1
|
Teng T, Zheng Y, Zhang M, Sun G, Li Z, Shi B, Shang T. Chronic cold stress promotes inflammation and ER stress via inhibiting GLP-1R signaling, and exacerbates the risk of ferroptosis in the liver and pancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124647. [PMID: 39089475 DOI: 10.1016/j.envpol.2024.124647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The cold climates in autumn and winter threatens human health. The aim of this study was to reveal the effects of prolonged cold exposure on the liver and pancreas based on GLP-1R signaling, oxidative stress, endoplasmic reticulum (ER) stress and ferroptosis by Yorkshire pig models. Yorkshire pigs were divided into the control group and chronic cold stress (CCS) group. The results showed that CCS induced oxidative stress injury, activated Nrf2 pathway and inhibited the expression of GLP-1R in the liver and pancreas (P < 0.05). The toll-like receptor 4 (TLR4) pathway was activated in the liver and pancreas, accompanied by the enrichment of IL-1β and TNF-α during CCS (P < 0.05). Moreover, the kinase RNA-like endoplasmic reticulum kinase (PERK), inositol requiring kinase 1 (IRE1), X-box-binding protein 1 (XBP1) and eukaryotic initiation factor 2α (eIF2α) expression in the liver and pancreas was up-regulated during CCS (P < 0.05). In addition, CCS promoted the prostaglandin-endoperoxide synthase 2 (PTGS2) expression and inhibited the ferritin H (FtH) expression in the liver. Summarily, CCS promotes inflammation, ER stress and apoptosis by inhibiting the GLP-1R signaling and inducing oxidative stress, and exacerbates the risk of ferroptosis in the liver and pancreas.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yusong Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Mohsin NY, Demir H, Hadwan MH, Hadwan AM, Mohammed RM. A New Fluorescent Method for Measuring Peroxiredoxin Enzyme Activity Using Monobromobimane. J Fluoresc 2024:10.1007/s10895-024-03991-4. [PMID: 39441257 DOI: 10.1007/s10895-024-03991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
A novel fluorometric method is presented for accurately quantifying peroxiredoxin (Prx) enzyme activity in vitro. The rate-limiting step in the Prx-catalyzed reaction is the dissociation of peroxide. To avoid interference from catalase, we developed an assay using tert-butyl hydroperoxide (t-BOOH) as a substrate for specific Prx activity measurement. The assay involves incubating the enzyme substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in a known volume of Prx enzyme. Following incubation, the reagent monobromobimane (mBB) is added to terminate the enzymatic reaction and produce a fluorescent product. Prx activity is subsequently determined by measuring thiol fluorescence, with reaction conditions optimized using a Bland-Altman plot. The efficacy of this novel protocol was rigorously validated by comparing Prx activity measurements from paired samples with those generated by a reference assay. A correlation coefficient of 0.995 was observed between the two methods, demonstrating superior precision and reliability compared to existing methods. The mBB-Prx protocol offers a significant safety advantage by using t-BOOH as a substrate for Prx activity measurement. As catalase does not catalyze t-BOOH dissociation, including sodium azide is unnecessary. Moreover, the method obviates the need for concentrated acids to terminate the Prx enzymatic reaction, as the mBB reagent efficiently inhibits Prx activity. This streamlined approach simplifies the assay and significantly improves its safety and usability, providing users with a reliable and convenient tool. The convenience of this method allows users to focus on their research without worrying about safety or complex procedures.
Collapse
Affiliation(s)
- Nawar Yaseen Mohsin
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl Üniversitesi, Van, Turkey
| | - Halit Demir
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl Üniversitesi, Van, Turkey
| | - Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, Babylon Governorate, Hilla City, PO, 51002, Iraq.
| | - Asad M Hadwan
- Al-Manara College for Medical Sciences, Al-Amarah City, Iraq
| | - Rawaa M Mohammed
- Department of Medical Physics, University of Al-Mustaqbal, Babylon Governorate p.o. 51001, Hilla City, Iraq
| |
Collapse
|
3
|
Li J, Gao Z. MARCHF1 promotes breast cancer through accelerating REST ubiquitylation and following TFAM transcription. Cell Biol Int 2024. [PMID: 39428668 DOI: 10.1002/cbin.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Breast cancer has become the leading cause of death in women. Membrane associated ring-CH-type finger 1 (MARCHF1) is associated with the development of various types of cancer, but the exact role of MARCHF1 in breast cancer remains unclear. In our study, the higher MARCHF1 expression was observed in tumor samples of patients with breast cancer and then the role of MARCHF1 in breast cancer was further evaluated. Overexpression of MARCHF1 contributed to proliferation of cancer cells and inhibition of oxidative stress. Knockdown of MARCHF1 reduced breast cancer cell proliferation, increased mitochondrial dysfunction induced by oxidative stress, eventually aggravating cell death. In vivo, MARCHF1 promoted the tumor growth and oppositely, MARCHF1 silencing suppressed the tumor development. Moreover, MARCHF1 interacted with repressor Element-1 silencing transcription factor (REST) and facilitated its ubiquitylation and degradation. Subsequently, REST negatively regulated the transcription of mitochondrial transcription factor A (TFAM). The subcutaneous tumor formation assay in nude mice also supported these conclusions. In details, knockdown of MARCHF1 upregulated the protein expression of REST and downregulated the mRNA level of TFAM. On the contrary, MARCHF1 overexpression exhibited opposite effects. Thus, MARCHF1 is conducive to the progression of breast cancer via promoting the ubiquitylation and degradation of RSET and then the transcription of TFAM. Downregulating MARCHF1 could provide a novel direction for treating breast cancer.
Collapse
Affiliation(s)
- Jutao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Zhenming Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Yang J, Wu Q, Lan S, Yuan K, Sun B, Meng Y, Xu S, Shi H. Peroxiredoxin-5 alleviates early brain injury after subarachnoid hemorrhage by reducing oxidative stress. Brain Res Bull 2024; 217:111087. [PMID: 39326715 DOI: 10.1016/j.brainresbull.2024.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND PURPOSE Following subarachnoid hemorrhage (SAH), excessive activation of oxidative stress and cell apoptosis plays a critical role in early brain injury (EBI). Peroxiredoxin-5 (Prdx5), predominantly expressed in neuronal mitochondria, acts as an antioxidant. However, the role of Prdx5 in EBI after SAH remains unclear. This study aims to elucidate the antioxidative stress and anti-apoptotic effects of Prdx5 in rats following SAH. METHODS In this study, an SAH model was established in Sprague-Dawley rats using endovascular perforation. Recombinant Prdx5 (rPrdx5) was administered intranasally to upregulate Prdx5 expression after SAH in rats. Prdx5 small interfering RNA (Prdx5 siRNA) was administered prior to SAH modelling. The neuroprotective effects of Prdx5 were validated through SAH grading, brain water content, blood-brain barrier permeability, neurobehavioral tests, immunofluorescence, TUNEL staining, and Western blotting. RESULTS The expression levels of endogenous Prdx5 significantly decreased after SAH. Treatment with rPrdx5 improved both short-term and long-term behaviour in rats, reduced brain water content and blood-brain barrier permeability, and exhibited anti-oxidative stress and anti-apoptotic effects. Measurements of oxidative stress-related indicators, including MDA, SOD, GSH-Px and GSH/GSSG, confirmed that Prdx5 can alleviate oxidative stress in rats after SAH. Western blot analysis showed that rPrdx5 significantly increased the expression of Bcl-XL and Bcl-2 and reduced the expression of Bax and Cleaved Caspase-3, thereby exerting anti-apoptotic effects. Additionally, Prdx5 siRNA reversed the neuroprotective effects of rPrdx5, exacerbated neuronal damage and blood-brain barrier permeability, and increased levels of oxidative stress and apoptosis. CONCLUSION In conclusion, our study demonstrated that specifically upregulating the expression of Prdx5 can reduce oxidative stress and apoptosis in rats after SAH, while also improving both short-term and long-term neurological impairments. Prdx5 is primarily expressed in the mitochondria of neuronal cells and is a crucial target for reducing ROS after SAH. rPrdx5 treatment may offer a promising therapeutic approach for clinical SAH patients.
Collapse
Affiliation(s)
- Jinshuo Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiaowei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Lan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaikun Yuan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Sun
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiao Meng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shancai Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Kuang J, Liu H, Feng L, Xue Y, Tang H, Xu P. How mitochondrial dynamics imbalance affects the progression of breast cancer:a mini review. Med Oncol 2024; 41:238. [PMID: 39218840 PMCID: PMC11366726 DOI: 10.1007/s12032-024-02479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Despite the high incidence of breast cancer in women worldwide, there are still great challenges in the treatment process. Mitochondria are highly dynamic organelles, and their dynamics involve cellular energy conversion, signal conduction and other processes. In recent years, an increasing number of studies have affirmed the dynamics of mitochondria as the basis for cancer progression and metastasis; that is, an imbalance between mitochondrial fission and fusion may lead to the progression and metastasis of breast cancer. Here, we review the latest insights into mitochondrial dynamics in the progression of breast cancer and emphasize the clinical value of mitochondrial dynamics in diagnosis and prognosis, as well as important advances in clinical research.
Collapse
Affiliation(s)
- Jingwen Kuang
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Hao Liu
- He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Linlin Feng
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yuan Xue
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Huiyi Tang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, People's Republic of China.
| | - Pengcheng Xu
- The 1st Affiliated Hospital of He'nan University of Science and Technology, Luoyang, Henan, People's Republic of China.
| |
Collapse
|
6
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
7
|
Hohagen M, Saraiva N, Kählig H, Gerner C, Del Favero G, Kleitz F. Silica nanoparticle conjugation with gallic acid towards enhanced free radical scavenging capacity and activity on osteosarcoma cells in vitro. J Mater Chem B 2024; 12:6424-6441. [PMID: 38860306 DOI: 10.1039/d4tb00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Gallic acid (GA), derived from land plants, possesses diverse physiological benefits, including anti-inflammatory and anticancer effects, making it valuable for biomedical applications. In this study, GA was used to modify the surface of dendritic mesoporous silica nanoparticles (DMSNs) via carbamate (DMSN-NCO-GA) or amide (DMSN-NH-GA) bonds, using a post-grafting technique. To explore GA-conjugated materials' potential in modulating cancer cell redox status, three variants of osteosarcoma cells (U2-OS) were used. These variants comprised the wild-type cells (NEO), the cells overexpressing the wild-type human Golgi anti-apoptotic protein (hGAAP), and the null mutant of hGAAP (Ct-mut), as this protein was previously demonstrated to play a role in intracellular reactive oxygen species (ROS) accumulation and cell migration. In the absence of external ROS triggers, non-modified DMSNs increased intracellular ROS in Ct-mut and NEO cells, while GA-conjugated materials, particularly DMSN-NH-GA, significantly reduced ROS levels, especially pronounced with higher GA concentrations and notably in hGAAP cells with inherently higher ROS levels. Additionaly, NH-GA conjugates were less cytotoxic, more effective in reducing cell migration, and had higher ROS buffering capacity compared to DMSN-NCO-GA materials. However, in the presence of the external stressor tert-butyl-hydroperoxide (TBHP), NCO-GA conjugates showed more efficient reduction of intracellular ROS. These findings suggest that varying chemical decoration strategies of nanomaterials, along with the accessibility of functional groups to the cellular environment, significantly influence the biological response in osteosarcoma cells. Highlighting this, GA-conjugation is a promising method for implementing antioxidant properties and inhibiting cancer cell migration, warranting further research in anticancer treatment and drug development.
Collapse
Affiliation(s)
- Mariam Hohagen
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| | - Nuno Saraiva
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Hanspeter Kählig
- Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria.
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
10
|
Li Y, Wang Q, Zheng X, Xu B, Hu W, Zhang J, Kong X, Zhou Y, Huang T, Zhou Y. ScHGSC-IGDC: Identifying genes with differential correlations of high-grade serous ovarian cancer based on single-cell RNA sequencing analysis. Heliyon 2024; 10:e32909. [PMID: 38975079 PMCID: PMC11226911 DOI: 10.1016/j.heliyon.2024.e32909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Due to the high heterogeneity of ovarian cancer (OC), it occupies the main cause of cancer-related death among women. As the most aggressive and frequent subtype of OC, high-grade serous cancer (HGSC) represents around 70 % of all patients. With the booming progress of single-cell RNA sequencing (scRNA-seq), unique and subtle changes among different cell states have been identified including novel risk genes and pathways. Here, our present study aims to identify differentially correlated core genes between normal and tumor status through HGSC scRNA-seq data analysis. R package high-dimension Weighted Gene Co-expression Network Analysis (hdWGCNA) was implemented for building gene interaction networks based on HGSC scRNA-seq data. DiffCorr was integrated for identifying differentially correlated genes between tumor and their adjacent normal counterparts. Software Cytoscape was implemented for constructing and visualizing biological networks. Real-time qPCR (RT-qPCR) was utilized to confirm expression pattern of new genes. We introduced ScHGSC-IGDC (Identifying Genes with Differential Correlations of HGSC based on scRNA-seq analysis), an in silico framework for identifying core genes in the development of HGSC. We detected thirty-four modules in the network. Scores of new genes with opposite correlations with others such as NDUFS5, TMSB4X, SERPINE2 and ITPR2 were identified. Further survival and literature validation emphasized their great values in the HGSC management. Meanwhile, RT-qPCR verified expression pattern of NDUFS5, TMSB4X, SERPINE2 and ITPR2 in human OC cell lines and tissues. Our research offered novel perspectives on the gene modulatory mechanisms from single cell resolution, guiding network based algorithms in cancer etiology field.
Collapse
Affiliation(s)
- Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Bin Xu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Wenwei Hu
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| |
Collapse
|
11
|
Xi S, Chen W, Ke Y. Advances in SIRT3 involvement in regulating autophagy-related mechanisms. Cell Div 2024; 19:20. [PMID: 38867228 PMCID: PMC11170824 DOI: 10.1186/s13008-024-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be used to identify new drug targets for SIRT3-related diseases. Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was identified using the keywords "silencing regulatory factor 2-like protein 3", "SIRT3" and "autophagy".
Collapse
Affiliation(s)
- Shuangyun Xi
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Weijun Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Ke
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
12
|
Sun HN, Ma DY, Guo XY, Hao YY, Jin MH, Han YH, Jin X, Kwon T. Peroxiredoxin I and II as novel therapeutic molecular targets in cervical cancer treatment through regulation of endoplasmic reticulum stress induced by bleomycin. Cell Death Discov 2024; 10:267. [PMID: 38821929 PMCID: PMC11143287 DOI: 10.1038/s41420-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Cervical cancer, significantly affecting women worldwide, often involves treatment with bleomycin, an anticancer agent targeting breast, ovarian, and cervical cancers by generating reactive oxygen species (ROS) to induce cancer cell death. The Peroxiredoxin (PRDX) family, particularly PRDX1 and 2, plays a vital role in maintaining cellular balance by scavenging ROS, thus mitigating the damaging effects of bleomycin-induced mitochondrial and cellular oxidative stress. This process reduces endoplasmic reticulum (ER) stress and prevents cell apoptosis. However, reducing PRDX1 and 2 levels reverses their protective effect, increasing apoptosis. This research highlights the importance of PRDX1 and 2 in cervical cancer treatments with bleomycin, showing their potential to enhance treatment efficacy by managing ROS and ER stress and suggesting a therapeutic strategy for improving outcomes in cervical cancer treatment.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| | - Da-Yu Ma
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Mei-Hua Jin
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Xun Jin
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
13
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
15
|
Zhang N, Huang D, Li X, Yan J, Yan Q, Ge W, Zhou J. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy. Medicine (Baltimore) 2024; 103:e37933. [PMID: 38701300 PMCID: PMC11062695 DOI: 10.1097/md.0000000000037933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.
Collapse
Affiliation(s)
- Ning Zhang
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Huang
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - JinXia Yan
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yan
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - WeiXing Ge
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zhao Z, Cai Z, Zhang S, Yin X, Jiang T, Shen C, Yin Y, Sun H, Chen Z, Han J, Zhang B. Activation of the FOXM1/ASF1B/PRDX3 axis confers hyperproliferative and antioxidative stress reactivity to gastric cancer. Cancer Lett 2024; 589:216796. [PMID: 38537775 DOI: 10.1016/j.canlet.2024.216796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Zhou Zhao
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China; Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhaolun Cai
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Zhang
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianxiang Jiang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyong Shen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhixin Chen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bo Zhang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Zhong G, Qiao B, He Y, Liu H, Hong P, Rao G, Tang L, Tang Z, Hu L. Co-exposure of arsenic and polystyrene-nanoplastics induced kidney injury by disrupting mitochondrial homeostasis and mtROS-mediated ferritinophagy and ferroptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105904. [PMID: 38685226 DOI: 10.1016/j.pestbp.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) and polystyrene nanoplastics (PSNPs) co-exposure induced biotoxicity and ecological risks have attracted wide attention. However, the combined effects of As and PSNPs on the kidney and their underlying mechanisms of toxicities remain to be explored. Here, we investigated the effects of As and PSNPs co-exposure on structure and function in mice kidney, and further explored the possible mechanisms. In this study, we identified that co-exposure to As and PSNPs exhibited conspicuous renal structural damage and pathological changes, accompanied by renal tissue fibrosis (increased protein expression of Collagen I and α-SMA and deposition of collagen fibers), whereas alone exposure to As or PSNPs does not exhibit nephrotoxicity. Subsequently, our results further showed that combined action of As and PSNPs induced mitochondrial oxidative damage and impaired mitochondrial dynamic balance. Furthermore, co-treatment with As and PSNPs activated NCOA4-mediated ferritinophagy and ferroptosis in mice kidney and TCMK-1 cells, which was confirmed by the changes in the expression of ferritinophagy and ferroptosis related indicators (NCOA4, LC3, ATG5, ATG7, FTH1, FTL, GPX4, SLC7A11, FSP1, ACSL4 and PTGS2). Meaningfully, pretreatment with the mtROS-targeted scavenger Mito-TEMPO significantly attenuated As and PSNPs co-exposure induced mitochondrial damage, ferritinophagy and ferroptosis. In conclusion, these findings demonstrated that mtROS-dependent ferritinophagy and ferroptosis are important factors in As and PSNPs co-exposure induced kidney injury and fibrosis. This study provides a new insight into the study of combined toxicity of nanoplastics and heavy metal pollutants.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, Guangxi, China; Key Laboratory of China(Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
19
|
Zhou W, Zhang J, Chen W, Miao C. Prospects of molecular hydrogen in cancer prevention and treatment. J Cancer Res Clin Oncol 2024; 150:170. [PMID: 38555538 PMCID: PMC10982102 DOI: 10.1007/s00432-024-05685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gas signaling molecules, including carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), have been shown to have cancer therapeutic potential, pointing to a new direction for cancer treatment. In recent years, a series of studies have confirmed that hydrogen (H2), a weakly reductive gas, also has therapeutic effects on various cancers and can mitigate oxidative stress caused by radiation and chemotherapy, reducing tissue damage and immunosuppression to improve prognosis. Meanwhile, H2 also has immunomodulatory effects, inhibiting T cell exhaustion and enhancing T cell anti-tumor function. It is worth noting that human intestinal flora can produce large amounts of H2 daily, which becomes a natural barrier to maintaining the body's resistance to diseases such as tumors. Although the potential anti-tumor mechanisms of H2 are still to be investigated, previous studies have shown that H2 can selectively scavenge highly toxic reactive oxygen species (ROS) and inhibit various ROS-dependent signaling pathways in cancer cells, thus inhibiting cancer cell proliferation and metastasis. The ROS scavenging ability of H2 may also be the underlying mechanism of its immunomodulatory function. In this paper, we review the significance of H2 produced by intestinal flora on the immune homeostasis of the body, the role of H2 in cancer therapy and the underlying mechanisms, and the specific application of H2 to provide new ideas for the comprehensive treatment of cancer patients.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
20
|
Zhang HN, Xiao WQ, Lee DH, Li N, Feng YY, Su T, Gu HY, Yoon I, Jung H, Lee KH, Cho HJ, Han YH, Sun HN, Kwon T. Cisplatin Induces Kidney Cell Death via ROS-dependent MAPK Signaling Pathways by Targeting Peroxiredoxin I and II in African Green Monkey ( Chlorocebus aethiops sabaeus) Kidney Cells. In Vivo 2024; 38:630-639. [PMID: 38418129 PMCID: PMC10905483 DOI: 10.21873/invivo.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Cisplatin [cis-diamminedichloroplatinum(II), CDDP] is a widely used and effective antitumor drug in clinical settings, notorious for its nephrotoxic side effects. This study investigated the mechanisms of CDDP-induced damage in African green monkey kidney (Vero) cells, with a focus on the role of Peroxiredoxin I (Prx I) and Peroxiredoxin II (Prx II) of the peroxiredoxin (Prx) family, which scavenge reactive oxygen species (ROS). MATERIALS AND METHODS We utilized the Vero cell line derived from African green monkey kidneys and exposed these cells to various concentrations of CDDP. Cell viability, apoptosis, ROS levels, and mitochondrial membrane potential were assessed. RESULTS CDDP significantly compromised Vero cell viability by elevating both cellular and mitochondrial ROS, which led to increased apoptosis. Pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) effectively reduced CDDP-induced ROS accumulation and subsequent cell apoptosis. Furthermore, CDDP reduced Prx I and Prx II levels in a dose- and time-dependent manner. The inhibition of Prx I and II exacerbated cell death, implicating their role in CDDP-induced accumulation of cellular ROS. Additionally, CDDP enhanced the phosphorylation of MAPKs (p38, ERK, and JNK) without affecting AKT. The inhibition of these pathways significantly attenuated CDDP-induced apoptosis. CONCLUSION The study highlights the involvement of Prx proteins in CDDP-induced nephrotoxicity and emphasizes the central role of ROS in cell death mediation. These insights offer promising avenues for developing clinical interventions to mitigate the nephrotoxic effects of CDDP.
Collapse
Affiliation(s)
- Hui-Na Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Wan-Qiu Xiao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - Nan Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yao-Yuan Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Ting Su
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Han-Yu Gu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Ijoo Yoon
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haiyoung Jung
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hee Jun Cho
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China;
| | - Taeho Kwon
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea;
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| |
Collapse
|
21
|
Meng Y, Lin W, Wang N, Wei X, Mei P, Wang X, Zhang C, Huang Q, Liao Y. USP7-mediated ERβ stabilization mitigates ROS accumulation and promotes osimertinib resistance by suppressing PRDX3 SUMOylation in non-small cell lung carcinoma. Cancer Lett 2024; 582:216587. [PMID: 38097136 DOI: 10.1016/j.canlet.2023.216587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Osimertinib resistance is regarded as a major obstacle limiting survival benefits for patients undergoing treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). However, the underlying mechanisms of acquired resistance remain unclear. In this study, we report that estrogen receptor β (ERβ) is highly expressed in osimertinib-resistant NSCLC and plays a pivotal role in promoting osimertinib resistance. We further identified ubiquitin-specific protease 7 (USP7) as a critical binding partner that deubiquitinates and upregulates ERβ in NSCLC. ERβ promotes osimertinib resistance by mitigating reactive oxygen species (ROS) accumulation. We found that ERβ mechanistically suppresses peroxiredoxin 3 (PRDX3) SUMOylation and thus confers osimertinib resistance onto NSCLC. Furthermore, we provide evidence showing that depletion of ERβ induces ROS accumulation and reverses osimertinib resistance in NSCLC both in vitro and in vivo. Thus, our results demonstrate that USP7-mediated ERβ stabilization suppresses PRDX3 SUMOylation to mitigate ROS accumulation and promote osimertinib resistance, suggesting that targeting ERβ may be an effective therapeutic strategy to overcome osimertinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chi Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
22
|
Zhang Y, Xu R, Wu J, Zhang Z, Wang Y, Yang H, Zhang S. Nanopore-related cellular death through cytoskeleton depolymerization by drug-induced ROS. Talanta 2024; 268:125355. [PMID: 37952317 DOI: 10.1016/j.talanta.2023.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Prostate cancer (PCa) is a malignant tumor with a very high incidence which ranks second after lung cancer. Although there are many drugs available for the treatment of PCa, their effectiveness and anti-cancer mechanisms still need to be explored. Atomic force microscopy (AFM) could characterize minor morphological changes on cell surfaces, which provides an effective method to explore the interaction between drugs and cells at the nanometer level and further investigate the mechanisms for treating PCa. In our research, AFM visualized pore-like structures in the PC3M cell membrane after treatment with the eminent anticancer agent paclitaxel (PTX). The diameter, depth and number of these pores were in a concentration and time-dependent manner. Reactive oxygen species (ROS) was shown to depolymerize the actin cytoskeleton and make the membrane more sensitive to oxidative damage, thus inducing pore information. After pretreatment with a ROS scavenger, pore formation was prevented. AFM imaging technology provides a new evaluation method for drug-targeted therapy for cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Renfeng Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Jingjing Wu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhenghong Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Yuhuang Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
23
|
Jian J, Liu Y, Zheng Q, Wang J, Jiang Z, Liu X, Chen Z, Wan S, Liu H, Wang L. The E3 ubiquitin ligase TRIM39 modulates renal fibrosis induced by unilateral ureteral obstruction through regulating proteasomal degradation of PRDX3. Cell Death Discov 2024; 10:17. [PMID: 38195664 PMCID: PMC10776755 DOI: 10.1038/s41420-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Department of Urology, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450052, Henan, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
25
|
Min DK, Kim YE, Kim MK, Choi SW, Park N, Kim J. Orally Administrated Inflamed Colon-Targeted Nanotherapeutics for Inflammatory Bowel Disease Treatment by Oxidative Stress Level Modulation in Colitis. ACS NANO 2023; 17:24404-24416. [PMID: 38039189 DOI: 10.1021/acsnano.3c11089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by an inappropriate and persistent inflammatory immune response and is often accompanied by excessive reactive oxygen species (ROS) production. For effective IBD treatment, there is a high demand for safe and targeted therapy that can be orally administered. In this study, we aimed to propose the use of inflamed colon-targeted antioxidant nanotherapeutics (ICANs) for in situ oxidative stress level modulation in colitis. ICANs consist of mesoporous silica nanoparticles (MSNs) with surface-attached ROS-scavenging ceria nanoparticles (CeNPs), which are further coated with poly(acrylic acid) (PAA) to facilitate preferential adherence to inflamed colon tissues through electrostatic interaction. We achieved a high ROS-scavenging property that remained effective even after artificial gastrointestinal fluid incubation by optimization of the molecular weight and PAA-coating pH. The orally administered ICANs demonstrated enhanced adherence to inflamed colon tissues in an acute inflammation mouse model of IBD induced by dextran sulfate sodium. This targeted delivery resulted in gut microenvironment modulation by regulating redox balance and reducing inflammatory cell infiltration, thereby suppressing the colitis-associated immune response. These findings highlight the potential of noninvasive ICANs as a promising candidate for treating inflammatory intestinal diseases by oxidative stress level modulation in colitis.
Collapse
Affiliation(s)
- Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
27
|
Fu H, Wang L, Ying S, Zhao Z, Zhang P. Preventive effect and mechanism of compound Danshen dripping pills on contrast-induced nephropathy after percutaneous coronary interventional. Front Cardiovasc Med 2023; 10:1211982. [PMID: 38124888 PMCID: PMC10731959 DOI: 10.3389/fcvm.2023.1211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
Background Contrast-induced nephropathy (CIN) is one of the most common complications after coronary stent implantation due to the extensive development of coronary catheterization technology. Compound Danshen dripping pills (CDDP) are clinically used as cardiovascular drugs, relieving systemic inflammatory response. Previous studies have observed that CDDP can decrease CIN incidence after coronary stent implantation with uncertain effectiveness. Methods We conducted a prospective, randomized, single-center, single-blind, controlled trial. We enrolled patients 18 years and older with unstable angina pectoris and NSTEMI who underwent PCI at the Tianjin Chest Hospital between November 1, 2021, and November 31, 2022, and followed for 30 days. Patients were randomized to CDDP and hydration therapy (10 capsules three times/day; N = 411) or hydration only (N = 411). The primary outcome was the contrast nephropathy incidence, defined as an elevation in serum creatinine by more than 25% or 44 μmol/L from baseline within 48-72 h of contrast exposure. Secondary outcomes included major adverse cardiovascular events post-surgery and during follow-up. Results After 48 h of operation, the two groups had statistical significance in Scr and BUN values (80.0 ± 12.59 vs. 84.43 ± 13.49, P < 0.05; 6.22 ± 1.01 vs. 6.40 ± 0.93, P < 0.05). The difference in Scr in 72 h between the two groups was statistically significant (76.42 ± 10.92 vs. 79.06 ± 11.58, P < 0.05). The CIN incidence was significantly lower in the CDDP group than in the hydration group. The CIN risk was significantly elevated in patients with LVEF <50%, contrast volume ≥160 ml, and hypertension, after 48 and 72 h of operation. The serum inflammation index levels NGAL, TNF-α, oxidative stress indexes SOD, and MDA significantly differed between the two groups. However, there was no significant difference in serum apoptosis indexes Bax, Bcl-2, and Casepase-9. Conclusions CDDP pre-treatment could prevent contrast-induced nephropathy. Inflammatory response and oxidative stress could be significant in the CDDP mechanism.
Collapse
Affiliation(s)
- Han Fu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Linrui Wang
- Sheng Jing Hospital Affiliated, China Medical University, Shenyang, China
| | - Shuo Ying
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Zhicheng Zhao
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Liu X, Zhang Y, Yang X, Zhang Y, Liu Y, Wang L, Yi T, Yuan J, Wen W, Jian Y. Mitochondrial transplantation inhibits cholangiocarcinoma cells growth by balancing oxidative stress tolerance through PTEN/PI3K/AKT signaling pathway. Tissue Cell 2023; 85:102243. [PMID: 37865041 DOI: 10.1016/j.tice.2023.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a serious threat to human health, and tumor development is associated with abnormal mitochondrial function. It is believed that the introduction of healthy mitochondria into tumor cells can induce the oxidative stress in tumor cells to return to normal levels, thus exerting an inhibitory effect on tumor growth. METHODS Mitochondria isolated from 143BρW cells were co-cultured with HuCCT1 cells, and the mitochondria were stained with MitoTracker dye as a tracking label. Changes in apoptosis, proliferation, oxidative stress, and PTEN/PI3K/AKT signaling pathway were assessed. In addition, a CCA nude mouse transplantation tumor model was constructed to analyze the effects of mitochondrial transplantation on the above factors in nude mice. Furthermore, the expression of PTEN was interfered to observe the effect and mechanism of mitochondrial transplantation on the proliferation and apoptosis of CCA cells. RESULTS Mitochondrial transplantation promoted apoptosis and inhibited cell proliferation in CCA cell line. SOD, GSH, and CAT activities were significantly increased, the expression of PTEN was activated, and the expression of p-PI3K and p-AKT were inhibited after mitochondrial transplantation. After mitochondrial transplantation + si-PTEN treatment, cell apoptosis, SOD, GSH, CAT activity, and the expression of PTEN were decreased, while the expression of p-PI3K and p-AKT were significantly enhanced. CONCLUSION This study reveals the anti-tumor potential of mitochondrial transplantation through PTEN/PI3K/AKT signaling pathway to regulate cellular oxidative stress in CCA.
Collapse
Affiliation(s)
- Xiaocong Liu
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China.
| | - Yuanyuan Zhang
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Xiaoyan Yang
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yulan Liu
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Li Wang
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Ting Yi
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Jing Yuan
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Wu Wen
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yi Jian
- Department of Gastroenterology and Hepatology, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
29
|
Liu J, Zhang B, Zhang Y, Zhao H, Chen X, Zhong L, Shang D. Oxidative stress and autophagy-mediated immune patterns and tumor microenvironment infiltration characterization in gastric cancer. Aging (Albany NY) 2023; 15:12513-12536. [PMID: 37950729 PMCID: PMC10683600 DOI: 10.18632/aging.205194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 11/13/2023]
Abstract
Recent years have seen a sharp rise in the amount of research on the connection between oxidative stress, autophagy, and cancer cells. However, the significant functions of oxidative stress and autophagy-related genes (OARGs) in gastric cancer (GC) are yet to be investigated integrally. Therefore, it will be a new and promising concept to search for novel OARG-related biomarkers to predict the prognosis and treatment response of GC. First, we assessed changes in prognosis and tumor microenvironment (TME) characteristics across the various oxidative stress and autophagy-related modification patterns based on a detailed analysis of 17 OARGs with prognostic significance of 808 GC samples. We identified three distinct OARG alteration patterns which displayed unique biological characteristics and immune cell infiltration features. Using principal component analysis methods, the OARGscore was developed to evaluate the OARG modification patterns of certain tumors. The negative connection between OARGscore and immune cells was statistically significant. Increased survival, a higher incidence of mutations, and a better response to immunotherapy were all predicted to be related to patients' high-OARGscore. In addition, the candidate chemotherapeutic drugs were predicted using the oncoPredict program. The low-OARGscore group was predicted to benefit more from Ribociclib, Alisertib, Niraparib, Epirubicin, Olaparib, and Axitinib, while patients in the high-OARGscore group were predicted to benefit more from Afatinib, Oxaliplatin, Paclitaxel, 5-Fluorouracil, Dabrafenib and Lapatinib. Our findings offer a specific method for predicting a patient's prognosis and susceptibility to immunotherapy, as well as a promising insight of oxidative stress and autophagy in GC.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunshu Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huahui Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Hanchapola HACR, Kodagoda YK, Lee J, Lee S, Jeong T, Kim KM, Han HJ, Wan Q, Lee J. Molecular features, antioxidant potential, and immunological expression assessment of thioredoxin-like protein 1 (TXNL1) in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109009. [PMID: 37598735 DOI: 10.1016/j.fsi.2023.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.
Collapse
Affiliation(s)
- M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Kyong Min Kim
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Hyun-Ja Han
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
31
|
Hao J, Song Z, Su J, Li L, Zou L, Zou K. The PRX-1/TLR4 axis promotes hypoxia-induced radiotherapy resistance in non-small cell lung cancer by targeting the NF-κB/p65 pathway. Cell Signal 2023; 110:110806. [PMID: 37468052 DOI: 10.1016/j.cellsig.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Hypoxic lung cancer cells are highly resistant to radiation. Peroxiredoxin-1 (PRX-1), a transcriptional coactivator that enhances the DNA-binding activity of serum reactive factor, has been identified as a target for radiotherapy sensitization, but the underlying molecular mechanism remains unclear. This study aimed to investigate the influence of PRX-1 on radiotherapy sensitivity in hypoxic tumors. Hypoxic lung cancer cells exhibited radiotherapy-resistant phenotypes after irradiation, including increased proliferation, DNA damage repair, cell migration, invasion and stemness. Radio-resistant hypoxic lung cancer cells showed high expression levels of PRX-1. Furthermore, we observed that PRX-1 bound to the promoter region of TRL4 (-300 to -600) and promoted its transcription and expression and that PRX-1/TRL4 activated the NF-κB/p65 signaling pathway. Increased radiotherapy resistance of hypoxic lung cancer cells increased their ability to proliferate, migrate, and maintain stemness in vivo and in vitro. These findings suggest that PRX-1/TRL4 could be used as a target for the treatment of radiotherapy-resistant lung cancer cells and further provide a theoretical basis for the clinical treatment of hypoxic lung cancer cells.
Collapse
Affiliation(s)
- Jiaojiao Hao
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Song
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiayi Su
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Longjie Li
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lijian Zou
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Kun Zou
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
32
|
Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomed Pharmacother 2023; 165:115036. [PMID: 37354814 DOI: 10.1016/j.biopha.2023.115036] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Drug resistance is the main obstacle to achieving a cure in many cancer patients. Reactive oxygen species (ROS) are master regulators of cancer development that act through complex mechanisms. Remarkably, ROS levels and antioxidant content are typically higher in drug-resistant cancer cells than in non-resistant and normal cells, and have been shown to play a central role in modulating drug resistance. Therefore, determining the underlying functions of ROS in the modulation of drug resistance will contribute to develop therapies that sensitize cancer resistant cells by leveraging ROS modulation. In this review, we summarize the notable literature on the sources and regulation of ROS production and highlight the complex roles of ROS in cancer chemoresistance, encompassing transcription factor-mediated chemoresistance, maintenance of cancer stem cells, and their impact on the tumor microenvironment. We also discuss the potential of ROS-targeted therapies in overcoming tumor therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Biao An
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yi Lin
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
33
|
Li W, Xu Y, Zeng X, Tan J, Wang Y, Wu H, Li M, Yi C. Etiological relationship between lipid metabolism and endometrial carcinoma. Lipids Health Dis 2023; 22:116. [PMID: 37537560 PMCID: PMC10401764 DOI: 10.1186/s12944-023-01868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Endometrial carcinoma (EC) has become one of the most common gynecological malignant neoplasms in developed countries worldwide. Studies have shown that this may be closely related to the abnormal metabolism of blood lipids, which was the most significant metabolic change in the human body in this cancer. In this review, we focus on the correlation between lipid metabolism and EC and discuss the evidence that abnormal lipid metabolism promotes an increase in EC growth and metabolism, as well as the regulatory mechanism and related signaling pathways involved in this relationship. In addition, we also discussed the research progress of targeted therapies and drug treatments for EC that act on lipid metabolism, and statins are expected to become adjuvant drugs for EC in the future. This review will provide a systematic view for a better understanding of the etiological relationship between lipid metabolism and EC and further open up new therapeutic possibilities and effective treatments for EC by targeting lipid metabolism.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yi Xu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xinling Zeng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| | - Hongyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Maokun Li
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| | - Cunjian Yi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
34
|
Diaz-Del Cerro E, Martinez de Toda I, Félix J, Baca A, De la Fuente M. Components of the Glutathione Cycle as Markers of Biological Age: An Approach to Clinical Application in Aging. Antioxidants (Basel) 2023; 12:1529. [PMID: 37627524 PMCID: PMC10451878 DOI: 10.3390/antiox12081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The oxidative-inflammatory theory of aging states that aging is the result of the establishment of a chronic oxidative-inflammatory stress situation in which the immune system is implicated. Among the redox parameters, those involved in the glutathione cycle have been suggested as essential in aging. Thus, the first objective of this study was to determine if several components of the glutathione cycle (glutathione reductase (GR) and glutathione peroxidase (GPx) activities, and concentrations of oxidized glutathione (GSSG) and reduced glutathione (GSH)) in leukocytes) are associated with the biological age (ImmunolAge) estimated using the Immunity Clock in 190 men and women. The second objective was to identify the best blood fraction (whole blood, blood cells, erythrocytes, or plasma) to quantify these components and correlate them with the estimated ImmunolAge. The results show that the oxidative state of peripheral leukocytes correlates with their functionality, supporting the idea that this is the basis of immunosenescence. In blood, the correlations are more significant in the fraction of blood cells with respect to ImmunolAge (positive correlations with GSSG concentration and the GSSG/GSH ratio, and negative correlations with GPx and GR activities). Therefore, blood cells are proposed as the most effective sample to estimate the biological age of individuals in clinical settings.
Collapse
Affiliation(s)
- Estefania Diaz-Del Cerro
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martinez de Toda
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Judith Félix
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
| | - Monica De la Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
35
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Miao W, Liu Y, Tang J, Chen T, Yang F. A Moexitecan Magnetic Liposomal Strategy for Ferroptosis-Enhanced Chemotherapy. Pharmaceutics 2023; 15:2012. [PMID: 37514198 PMCID: PMC10386037 DOI: 10.3390/pharmaceutics15072012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Moexitecan (Mex) is a novel camptothecin derivative that retains the potent antitumor properties of camptothecin drugs and has improved hydrophilicity to enhance biocompatibility in vitro. However, single-drug therapy still has limitations. In this study, magnetic liposomes loaded with both moexitecan and superparamagnetic iron oxide nanoparticles (SPIO) have been fabricated by a film hydration and filtration method, which is abbreviated as Mex@MLipo. By using liposomes as drug carriers, Mex can be delivered specifically to the target site, resulting in improved therapeutic efficacy and reduced toxicity. Morphology characterization results show that Mex@MLipo has a mean diameter of 180-200 nm with a round morphology. The loading efficiencies of Mex and SPIO are 65.86% and 76.86%, respectively. Cell toxicity, in vitro cell uptake, and in vivo fluorescence imaging experiments showed that Mex@MLipo was the most effective in killing HT-29 cells compared with HepG-2 and PC-3 cells, due to its ability to combine chemotherapy and induce ferroptosis, resulting in a strong anti-tumor effect. Thus, this study developed an innovative nanoscale drug delivery system that paves the way for clinical applications of moexitecan.
Collapse
Affiliation(s)
- Weiling Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jian Tang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tiandong Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
37
|
Deng G, Sun H, Huang R, Pan H, Zuo Y, Zhao R, Du Z, Xue Y, Song H. An oxidative stress biomarkers predict prognosis in gastric cancer patients receiving immune checkpoint inhibitor. Front Oncol 2023; 13:1173266. [PMID: 37546387 PMCID: PMC10400353 DOI: 10.3389/fonc.2023.1173266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective The development and advance of gastric cancer are inextricably linked to oxidative and antioxidant imbalance. Although immunotherapy has been shown to be clinically effective, the link between oxidative stress and gastric cancer patients treated with immune checkpoint inhibitor (ICIs) remains unknown. This study aims at looking into the prognostic value of oxidative stress scores in gastric cancer patients treated with ICIs. Methods By taking the propagation to receiver operating characteristic (ROC) we got the best cut-off values, and divided 265 patients receiving ICIs and chemotherapy into high and low GC-Integrated Oxidative Stress Score (GIOSS) groups. We also used Kaplan-Meier and COX regression models to investigate the relationship between oxidative stress biomarkers and prognosis. Results Through both univariate and multivariate analyses, it's shown that GIOSS severs as an independent prognostic factor for progression-free survival (PFS) and Overall survival (OS). Based on GIOSS cutoff values, patients with high GIOSS levels, compared to those with low levels exhibited shorter PFS and OS, both in the high GIOSS group, which performed poorly in the ICIs subgroup and other subgroup analyses. Conclusion GIOSS is a biomarker that responds to systemic oxidative stress in the body and can predict prognosis in patients with gastric cancer who are taking ICIs. Additionally, it might come to medical professionals' aid in making more effective or more suitable treatment plans for gastric cancer.
Collapse
|
38
|
Lynch J, Wang Y, Li Y, Kavdia K, Fukuda Y, Ranjit S, Robinson CG, Grace CR, Xia Y, Peng J, Schuetz JD. A PPIX-binding probe facilitates discovery of PPIX-induced cell death modulation by peroxiredoxin. Commun Biol 2023; 6:673. [PMID: 37355765 PMCID: PMC10290680 DOI: 10.1038/s42003-023-05024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.
Collapse
Affiliation(s)
- John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Youlin Xia
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
39
|
Pouliquen DL, Ortone G, Rumiano L, Boissard A, Henry C, Blandin S, Guette C, Riganti C, Kopecka J. Long-Chain Acyl Coenzyme A Dehydrogenase, a Key Player in Metabolic Rewiring/Invasiveness in Experimental Tumors and Human Mesothelioma Cell Lines. Cancers (Basel) 2023; 15:cancers15113044. [PMID: 37297007 DOI: 10.3390/cancers15113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cross-species investigations of cancer invasiveness are a new approach that has already identified new biomarkers which are potentially useful for improving tumor diagnosis and prognosis in clinical medicine and veterinary science. In this study, we combined proteomic analysis of four experimental rat malignant mesothelioma (MM) tumors with analysis of ten patient-derived cell lines to identify common features associated with mitochondrial proteome rewiring. A comparison of significant abundance changes between invasive and non-invasive rat tumors gave a list of 433 proteins, including 26 proteins reported to be exclusively located in mitochondria. Next, we analyzed the differential expression of genes encoding the mitochondrial proteins of interest in five primary epithelioid and five primary sarcomatoid human MM cell lines; the most impressive increase was observed in the expression of the long-chain acyl coenzyme A dehydrogenase (ACADL). To evaluate the role of this enzyme in migration/invasiveness, two epithelioid and two sarcomatoid human MM cell lines derived from patients with the highest and lowest overall survival were studied. Interestingly, sarcomatoid vs. epithelioid cell lines were characterized by higher migration and fatty oxidation rates, in agreement with ACADL findings. These results suggest that evaluating mitochondrial proteins in MM specimens might identify tumors with higher invasiveness.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Giacomo Ortone
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Letizia Rumiano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Alice Boissard
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Stéphanie Blandin
- CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes Université, F-44000 Nantes, France
| | - Catherine Guette
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| |
Collapse
|
40
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
41
|
Ma L, Zhang H, Liu C, Liu M, Shangguan F, Liu Y, Yang S, Li H, An J, Song S, Cao Q, Qu G. A novel mechanism of cannabidiol in suppressing ovarian cancer through LAIR-1 mediated mitochondrial dysfunction and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1118-1132. [PMID: 36810933 DOI: 10.1002/tox.23752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear. We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1. In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action. In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Fungal Laboratory, Jining First People's Hospital, Jining, Shandong Province, China
| | - Huachang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Chuntong Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Mengke Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Yantai Key Laboratory of Sports Injury and Rehabilitation, Health Commission of Shandong Province of Medicine and Health Key Laboratory of Sports Injury and Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai, Shandong Province, China
| | - Hua Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| | - Qizhi Cao
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| |
Collapse
|
42
|
Wang H, Xu J, Li H, Chen W, Zeng X, Sun Y, Yang Q. Alpha-ketoglutarate supplementation ameliorates ovarian reserve and oocyte quality decline with aging in mice. Mol Cell Endocrinol 2023; 571:111935. [PMID: 37098377 DOI: 10.1016/j.mce.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023]
Abstract
Assisted reproductive technology is widely accepted as an effective treatment to improve female fertility, but the decline of aging oocyte quality remains an important factor in the decrease of female fecundity. However, the effective strategies for improving oocyte aging are still not well understood. In the study, we demonstrated that ROS content and abnormal spindle proportion were increased and mitochondrial membrane potential was decreased in aging oocytes. However, supplementation of α-ketoglutarate (α-KG), an immediate metabolite in the tricarboxylic acid cycle (TCA), for 4 months to aging mice, significantly increased the ovarian reserve showed by more follicle numbers observed. In addition, the oocyte quality was significantly improved, as demonstrated by reduced fragmentation rate and decreased reactive oxygen species (ROS) levels, in addition to a lower rate of abnormal spindle assembly, thereby improving the mitochondrial membrane potential. Consistent with the in vivo data, α-KG administration also improved the post-ovulated aging oocyte quality and early embryonic development by improving mitochondrial functions and reducing ROS accumulation and abnormal spindle assembly. Our data revealed that α-KG supplementation might be an effective strategy to improve the quality of aging oocytes in vivo or in vitro.
Collapse
Affiliation(s)
- Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianmin Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
43
|
Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, Quintela C, Prieto I, Sánchez-Ramos C, Ferrero-Herrero E, Monsalve M. Evaluation of Mitochondrial Function in Blood Samples Shows Distinct Patterns in Subjects with Thyroid Carcinoma from Those with Hyperplasia. Int J Mol Sci 2023; 24:ijms24076453. [PMID: 37047426 PMCID: PMC10094811 DOI: 10.3390/ijms24076453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.
Collapse
|
44
|
Fluorescent and theranostic probes for imaging nicotinamide phosphoribosyl transferase (NAMPT). Eur J Med Chem 2023; 248:115080. [PMID: 36608458 DOI: 10.1016/j.ejmech.2022.115080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) has been regarded as an attractive target for cancer therapy. However, there is a lack of chemical tools for real-time visualization and detection of NAMPT. Herein, the first fluorescent and theranostic probes were designed for imaging NAMPT, which had dual functions of diagnosis and treatment. The designed probes possessed good affinity and environmental sensitivity to NAMPT with a turn-on mechanism and were successfully applied in fluorescence detecting and imaging of NAMPT at the level of living cells and tissue sections. They also effectively inhibited tumor cell proliferation and arrested cell cycle at the G2 phase. These fluorescent probes enabled detection and visualization of NAMPT, representing effective chemical tools for the pathological diagnosis and treatment of cancer.
Collapse
|
45
|
Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023; 19:401-414. [PMID: 35678504 PMCID: PMC9851232 DOI: 10.1080/15548627.2022.2084862] [Citation(s) in RCA: 197] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Mitophagy is an essential mitochondrial quality control mechanism that eliminates damaged mitochondria and the production of reactive oxygen species (ROS). The relationship between mitochondria oxidative stress, ROS production and mitophagy are intimately interwoven, and these processes are all involved in various pathological conditions of acute kidney injury (AKI). The elimination of damaged mitochondria through mitophagy in mammals is a complicated process which involves several pathways. Furthermore, the interplay between mitophagy and different types of cell death, such as apoptosis, pyroptosis and ferroptosis in kidney injury is unclear. Here we will review recent advances in our understanding of the relationship between ROS and mitophagy, the different mitophagy pathways, the relationship between mitophagy and cell death, and the relevance of these processes in the pathogenesis of AKI.Abbreviations: AKI: acute kidney injury; AMBRA1: autophagy and beclin 1 regulator 1; ATP: adenosine triphosphate; BAK1: BCL2 antagonist/killer 1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BH3: BCL2 homology domain 3; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CASP1: caspase 1; CAT: catalase; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CI-AKI: contrast-induced acute kidney injury; CISD1: CDGSH iron sulfur domain 1; CL: cardiolipin; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; DNM1L/DRP1: dynamin 1 like; E3: enzyme 3; ETC: electron transport chain; FA: folic acid; FUNDC1: FUN14 domain containing 1; G3P: glycerol-3-phosphate; G6PD: glucose-6-phosphate dehydrogenase; GPX: glutathione peroxidase; GSH: glutathione; GSK3B: glycogen synthase kinase 3 beta; GSR: glutathione-disulfide reductase; HIF1A: hypoxia inducible factor 1 subunit alpha; HUWE1: HECT, UBA and WWE domain containing 1; IL1B: interleukin 1 beta; IMM: inner mitochondrial membrane; IPC: ischemic preconditioning; IRI: ischemia-reperfusion injury; LIR: LC3-interacting region; LPS: lipopolysaccharide; MA: malate-aspartate; MPT: mitochondrial permeability transition; MUL1: mitochondrial E3 ubiquitin protein ligase 1; mtROS: mitochondrial ROS; NLR: NOD-like receptor; NLRP3: NLR family pyrin domain containing 3; NOX: NADPH oxidase; OGD-R: oxygen-glucose deprivation-reperfusion; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PARL: presenilin associated rhomboid like; PINK1: PTEN induced kinase 1; PLSCR3: phospholipid scramblase 3; PMP: peptidase, mitochondrial processing; PRDX: peroxiredoxin; PRKN: parkin RBR E3 ubiquitin protein ligase; RPTC: rat proximal tubular cells; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SOD: superoxide dismutase; SOR: superoxide reductase; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TIMM: translocase of inner mitochondrial membrane; TOMM: translocase of outer mitochondrial membrane; TXN: thioredoxin; VDAC: voltage dependent anion channel; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthNeuro-Oncology, Bethesda, Maryland, USA
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Hernando Gomez
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
46
|
Identification of Prognostic and Predictive Biomarkers and Druggable Targets among 205 Antioxidant Genes in 21 Different Tumor Types via Data-Mining. Pharmaceutics 2023; 15:pharmaceutics15020427. [PMID: 36839749 PMCID: PMC9959161 DOI: 10.3390/pharmaceutics15020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Oxidative stress is crucial in carcinogenesis and the response of tumors to treatment. Antioxidant genes are important determinants of resistance to chemotherapy and radiotherapy. We hypothesized that genes involved in the oxidative stress response may be valuable as prognostic biomarkers for the survival of cancer patients and as druggable targets. (2) Methods: We mined the KM Plotter and TCGA Timer2.0 Cistrome databases and investigated 205 antioxidant genes in 21 different tumor types within the context of this investigation. (3) Results: Of 4347 calculations with Kaplan-Meier statistics, 84 revealed statistically significant correlations between high gene expression and worse overall survival (p < 0.05; false discovery rate ≤ 5%). The tumor types for which antioxidant gene expression was most frequently correlated with worse overall survival were renal clear cell carcinoma, renal papillary cell carcinoma, and hepatocellular carcinoma. Seventeen genes were clearly overexpressed in tumors compared to their corresponding normal tissues (p < 0.001), possibly qualifying them as druggable targets (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3, GSS, PDIA4, PDIA6, PRDX1, SELENOH, SELENON, STIP1, TXNDC9, TXNDC12, TXNL1, TXNL4A, and TXNRD1). (4) Conclusions: We concluded that a sub-set of antioxidant genes might serve as prognostic biomarkers for overall survival and as druggable targets. Renal and liver tumors may be the most suitable entities for this approach.
Collapse
|
47
|
QIAN SITONG, FANG YING, YAO CHENGYUN, WANG YONGSHENG, ZHANG ZHI, WANG XIAOHUA, GAO JIN, FENG YONG, SUN LEI, ZOU RUNYUE, ZHOU GUOREN, YE JINJUN, XIA RUIXUE, XIA HONGPING. The synergistic effects of PRDX5 and Nrf2 on lung cancer progression and drug resistance under oxidative stress in the zebrafish models. Oncol Res 2023; 30:53-64. [PMID: 37305326 PMCID: PMC10208055 DOI: 10.32604/or.2022.026302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that PRDX5 and Nrf2 are antioxidant proteins related to abnormal reactive oxidative species (ROS). PRDX5 and Nrf2 play a critical role in the progression of inflammations and tumors. The combination of PRDX5 and Nrf2 was examined by Co-immunoprecipitation, western blotting and Immunohistochemistry. H2O2 was applied to affect the production of ROS and induced multi-resistant protein 1 (MRP1) expression in NSCLC cells. The zebrafish models mainly investigated the synergistic effects of PRDX5 and Nrf2 on lung cancer drug resistance under oxidative stress. We showed that PRDX5 and Nrf2 form a complex and significantly increase the NSCLC tissues compared to adjacent tissues. The oxidative stress improved the combination of PRDX5 and Nrf2. We demonstrated that the synergy between PRDX5 and Nrf2 is positively related to the proliferation and drug resistance of NSCLC cells in the zebrafish models. In conclusion, our data indicated that PRDX5 could bind to Nrf2 and has a synergistic effect with Nrf2. Meanwhile, in the zebrafish models, PRDX5 and Nrf2 have significant regulatory impacts on lung cancer progression and drug resistance activities under oxidative stress.
Collapse
Affiliation(s)
- SITONG QIAN
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - YING FANG
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - CHENGYUN YAO
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - YONGSHENG WANG
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - ZHI ZHANG
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - XIAOHUA WANG
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - JIN GAO
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - YONG FENG
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - LEI SUN
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - RUNYUE ZOU
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - GUOREN ZHOU
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - JINJUN YE
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - RUIXUE XIA
- Medical College of Henan University & Henan University Huaihe Hospital, Kaifeng, 475000, China
| | - HONGPING XIA
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China
- Department of Pathology, Nanjing Drum Tower Hospital & Drum Tower Clinical College & School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
48
|
Xu C, Wang Y, Zhang R, Zhang J, Sun Y. Molecular characterization and functional analysis of peroxiredoxin 3 (NdPrx3) from Neocaridina denticulata sinensis. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100081. [PMID: 36654784 PMCID: PMC9841174 DOI: 10.1016/j.fsirep.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Peroxiredoxins (Prxs) widely exist in organisms and can prevent oxidative damage. Here, the characterization and biological function of NdPrx3 from Neocaridina denticulata sinensis were analyzed. The coding sequence of NdPrx3 consists of 684 bp open reading frame (ORF), encoding 227 amino acids with a predicted molecular weight of 24.7 kDa and theoretical pI 6.49. Multiple sequence alignments showed that the conserved domains of NdPrx3, including catalytic triad, dimer interface, decamer interface, peroxidatic, and resolving cysteines, were similar to those of other organisms. The phylogenetic relationship demonstrated that NdPrx3 clustered in the Prx3 class. The highest relative expression of NdPrx3 mRNA was confirmed in gill among the nine tissues from healthy shrimp. The transcript level of NdPrx3 was significantly upregulated from 0 h to 48 h and decreased in 72 h under copper challenge, indicating that NdPrx3 may play an important role in the copper challenge of N. denticulata sinensis. In addition, NdPrx3 was recombinantly expressed in E. coli and purified to one band on SDS-PAGE. The DNA protection of rNdPrx3 was verified. The enzymatic assay of the recombinant NdPrx3 indicated that it had the oxidoreductase function and was stable at a low temperature (10-30 °C).
Collapse
Affiliation(s)
- Ce Xu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Ying Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
- Corresponding authors at: School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
- Corresponding authors at: School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
49
|
Geng R, Zhong Z, Ni S, Liu W, He Z, Gan S, Huang Q, Yu H, Bai J, Liu J. Necroptosis-Related Modification Patterns Depict the Tumor Microenvironment, Redox Stress Landscape, and Prognosis of Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4945288. [PMID: 37082103 PMCID: PMC10113055 DOI: 10.1155/2023/4945288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 04/22/2023]
Abstract
Necroptosis is one of programmed cell death discovered recently, which involves in tumorigenesis, cancer metastasis, and immune reaction. We studied the necroptosis-related genes (NRGs) in ovarian cancer (OV) tissues using data from public databases, which separated into two NRGclusters. Patients in cluster A would have severe clinical characteristics, poor prognosis, and worse tumor microenvironment infiltration characteristics. The NRG score was achieved through the Cox analysis, along with a construction of a prognostic model. People with lower risk score would have better prognosis, lower expression of redox related genes, higher immunogenicity, and better effect on immunotherapy. In addition, the NRG score was closely related to cancer stem cell index, copy number variations, tumor mutation load, and chemosensitivity. We built a nomogram to enhance clinical application of the signature. These outcomes can help use know the function of NRGs in OV and provide new ideas for evaluating clinical outcome and developing more effective treatment protocols.
Collapse
Affiliation(s)
- Rui Geng
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Wen Liu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Zhiqiang He
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Shilin Gan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Qinghao Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Hao Yu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China
| |
Collapse
|
50
|
Tan S, Liu Q, Yang J, Cai J, Yu M, Ji Y. Macranthoidin B (MB) Promotes Oxidative Stress-Induced Inhibiting of Hepa1-6 Cell Proliferation via Selenoprotein. Biol Trace Elem Res 2023; 201:368-376. [PMID: 35080709 DOI: 10.1007/s12011-022-03120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The aim of this study was to investigate the role of selenoproteins in Macranthoidin B (MB) with regard to the inhibition of hepa1-6 cell proliferation. The CCK8 method was used to detect the inhibition rate in hepa1-6 cell of proliferation. The production of ROS, MDA, GSH levels, and GSH-Px and SOD activities was detected according to corresponding reagent kits. We determined the mRNA expressions of 25 selenoproteins in hepa1-6 cells via real-time quantitative PCR (qRT-PCR); moreover, the heat map and principal component analysis were used for further bioinformatics analysis. The results revealed that with an increasing concentration of MB, the inhibitory effect on hepa1-6 cell proliferation intensified. Compared with the control group, the treatment group showed significantly increased ROS levels, elevated MDA contents, and decreased GSH level, GSH-Px activity, and SOD activity. Increasing MB concentration treatment induced remarkable degradation of Txnrd1, Txnrd2, Txnrd3, Gpx1, Gpx2, Gpx3, Gpx6, Dio1, Dio2, Selt, Selp, Selh, Selk, Selw, Seln, and Dio3. Principal component analysis revealed that Txnrd 3, Selk, Selo, Selw, Selt, Dio2, Txnrd1, Dio3, Gpx6, and Dio1 were highly correlated with MB. In conclusion, MB dose dependently inhibited hepa1-6 cell proliferation and induced oxidative stress. Based on bioinformatics analysis, with MB treatment, Txnrd 3, Selk, Selo, Selw, Selt, Dio2, Txnrd1, Dio3, Gpx6, and Dio1 exhibited critical role in the inhibition of hepa1-6 cells proliferation. The functions of these selenoproteins were associated with oxidative stress.
Collapse
Affiliation(s)
- Siran Tan
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China.
| | - Yubin Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, People's Republic of China.
| |
Collapse
|