1
|
Jian X, Shi C, Xu T, Liu B, Zhou L, Jiang L, Liu K. Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39682053 DOI: 10.1080/10408398.2024.2440063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent. OBJECTIVE To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS. METHODS The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], p = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], p = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], p = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], p = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP). CONCLUSION Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and risk of bias among the studies and we expect that more high-quality RCTs evaluating the efficacy and safety of dietary polyphenol adnimistration in patients with PCOS will be conducted in the future. SYSTEMATIC REVIEW REGISTRATION CRD42024498494.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
2
|
Du Y, Tian H, Li J, Gao J, Liu W, Lu F, Qin HM, Mao S. A Novel A105Y Mutant of CYP17A1 Exhibits Almost Perfect Regioselectivity in the Production of 17α-Hydroxyprogesterone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24609-24619. [PMID: 39440611 DOI: 10.1021/acs.jafc.4c05982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
17α-Hydroxyprogesterone (17α-OHP) is a steroid hormone with significant biological activity that can be obtained by catalyzing progesterone (PROG), the main product of sitosterol, through CYP17A1. However, increasing the catalytic specificity of HCYP17A1 for C17 hydroxylation of progesterone (PROG) poses a formidable challenge due to the close proximity of the C16 and C17 positions. In this study, a rational design was utilized to alter the spatial configuration of the substrate channel, leading to the complete abolition of its 16-hydroxylation activity. Subsequent molecular dynamics simulations revealed that the A105Y mutation heightened the rigidity of the G95-I112 region of CYP17A1, consequently regulating the direction of the entry of PROG into the catalytic pocket. Moreover, the establishment of hydrogen bonding between Y105 and R239, coupled with Pi-stacking of A105Y with F114, effectively immobilizes the substrate PROG in a fixed position, explaining the practically perfect regioselectivity observed in A105Y. Finally, a multifaceted enzymatic cascade system, incorporating A105Y, cytochrome P450 reductase (CPR), and glucose-6-phosphate dehydrogenase (ZWF) for NADPH cofactor regeneration, was constructed in Pichia pastoris GS115. The resulting biocatalyst produced 106 ± 3.2 mg L-1 17α-OHP, a 4.6-fold increase compared with A105Y alone. Thus, this study provides valuable insights for improving the regioselectivity and activity of P450 enzymes.
Collapse
Affiliation(s)
- Yuyao Du
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huan Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jie Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Wang Y, Ji Q, Cao N, Ge G, Li X, Liu X, Mi Y. CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. Cancer Metab 2024; 12:33. [PMID: 39468645 PMCID: PMC11520061 DOI: 10.1186/s40170-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
Chemoresistance remains a major challenge in the effective treatment of colorectal cancer (CRC), contributing to poor patient outcomes. While the molecular mechanisms underlying chemoresistance are complex and multifaceted, emerging evidence suggests that altered mitochondrial function and hormone signaling play crucial roles. In this study, we investigated the role of CYP19A1, a key enzyme in estrogen biosynthesis, in regulating chemoresistance in CRC. Using a combination of in vitro functional assays, transcriptomic analysis, and clinical data mining, we demonstrate that CYP19A1 expression is significantly upregulated in CRC cells and patient-derived samples compared to normal controls. Mechanistically, we found that CYP19A1 regulates chemoresistance through modulation of mitochondrial function and complex I activity, which is mediated by CYP19A1-dependent estrogen biosynthesis. Notably, targeted inhibition of CYP19A1 and complex I using specific inhibitors effectively reversed the chemoresistance of CRC cells to chemotherapeutic drugs. Moreover, analysis of the TCGA CRC dataset revealed that high CYP19A1 expression correlates with poor overall survival in chemotherapy-treated patients. Taken together, our findings uncover a novel role for CYP19A1 in regulating chemoresistance in CRC through modulation of mitochondrial function and estrogen signaling, and highlight the potential of targeting the CYP19A1/estrogen/complex I axis as a therapeutic strategy to overcome chemoresistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Ji
- Department of Pharmacy, Sunshine Union Hospital, Weifang, Shandong, China
| | - Ning Cao
- Emergency General Surgery, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, China
| | - Guijie Ge
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomin Li
- Department of Anesthesiology II Endoscopy Center, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiangdong Liu
- Medical Center of gastrointestinal Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Yanqi Mi
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
4
|
Joshi JV, Raut AA, Paradkar PH, Jagtap SS. Reverse pharmacology based clinical protocols for noninvasive integrative management of low grade cervical precancer lesions: Rationale and outcomes. J Ayurveda Integr Med 2024; 15:100966. [PMID: 39236355 PMCID: PMC11404061 DOI: 10.1016/j.jaim.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/13/2024] [Accepted: 05/05/2024] [Indexed: 09/07/2024] Open
Abstract
Prevention is the most efficient and cost-effective method to combat cervical cancer for which High Risk Human Papilloma Virus (HR-HPV) infection is identified as the major causative factor. HPV vaccination is for primary prevention whereas surgical ablation of precancer is for secondary prevention after HPV infection has occurred. Screening of women for early detection of Squamous Intraepithelial Lesions (SILs) with Papanicolou smear (Pap smear) is a desirable pre-requisite. Surgical ablation which invites invasive procedures is not accessible nor affordable to the larger section of the population. We propose here a non-invasive integrative management approach for the early phase of cervical pre-cancer. In tune with the reverse pharmacology approach, 'experience-exploration- experimentation', we have conducted five clinical studies related to Turmeric extracts for chemo-preventive activity and non-surgical feasibility. We were able to achieve arrest or regression in Low-grade SILs in all 41 women participating in these studies. The unique features of this integrative management approach were i) Avoidance of surgery-associated trauma, cost and complications ii) Standard of care for associated genital infections iii) Feasibility when surgery was not accessible iv) Scope for repeating the noninvasive treatment.
Collapse
Affiliation(s)
- J V Joshi
- Kasturba Health Society-Medical Research Centre, Vile Parle, Mumbai, India
| | - A A Raut
- Kasturba Health Society-Medical Research Centre, Vile Parle, Mumbai, India
| | - P H Paradkar
- Kasturba Health Society-Medical Research Centre, Vile Parle, Mumbai, India.
| | - S S Jagtap
- Ayurvidya Prasarak Mandal-Seth RV Ayurved Hospital, Sion, Mumbai, India
| |
Collapse
|
5
|
Irmak E, Tunca Sanlier N, Sanlier N. Could polyphenols be an effective treatment in the management of polycystic ovary syndrome? INT J VITAM NUTR RES 2024; 94:422-433. [PMID: 38229476 DOI: 10.1024/0300-9831/a000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.
Collapse
Affiliation(s)
- Esra Irmak
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| | - Nazli Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| |
Collapse
|
6
|
Saini H, Basu P, Nesari T, Huddar VG, Ray K, Srivastava A, Gupta S, Mehrotra R, Tripathi R. Therapeutic and pharmacological efficacy of plant-derived bioactive compounds in targeting breast cancer. Am J Transl Res 2024; 16:1499-1520. [PMID: 38883353 PMCID: PMC11170612 DOI: 10.62347/nuzn4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 06/18/2024]
Abstract
Breast cancer (BC) ranks number one among cancers affecting women globally. Serious concerns include delayed diagnosis, poor prognosis, and adverse side effects of conventional treatment, leading to residual morbidity. Therefore, an alternative treatment approach that is safe and effective has become the need of the hour. In this regard, plant-based medicines via a combination of conventional drugs are gaining increasing acceptance worldwide, playing a pivotal role in cancer management as proven by their efficacy evaluation studies. This review aims to fill the knowledge gaps by providing the preclinical evidence of cellular and molecular mechanisms of Indian phytomedicines in targeting varied pathways of breast cancer progression. A comprehensive search was performed on different platforms, followed by screening of relevant studies for review. In this article, the in-depth of various botanical drugs covering their nomenclature, dosage, toxicity, and modus operandi in BC cells have been extensively discussed. Various signaling pathways like Notch signaling, MAPK signaling, apoptosis, Wnt signaling, etc. regulated by herbal medicine treatment in BC are also highlighted to understand the drug mechanism better. This will guide the researchers to plan future strategies and generate more robust integrated evidence of plant-based drugs or botanical formulations for their potential role in the management of BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Partha Basu
- Section of Early Detection and Prevention, International Agency for Research on CancerLyon-69008, France
| | - Tanuja Nesari
- Department of Dravyaguna (Materia Medica and Pharmacology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Vitthal Govindappa Huddar
- Department of Kayachikitsa (Internal Medicine), All India Institute of AyurvedaNew Delhi-110076, India
| | - Koninika Ray
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Anil Srivastava
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi-110029, India
| | - Ravi Mehrotra
- Rollins School of Public Health, Emory UniversityAtlanta, Georgia-30322, US
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| |
Collapse
|
7
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
8
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Liu Y, Ding H, Yang Y, Liu Y, Cao X, Feng T. Progesterone Induces Apoptosis and Steroidogenesis in Porcine Placental Trophoblasts. Animals (Basel) 2022; 12:ani12192704. [PMID: 36230445 PMCID: PMC9558511 DOI: 10.3390/ani12192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Placentation and placental steroidogenesis are important for pregnancy and maternal−fetal health. As pregnancy progresses, the main site of progesterone (P4) synthesis changes from the corpus luteum to the placenta, in which placental trophoblasts are the main cell type for P4 synthesis. Therefore, this study investigated the effects of P4 on apoptosis and steroidogenesis in porcine placental trophoblasts and the underlying molecular mechanisms. Porcine placental trophoblasts were treated with different concentrations of P4 for 48 h in a serum-free medium in vitro. Cell number, steroidogenesis, and relevant gene and protein expression levels were detected. A high dose of P4 (10.0 μM) significantly increased P4 (p < 0.01), androstenedione (p < 0.05), testosterone (p < 0.05), and estradiol (p < 0.05) production in porcine placental trophoblasts compared with that in control cells, while a low dose of P4 (1 × 10−3 μΜ) had no marked impact on steroid production. The mRNA expression of apoptosis-related genes (CASP3, CASP8, and Bax) (p < 0.05) and steroidogenesis-related genes (CYP11A1, CYP19A1, and StAR) (p < 0.01) was upregulated, and the expression of HSD3B and HSD17B4 was inhibited (p < 0.05) in the porcine placental trophoblasts treated with high doses of P4. Low doses of P4 had a lighter effect on gene expression than high doses. The expression of apoptosis-related proteins CASP3 (p < 0.05), and Bax (p < 0.01) and steroidogenesis-related proteins CYP19A1 (p < 0.05) and StAR (p < 0.01) was raised, but the proliferation-related protein CCND2 (p < 0.01) was downregulated in the pTr cells treated with high dose of P4. In comparison, a low dose of P4 inhibited the expression of Bax, CYP11A1 (all p < 0.01), and CCND2 (p < 0.05), but the expression of CASP3 (p < 0.05) and StAR (p < 0.01) was upregulated. In summary, excessive P4 can induce the apoptosis of porcine placental trophoblasts and lead to abnormal steroidogenesis in the placenta and hormone imbalance.
Collapse
Affiliation(s)
- Yueshuai Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
- Correspondence: (X.C.); (T.F.)
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (X.C.); (T.F.)
| |
Collapse
|
10
|
ŞEN A. Complementary medicines used in ulcerative colitis and unintended interactions with cytochrome P450-dependent drug-metabolizing enzymes. Turk J Med Sci 2022; 52:1425-1447. [PMID: 36422483 PMCID: PMC10395683 DOI: 10.55730/1300-0144.5482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/19/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disease with multiple genetic and a variety of environmental risk factors. Although current drugs significantly aid in controlling the disease, many people have led to the application of complementary therapies due to the common belief that they are natural and safe, as well as due to the consideration of the side effect of current drugs. Curcumin, cannabinoids, wheatgrass, Boswellia, wormwood and Aloe vera are among the most commonly used complementary medicines in UC. However, these treatments may have adverse and toxic effects due to unintended interactions with drugs or drug-metabolizing enzymes such as cytochrome P450s; thus, being ignorant of these interactions might cause deleterious effects with severe consequences. In addition, the lack of complete and controlled long-term studies with the use of these complementary medicines regarding drug metabolism pose additional risk and unsafety. Thus, this review aims to give an overview of the potential interactions of drug-metabolizing enzymes with the complementary botanical medicines used in UC, drawing attention to possible adverse effects.
Collapse
Affiliation(s)
- Alaattin ŞEN
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri,
Turkey
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli,
Turkey
| |
Collapse
|
11
|
Loss of Protein Stability and Function Caused by P228L Variation in NADPH-Cytochrome P450 Reductase Linked to Lower Testosterone Levels. Int J Mol Sci 2022; 23:ijms231710141. [PMID: 36077536 PMCID: PMC9456303 DOI: 10.3390/ijms231710141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.
Collapse
|
12
|
Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia 2022; 54:e14456. [PMID: 35560246 DOI: 10.1111/and.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.
Collapse
Affiliation(s)
- Amani Ali Shaman
- Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Nahla S Zidan
- Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
- Department of nutrition and food science Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Sharifa Alzahrani
- Pharmacilogy Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Laila A AlBishi
- Pediatric Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Azza I Helal
- Faculty of Medicine, Histology and Cell Biology Department, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | | | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Yang FR, Li SY, Hu XW, Li XR, Li HJ. Identifying the Antitumor Effects of Curcumin on Lung Adenocarcinoma Using Comprehensive Bioinformatics Analysis. Drug Des Devel Ther 2022; 16:2365-2382. [PMID: 35910781 PMCID: PMC9329682 DOI: 10.2147/dddt.s371420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background As the main component of turmeric (Curcuma longa L.), curcumin is widely used in the treatment of various diseases. Previous studies have demonstrated that curcumin has great potential as a therapeutic agent, but the lack of understanding of the functional mechanism of the drug has hindered the widespread use of the natural product. In the present study, we used comprehensive bioinformatics analysis and in vitro experiments to explore the anti-tumor mechanism of curcumin. Materials and Methods LUAD mRNA expression data were obtained from TCGA database and differentially expressed genes (DEGs) were identified using R software. Functional enrichment analysis was conducted to further clarify its biological properties and hub genes were identified by a protein–protein interaction (PPI) network analysis. Survival analysis and molecular docking were used to analyze the effectiveness of the hub genes. By an in vitro study, we evaluated whether curcumin could influence the proliferation, migration, and invasion activities of LUAD cells. Results In this study, 1783 DEGs from LUAD tissue samples compared to normal samples were evaluated. Functional enrichment analysis and the PPI network revealed the characteristics of the DEGs. We performed a topological analysis and identified 10 hub genes. Of these, six genes (INS, GCG, SST, F2, AHSG, and NPY) were identified as potentially effective biomarkers of LUAD. The molecular docking results indicated that curcumin targets in regulating lung cancer may be INS and GCG. We found that curcumin significantly inhibited the proliferation, migration, and invasion of LUAD cells and significantly decreased the expression of the INS and GCG genes. Conclusion The results of this study suggest that the therapeutic effects of curcumin on LUAD may be achieved through the intervention of INS and GCG, which may act as potential biomarkers for LUAD prevention and treatment.
Collapse
Affiliation(s)
- Fei-Ran Yang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Si-Yi Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xi-Wen Hu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-Rong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-Jie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Correspondence: Hui-Jie Li; Xiu-Rong Li, Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road, Jinan, Shandong, 250014, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
15
|
Zhang JH, Tasaki T, Tsukamoto M, Wang KY, Azuma K. Deficiency of Wnt10a causes female infertility via the β-catenin/Cyp19a1 pathway in mice. Int J Med Sci 2022; 19:701-710. [PMID: 35582421 PMCID: PMC9108412 DOI: 10.7150/ijms.71127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Wnt signaling is relevant for a wide range of biological processes, including reproductive function. The function of Wnt10a in female fertility, however, remains obscure. In the present study, we explored the structure and function of the female reproductive organs in Wnt10a knockout (KO) mice. The expression of β-catenin signaling was significantly lower in the ovaries of the Wnt10a KO mice compared with wild-type (WT) mice. In addition, the estrous cycles were disrupted, ovarian follicles were diminished, and endometria were thinner, accompanied by lower serum estrogen levels, and higher testosterone and progesterone levels in Wnt10a KO mice. The expression of the ovarian cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) was significantly lower in Wnt10a KO mice. We detected no significant changes in the levels of the gonadotropins between WT and KO mice. Together, our findings indicate that deficiency of Wnt10a causes female infertility through β-catenin and Cyp19a1signaling pathways in mice.
Collapse
Affiliation(s)
- Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| |
Collapse
|
16
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
17
|
Abdelazeem B, Abbas KS, Shehata J, Baral N, Banour S, Hassan M. The effects of curcumin as dietary supplement for patients with polycystic ovary syndrome: An updated systematic review and meta-analysis of randomized clinical trials. Phytother Res 2021; 36:22-32. [PMID: 34517426 DOI: 10.1002/ptr.7274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
This review aims to evaluate if there are clinical benefits of curcumin (CUR) in patients with polycystic ovary syndrome (PCOS). Electronic databases (PubMed, EMBASE, Scopus, Web of Science, Cochrane Central, and Google Scholar) were systematically searched to identify only randomized clinical trials (RCTs) that assessed CUR in patients with PCOS from inception to May 5, 2021. Five RCTs were included with a total of 296 patients, with 148 among the CUR groups and 148 patients among the control group. Revised Cochrane risk-of-bias tool for randomized trials was used to assess the risk of bias, three RCTs provided a low risk of bias and two provided a high risk of bias. Compared with the control group, CUR was associated with a statistically significant improvement in the glycemic control including fasting blood glucose (MD = -3.67; 95% CI = [-5.25, -2.08], p < .00001), insulin level (MD = -1.91; 95% CI = [-2.97, -0.84], p = .0005), homeostasis model assessment of insulin resistance (MD = -0.55; 95% CI = [-0.83, -0.27], p = .0001), and quantitative insulin sensitivity check index (MD = 0.01; 95% CI = [0.00, 0.02], p = .0005). The mean difference in total cholesterol was also statistically significant (MD = -15.55; 95% CI = [-30.33, -0.76], p < .04). The rest of the secondary outcomes, including LDL, HDL, sex hormone, body weight, and CRP, were not statistically significant. This review concluded that among patients with PCOS, the use of CUR demonstrated a significant difference from the control group for glycemic control. Those findings suggest that CUR confers clinical benefits in patients with PCOS. However, due to the limited number of the included studies, further high-quality studies are needed to establish the clinical efficacy of the CUR.
Collapse
Affiliation(s)
- Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, Michigan, USA
| | | | | | - Nischit Baral
- Department of Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, Michigan, USA
| | - Sandi Banour
- Department of Pharmacy, Midwestern University, Glendale, Arizona, USA
| | - Mustafa Hassan
- Department of Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, Michigan, USA
| |
Collapse
|
18
|
Nebbioso M, Franzone F, Greco A, Gharbiya M, Bonfiglio V, Polimeni A. Recent Advances and Disputes About Curcumin in Retinal Diseases. Clin Ophthalmol 2021; 15:2553-2571. [PMID: 34177257 PMCID: PMC8219301 DOI: 10.2147/opth.s306706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Curcumin belongs to the group of so-called phytocompounds, biologically active molecules produced by plants exerting a beneficial effect on health. Curcumin shows a wide spectrum of different properties, being an anti-inflammatory, antioxidant, antimicrobial and antimutagenic molecule. The purpose of the review is to examine what literature reported on the characteristics of curcumin, particularly, on the beneficial and controversial aspects of this molecule, aiming for a better therapeutic management of retinal diseases. The retina is a constant target of oxidative stress, this tissue being characterized by cells rich in mitochondria and by vessels and being, obviously, continuously reached from photons affecting its layers. Particularly, the retinal ganglion cells and the photoreceptors are extremely sensitive to oxidative stress damage and it is well known that an imbalance in reactive oxygen species is often involved in several retinal diseases, such as uveitis, age-related macular degeneration, diabetic retinopathy, central serous chorioretinopathy, macular edema, retinal ischemia-reperfusion injury, proliferative vitreoretinopathy, hereditary tapeto-retinal degenerations, and retinal and choroidal tumors. To date, several studies suggest that oral treatment with curcumin is generally well tolerated in humans and, in addition, it seems to have no negative effects: therefore, curcumin is a promising candidate as a retinal disease therapy. Unfortunately, the primary limitation of curcumin is represented by its poor bioavailability, in fact only a minimal fraction of this substance can reach the blood stream in the form of a biologically active compound. However, many steps have been made in several fields. In the future, it is expected that the strategies developed until now to allow curcumin to reach the target tissues in adequate concentrations could be ameliorated and, above all, large in vivo studies on humans are needed to demonstrate the total safety of these compounds and their effectiveness in different eye diseases.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Federica Franzone
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Rome, 00185, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Palermo, 90133, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, 00185, Italy
| |
Collapse
|
19
|
Basu P, Tripathi R, Mehrotra R, Ray K, Srivastava A, Srivastava A. Role of integrative medicine in the continuum of care of breast cancer patients in the Indian context. Cancer Causes Control 2021; 32:429-440. [PMID: 33528692 DOI: 10.1007/s10552-021-01399-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer among women in both transitioned and transitioning countries and has become a major women's health problem. Although recent advances in our understanding of the biological nature of cancer, improved awareness coupled with better early detection facilities, use of chemotherapy, hormone therapy, and targeted therapy have significantly improved survival from cancer, there are many gaps in providing individual-centric, holistic care. Integrative medicine refers to the use of traditional medicine alongside conventional preventive or therapeutic interventions (allopathic medicine) as a comprehensive, individual-centered, evidence-based care. The three pillars of complementary medicine (lifestyle modifications, mind-body practices, and use of natural products) have the potential for cancer prevention and improving quality-of-life and even treatment response in cancer patients when combined with conventional oncology care. Therefore, continued research into integrative therapies is required to extend the benefits to a broader patient population and improve outcomes in breast and other common cancers. In the present review article, the possible role of integrative medicine across the breast cancer care continuum has been discussed along with the concept of integrating complementary practices into mainstream health delivery. We have focused on breast cancer as a model cancer that is well amenable to prevention, early detection and stage appropriate treatment. However, our observations are pertinent for other common cancers, for which there are several opportunities for improving the continuum of care, especially in developing countries like India.
Collapse
Affiliation(s)
- Partha Basu
- Screening Group, Early Detection and Prevention Section, International Agency for Research On Cancer (WHO), 150 cours Albert Thomas, 69372, Lyon Cedex 08, France.
| | | | - Ravi Mehrotra
- ICMR-India Cancer Research Consortium, New Delhi, India
| | | | - Anurag Srivastava
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
20
|
Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Polyphenols: Natural compounds with promising potential in treating polycystic ovary syndrome. Reprod Biol 2021; 21:100500. [PMID: 33878526 DOI: 10.1016/j.repbio.2021.100500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Polyphenols are natural compounds used by plants as a defense system against various stresses. In recent years, the importance of these polyhydroxyphenols has extensively increased due to their potent cardioprotection, anti-carcinogenic, anti-oxidant, anti-apoptotic, and anti-inflammatory properties. Therefore, various studies have reported promising results from the studies investigating their efficacy as a therapeutic strategy in various disorders such as human malignancies, cardiovascular diseases, nervous system impairments, diabetes, metabolic syndrome, aging, and inflammation-associated disorders, as well as a polycystic ovarian syndrome (PCOS). Since oxidative stress, hormonal, metabolic, and endocrine disturbances have been shown to play a crucial role in the initiation/progression of PCOS, polyphenols are suggested to be an effective treatment for this disorder. Therefore, this study aimed to discuss the therapeutic potential of multiple polyphenols in PCOS.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
21
|
Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat Commun 2021; 12:2260. [PMID: 33859207 PMCID: PMC8050233 DOI: 10.1038/s41467-021-22562-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.
Collapse
|
22
|
Xu W, Wu H, Shang L. Gene expression in rat placenta after exposure to di(2-ethylhexyl) phthalate. Hum Exp Toxicol 2021; 40:504-514. [PMID: 32909833 DOI: 10.1177/0960327120954259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organic compound di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in many products. Exposure to DEHP has been reported to lead to adverse pregnancy outcomes by suppressing placenta growth and development. The aim of this study was to determine the gene expression profiles of rat placenta exposed to (DEHP) and identify genes crucial for the DEHP response. Three groups of Wistar rats were administered an intragastric dose of 1,000 mg/kg DEHP, 500 mg/kg DEHP, or corn oil, RNA was isolated from placenta tissue, and hybridization was performed. Gene expression profiles were analyzed by identifying functional enrichment, differentially expressed genes (DEGs), protein-protein interaction (PPI) networks and modules, and transcription factor (TF)-miRNA-target regulatory networks. We obtained 2,032 DEGs, including cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1), sterol O-acyltransferase 2 (SOAT2), and 24-dehydrocholesterol reductase (DHCR24) from the steroid biosynthesis pathway and somatostatin receptor 4 (SSTR4) and somatostatin receptor 2 (SSTR2) in the neuroactive ligand-receptor interaction pathway. The PPI network included 476 nodes, 2,682 interaction pairs, and three sub-network modules. Moreover, eight miRNAs, three TFs, and 176 regulatory pairs were obtained from the TF-miRNA-target regulatory network. CYP2R1, SOAT2, DHCR24, SSTR4, and SSTR2 may affect DEHP influence on rat placenta development.
Collapse
Affiliation(s)
- Wan Xu
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese 92291PLA General Hospital, China
| | - Hongyan Wu
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese 92291PLA General Hospital, China
| | - Lixin Shang
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese 92291PLA General Hospital, China
| |
Collapse
|
23
|
Chien YJ, Chang CY, Wu MY, Chen CH, Horng YS, Wu HC. Effects of Curcumin on Glycemic Control and Lipid Profile in Polycystic Ovary Syndrome: Systematic Review with Meta-Analysis and Trial Sequential Analysis. Nutrients 2021; 13:684. [PMID: 33669954 PMCID: PMC7924860 DOI: 10.3390/nu13020684] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic effects of curcumin for polycystic ovary syndrome (PCOS) remain inconclusive. The present study aims to evaluate the effects of curcumin on glycemic control and lipid profile in patients with PCOS. PubMed, Embase, Scopus, Web of Science, and Cochrane Library were searched from the inception through 28 November 2020. Randomized control trials (RCTs), which enrolled adult patients with PCOS, compared curcumin with placebo regarding the glycemic control and lipid profile, and reported sufficient information for performing meta-analysis, were included. Three RCTs were included. Curcumin significantly improves fasting glucose (mean difference (MD): -2.77, 95% confidence interval (CI): -4.16 to -1.38), fasting insulin (MD: -1.33, 95% CI: -2.18 to -0.49), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) (MD: -0.32, 95% CI: -0.52 to -0.12), and quantitative insulin sensitivity check index (QUICKI) (MD: 0.010, 95% CI: 0.003-0.018). It also significantly improves high-density lipoprotein (MD: 1.92, 95% CI: 0.33-3.51) and total cholesterol (MD: -12.45, 95% CI: -22.05 to -2.85). In contrast, there is no statistically significant difference in the improvement in low-density lipoprotein (MD: -6.02, 95% CI: -26.66 to 14.62) and triglyceride (MD: 8.22, 95% CI: -26.10 to 42.53) between curcumin and placebo. The results of the fasting glucose, fasting insulin, HOMA-IR, QUICKI, and total cholesterol are conclusive as indicated by the trial sequential analysis. Curcumin may improve glycemic control and lipid metabolism in patients with PCOS and metabolic abnormality without significant adverse effects. Further studies are advocated to investigate the potential effects of curcumin on hyperandrogenism.
Collapse
Affiliation(s)
- Yung-Jiun Chien
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| | - Chun-Yu Chang
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Meng-Yu Wu
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chih-Hao Chen
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Yi-Shiung Horng
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| | - Hsin-Chi Wu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| |
Collapse
|
24
|
Heidari Z, Mohammadi M, Sahebkar A. Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:127-136. [PMID: 33861442 DOI: 10.1007/978-3-030-64872-5_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The novel coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recognized in late 2019 in Wuhan, China. Subsequently, the World Health Organization declared coronavirus disease 2019 (COVID-19) as a pandemic on 11 March 2020. The proportion of potentially fatal coronavirus infections may vary by location, age, and underlying risk factors. However, acute respiratory distress syndrome (ARDS) is the most frequent complication and leading cause of death in critically ill patients. Immunomodulatory and anti-inflammatory agents have received great attention as therapeutic strategies against COVID-19. Here, we review potential mechanisms and special clinical considerations of supplementation with curcumin as an anti-inflammatory and antioxidant compound in the setting of COVID-19 clinical research.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, Faculty of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
25
|
Ishola IO, Katola FO, Adeyemi OO. Involvement of GABAergic and nitrergic systems in the anxiolytic and hypnotic effects of Curcuma longa: its interaction with anxiolytic-hypnotics. Drug Metab Pers Ther 2020; 0:dmdi-2020-0147. [PMID: 33780193 DOI: 10.1515/dmdi-2020-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Concurrent use of herbs with drugs have become a major healthcare problem. Herb-drug interactions could lead to therapeutic failure or toxicity. Hence, this study seeks to evaluate the impact of combining Curcuma longa rhizome (CL) with selected anxiolytic and hypnotic drugs. METHODS CL (100, 200 or 400 mg/kg, p.o.) was administered to mice 1 h before subjecting the animals to elevated plus maze (EPM), hole board test (HBT), open field test (OFT) and rotarod test for anxiolytic-like effect as well as hexobarbitone-induced sleeping time (HIST) for hypnotic activity. The involvement of GABAergic and nitrergic systems in CL-induced anxiolytic and hypnotic actions were also evaluated. The effect of concurrent use of CL with midazolam, imipramine, nifedipine, propranolol and carbamazepine were evaluated in anxiolytic-hypnosis models. RESULTS The peak anxiolytic-like effect of CL was obtained at 400 mg/kg in the EPM and hole-board test without affecting muscle coordination in the rotarod test while the peak hypnosis-potentiation was observed at 100 mg/kg. CL-induced anxiolytic-hypnotic-like effects were reversed by the pretreatment of mice with flumazenil or NG-nitro-l-arginine. CONCLUSIONS Curcuma longa possesses anxiolytic and hypnotic effects through its interaction with GABAergic and nitrergic systems. Conversely, co-administration of C. longa with midazolam potentiate barbiturate-induced hypnosis.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Folashade O Katola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
26
|
Singh PK, Bohr SSR, Hatzakis NS. Direct Observation of Sophorolipid Micelle Docking in Model Membranes and Cells by Single Particle Studies Reveals Optimal Fusion Conditions. Biomolecules 2020; 10:E1291. [PMID: 32906821 PMCID: PMC7564020 DOI: 10.3390/biom10091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Sophorolipids (SLs) are naturally produced glycolipids that acts as drug delivery for a spectrum of biomedical applications, including as an antibacterial antifungal and anticancer agent, where they induce apoptosis selectively in cancerous cells. Despite their utility, the mechanisms underlying their membrane interactions, and consequently cell entry, remains unknown. Here, we combined a single liposome assay to observe directly and quantify the kinetics of interaction of SL micelles with model membrane systems, and single particle studies on live cells to record their interaction with cell membranes and their cytotoxicity. Our single particle readouts revealed several repetitive docking events on individual liposomes and quantified how pH and membrane charges, which are known to vary in cancer cells, affect the docking of SL micelles on model membranes. Docking of sophorolipids micelles was found to be optimal at pH 6.5 and for membranes with -5% negatively charge lipids. Single particle studies on mammalian cells reveled a two-fold increased interaction on Hela cells as compared to HEK-293 cells. This is in line with our cell viability readouts recording an approximate two-fold increased cytotoxicity by SLs interactions for Hela cells as compared to HEK-293 cells. The combined in vitro and cell assays thus support the increased cytotoxicity of SLs on cancer cells to originate from optimal charge and pH interactions between membranes and SL assemblies. We anticipate studies combining quantitative single particle studies on model membranes and live cell may reveal hitherto unknown molecular insights on the interactions of sophorolipid and additional nanocarriers mechanism.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Gad El-Hak HN, Mobarak YM. Copper oxychloride-induced testicular damage of adult albino rats and the possible role of curcumin in healing the damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11649-11662. [PMID: 31970636 DOI: 10.1007/s11356-020-07715-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The current research study investigated the effect of 80 mg/kg b.wt./day curcumin (cur) against 50, 100, and 200 mg/kg copper oxychloride (COC) for 90 days induced testicular damage using histological, ultrastructural, and biochemical techniques. Histological and cellular abnormalities have been noted in seminiferous tubules of COC-treated group and treated group with Cur- and COC-treated group. The biochemical result showed that serum testosterone was significantly decreased in COC-treated rats and Cur COC-treated rats compared with the control groups. Testes copper content and malondialdehyde was increased, whereas the testes total antioxidant, manganese, ferrous, and zinc levels were decreased (p ≥ 0.05) compared to the control groups. In conclusion, the present work reported that the treatment of rats with 80 mg/kg body weight curcumin prior to treatment with COC did not mitigate the deleterious effects of COC and manifested no signs of protection.
Collapse
|
28
|
Parween S, DiNardo G, Baj F, Zhang C, Gilardi G, Pandey AV. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J Steroid Biochem Mol Biol 2020; 196:105507. [PMID: 31669572 DOI: 10.1016/j.jsbmb.2019.105507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Giovanna DiNardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland; Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|