercial GT products, extracted by ethanol sonication, to disclose their polyphenol profile beyond the well-known catechins. The relative abundance of each class of metabolites was correlated to antiradical and antilipoperoxidant data through hierarchical clustering analysis, since it reasonably affects the beneficial properties of the product that reaches the consumer. The thiobarbituric acid reactive substances (TBARS) assay demonstrated that GT extracts effectively counteracted the UV-induced lipoperoxidation of hemp oil, which is highly rich in Polyunsaturated Fatty Acids (PUFAs), and therefore highly unstable. The Relative Antioxidant Capacity Index (RACI) comprehensively emphasized that gunpower and blend in filter GTs appeared to be the less active matrices, and except for a GT-based supplement, the Sencha GT, which was particularly rich in flavonol glycosides, was the most active, followed by Bancha GT.
Collapse
|
33
|
Phenolic Profile, Antioxidant, and Antidiabetic Potential Exerted by Millet Grain Varieties. Antioxidants (Basel) 2020; 9:antiox9030254. [PMID: 32245008 PMCID: PMC7139927 DOI: 10.3390/antiox9030254] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
This study evaluated the potential antioxidant and antidiabetic properties in vitro of four millet grain varieties cultivated in South Korea. The free fractions were tested for their total antioxidant capacity using 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays, followed by α-glucosidase, α-amylase, and advanced glycation endproducts (AGEs) formation inhibition assays. The total phenolics, flavonoids, and condensed tannins in the free fractions ranged from 107.8 to 136.4 mg ferulic acid equivalent (FAE)/100 g, 101.3 to 115.8 mg catechin equivalent (CE)/100 g, and 17.65 to 59.54 mg catechin equivalent (CE)/100 g, respectively. Finger Italian millet had the highest total phenolic content (136.4 mg FAE/100 g) and flavonoid content (115.8 mg CE/100 g). Barnyard and finger Italian millet showed the highest DPPH (IC50 = 359.6 µg/mL and 436.25 µg/mL, respectively) and ABTS radical scavenging activity (IC50 = 362.40 µg/mL and 381.65 µg/mL, respectively). Similarly, finger Italian millet also exhibited significantly lower IC50 values for the percentage inhibition of α-glucosidase (18.07 µg/mL) and α-amylase (10.56 µg/mL) as compared with acarbose (IC50 = 59.34 µg/mL and 27.73 µg/mL, respectively) and AGEs formation (33.68 µg/mL) as compared with aminoguanidine (AG) (52.30 µg/mL). All eight phenolic compounds identified in finger Italian millet were flavonoids, with flavanols being the predominant subclass. Taken together, millet flavonoids play important roles in the prevention and management of type 2 diabetes, and hence finger Italian millet has the potential to be developed as a functional food.
Collapse
|
34
|
Bulboaca AE, Boarescu PM, Porfire AS, Dogaru G, Barbalata C, Valeanu M, Munteanu C, Râjnoveanu RM, Nicula CA, Stanescu IC. The Effect of Nano-Epigallocatechin-Gallate on Oxidative Stress and Matrix Metalloproteinases in Experimental Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9020172. [PMID: 32093214 PMCID: PMC7070619 DOI: 10.3390/antiox9020172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The antioxidant properties of epigallocatechin-gallate (EGCG), a green tea compound, have been already studied in various diseases. Improving the bioavailability of EGCG by nanoformulation may contribute to a more effective treatment of diabetes mellitus (DM) metabolic consequences and vascular complications. The aim of this study was to test the comparative effect of liposomal EGCG with EGCG solution in experimental DM induced by streptozotocin (STZ) in rats. Method: 28 Wistar-Bratislava rats were randomly divided into four groups (7 animals/group): group 1—control group, with intraperitoneal (i.p.) administration of 1 mL saline solution (C); group 2—STZ administration by i.p. route (60 mg/100 g body weight, bw) (STZ); group 3—STZ administration as before + i.p. administration of EGCG solution (EGCG), 2.5 mg/100 g b.w. as pretreatment; group 4—STZ administration as before + i.p. administration of liposomal EGCG, 2.5 mg/100 g b.w. (L-EGCG). The comparative effects of EGCG and L-EGCG were studied on: (i) oxidative stress parameters such as malondialdehyde (MDA), indirect nitric oxide (NOx) synthesis, and total oxidative status (TOS); (ii) antioxidant status assessed by total antioxidant capacity of plasma (TAC), thiols, and catalase; (iii) matrix-metalloproteinase-2 (MMP-2) and -9 (MMP-9). Results: L-EGCG has a better efficiency regarding the improvement of oxidative stress parameters (highly statistically significant with p-values < 0.001 for MDA, NOx, and TOS) and for antioxidant capacity of plasma (highly significant p < 0.001 for thiols and significant for catalase and TAC with p < 0.05). MMP-2 and -9 were also significantly reduced in the L-EGCG-treated group compared with the EGCG group (p < 0.001). Conclusions: the liposomal nanoformulation of EGCG may serve as an adjuvant therapy in DM due to its unique modulatory effect on oxidative stress/antioxidant biomarkers and MMP-2 and -9.
Collapse
Affiliation(s)
- Adriana Elena Bulboaca
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
| | - Paul-Mihai Boarescu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, no. 46-50, 400347 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Cristina Barbalata
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
| | - Madalina Valeanu
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street, no. 6, 400349 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Department of Medical Rehabilitation, “BagdasarArseni” Emergency Clinical Hospital Bucharest, Berceni Street, no. 12, 041915 Cluj-Napoca, Romania
| | - Ruxandra Mioara Râjnoveanu
- Department of Pneumology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, B.P. Hasdeu Street, no. 6, 400371 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street, no. 3-5, 400006 Cluj-Napoca, Romania
| | - Ioana Cristina Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
35
|
High-Molecular-Weight Polyphenol-Rich Fraction of Black Tea Does Not Prevent Atrophy by Unloading, But Promotes Soleus Muscle Mass Recovery from Atrophy in Mice. Nutrients 2019; 11:nu11092131. [PMID: 31500089 PMCID: PMC6770236 DOI: 10.3390/nu11092131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that polyphenol-rich fraction (named E80) promotes skeletal muscle hypertrophy induced by functional overload in mice. This study indicates that E80 has potential for affecting skeletal muscle mass. Then, we evaluate the effect of E80 on atrophic and recovery conditions of skeletal muscle in mice. Hindlimb suspension (unloading) and relanding (reloading) are used extensively to observe disuse muscle atrophy and subsequent muscle mass recovery from atrophy. Eight-week old C57BL/6 mice were fed either a normal diet or a diet containing 0.5% E80 for two weeks under conditions of hindlimb suspension and a subsequent 5 or 10 days of reloading. We found that E80 administration did not prevent atrophy during hindlimb suspension, but promoted recovery of slow-twitch (soleus) muscle mass from atrophy induced by hindlimb suspension. After five days of reloading, we discovered that phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway proteins, such as Akt and P70 ribosomal protein S6 kinase (S6K), was activated in the muscle. Therefore, E80 administration accelerated mTOR signal and increased protein synthesis in the reloaded soleus muscle.
Collapse
|