1
|
Ali A, de Almeida IM, Magalhães EP, Guedes JM, Cajazeiras FFM, Marinho MM, Marinho ES, de Menezes RRPPB, Sampaio TL, Santos HSD, da Silva Júnior GB, Martins AMC. Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Biol Chem 2024:hsz-2024-0068. [PMID: 39705087 DOI: 10.1515/hsz-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Ischemia/reperfusion injury (I/R) is a leading cause of acute kidney injury (AKI) in conditions like kidney transplants, cardiac surgeries, and nephrectomy, contributing to high global mortality and morbidity. This study aimed to analyze the protective effects of 2'-hydroxychalcones in treating I/R-induced AKI by targeting key pathological pathways. Considering strong antioxidant action along with other pharmacological roles of chalcone derivatives, six 2'-hydroxychalcones were synthesized via Claisen-Schmidt condensation and analyzed for their protective effects in an I/R induced AKI model using HK-2 cells. Among six 2'-hydroxychalcones, chalcone A4 significantly increased the HK-2 cells viability compared to I/R group. Chalcone A4 reduced the cell death events by reducing generation of cytoplasmic ROS and mitochondrial transmembrane potential. It also increased GSH and SOD activity while reducing TBARS levels, indicating strong antioxidant action. Scanning electron microscope images showed that chalcone A4 reversed I/R-induced morphological changes in HK-2 cells, including apoptotic blebbing and cytoplasmic fragmentation. Furthermore, in silico studies revealed interactions with NADPH oxidase 4, further supporting its protective role in I/R-induced AKI. These results showed that chalcone A4 possess potential protective action against I/R induced cellular damage possibly due to its strong antioxidant action and potential interaction with NOX4 subunit of NADPH oxidase.
Collapse
Affiliation(s)
- Arif Ali
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Igor Moreira de Almeida
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Jesyka Macedo Guedes
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Marcia Machado Marinho
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil
| | | | - Alice Maria Costa Martins
- Postgraduate Program in Pharmacology, 28121 Federal University of Ceara , Fortaleza, CE, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Martins SA, Correia JDG. 99mTc(I)-Labeled His-Tagged Proteins: Impact in the Development of Novel Imaging Probes and in Drug Discovery. Chembiochem 2024; 25:e202400645. [PMID: 39158861 DOI: 10.1002/cbic.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Technetium-99 m (99mTc) remains the cornerstone of nuclear medicine for single photon emission computed tomography (SPECT) due to its widespread availability and chemical and physical features. Its multiple oxidation states allow for the design and production of radiopharmaceuticals with versatile properties, namely in terms of pharmacokinetic profile. 99mTc(V) is the most common oxidation state, but 99mTc(I) gained traction after the pioneering work of Alberto and colleagues, which resulted in the introduction of the organometallic core fac-[99mTc(CO)3(H2O)3]+. This core is readily available from [99mTcO4]- and displays three labile water molecules that can be easily swapped for ligands with different denticity and/or donor atoms in aqueous environment. This makes it possible to radiolabel small molecules as well as high molecular weight molecules, such as antibodies or other proteins, while assuring biological activity. Direct radiolabelling of those proteins with fac-[99mTc(CO)3]+ under mild conditions is accomplished through incorporation of a polyhistidine tag (His-tag), a commonly used tag for purification of recombinant proteins. This review aims to address the direct radiolabelling of His-tagged macromolecules with fac-[99mTc(CO)3]+ for development of molecular imaging agents and the impact of this technology in the discovery and development of imaging and/or therapeutic agents towards clinical application.
Collapse
Affiliation(s)
- Sofia A Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
4
|
Karimi Z, Ghahramani P, Masjedi F, Yavari V. Klotho plays a crucial role in the renal-protective effect of allopurinol on renal ischemia-reperfusion injury. Am J Med Sci 2024:S0002-9629(24)01558-1. [PMID: 39653275 DOI: 10.1016/j.amjms.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Allopurinol, a xanthine oxidase inhibitor, recovers histological alterations and renal dysfunction induced during renal ischemic-reperfusion injury. This study investigated the cross-talk between the allopurinol and soluble Klotho. METHODS Rats were randomly divided into three equal groups (n = 8 per group): The sham-operated group without renal ischemia, the BIR (bilateral ischemia-reperfusion) group which underwent renal ischemia, and BIR+Allo (allopurinol) group which was pretreated with allopurinol (100 mg/kg- gavage) 30 min before the renal ischemia. After recovery from the anesthesia, all animals were placed in metabolic cages to collect their urine after 24 h, plasma was extracted from blood samples taken from the tail vein-plasma and urine samples were saved at -20 °C. Kidneys were harvested and weighed. The left kidney was dropped in the buffer of 10 % formalin for H&E staining, and the right kidney was located in liquid nitrogen and saved at -80 °C for the oxidative stress analysis. RESULTS After renal ischemia-reperfusion, serum creatinine, blood urea nitrogen, xanthine oxidase, and total oxidative stress levels significantly increased. However, plasma Klotho level and total antioxidative capacity decreased in the BIR group. There was a reverse correlation between Klotho and xanthine oxidase levels. The pre-treatment with allopurinol increased plasma Klotho, induced a protective effect on renal histopathological changes, and corrected functional biomarkers. CONCLUSION Our results showed that allopurinol enhanced the antioxidative effects by increasing Klotho activity. Therefore, Klotho may be involved in the protective effects of allopurinol on the renal injury induced by BIR.
Collapse
Affiliation(s)
- Zeinab Karimi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooran Ghahramani
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
| | - Fatemeh Masjedi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Yavari
- Department of Internal Medicine, Nephrology Ward, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Sun Z, Zhang F, Gao Z, Wu J, Bi Q, Zheng X, Zhang J, Cao P, Wang W. Liraglutide alleviates ferroptosis in renal ischemia reperfusion injury via inhibiting macrophage extracellular trap formation. Int Immunopharmacol 2024; 142:113258. [PMID: 39340991 DOI: 10.1016/j.intimp.2024.113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND AND PURPOSE Renal transplantation and other conditions with transiently reduced blood flow is major cause of renal ischemia/reperfusion injury (RIRI), a therapeutic challenge clinically. This study investigated the role of liraglutide in ferroptosis-associated RIRI via macrophage extracellular traps (METs). METHODS Animal model with RIRI was established in C57BL/6J mice. A total of 72 C57BL/6J mice were used with 8 mice per group. Primary tubular epithelium was co-culture with RAW264.7 under hypoxia/reoxygenation (H/R) condition to mimic in vitro. Liraglutide was administrated into mice and cells. Extracellular DNA, neutrophil elastase and myeloperoxidase in serum and supernatant of cell medium were collected for measuring METs. F4/80 and citH3 were labeled to show METs. RESULTS Liraglutide relieved RIRI and ferroptosis in vivo, and inhibited renal I/R-induced METs both in vivo and in vitro. F4/80 and citrullinated histone H3 (citH3) were highly co-localized after RIRI. Liraglutide attenuated the co-localization of citH3 and F4/80. Expressions of M2 markers were enhanced whereas these of M1 markers suppressed during liraglutide treatment in RIRI. Phosphorylation of signal transducer and activator of transcription (STAT)1, 3 and 6 were increased in RIRI mice and H/R-induced RAW264.7. However, liraglutide decreased phosphorylation of STAT1 and increased phosphorylation of STAT3 and STAT6. STAT3/6 inhibition reversed liraglutide-inhibited M1 polarization, extracellular traps and ferroptosis. CONCLUSION Liraglutide inhibited ferroptosis-induced renal dysfunction since it skewed macrophage polarization into M2 phenotype that interfered the formation of extracellular traps based on STAT3/6 pathway during RIRI. Liraglutide was proposed to be used for RIRI clinical treatment.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Feilong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Zihao Gao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Peng Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
6
|
Barbosa Belchior M, Kane RT, Huber JD, Geldenhuys WJ. Synthesis and evaluation of enzyme inhibition by novel TT01001 derivatives as monoamine oxidase B inhibitors. Bioorg Med Chem Lett 2024; 117:130045. [PMID: 39631473 DOI: 10.1016/j.bmcl.2024.130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Monoamine oxidase (MAO) B is a promising target for treating stroke reperfusion injury, Parkinson's disease as well as other neurodegenerative diseases. Pharmacological inhibitors of this enzyme have demonstrated the ability to modulate critical neurotransmitter levels, decrease damaging reactive oxygen species and neuroinflammation, and improve mitochondrial dysfunction. We identified TT01001 from a pilot screen which showed good potency for inhibiting MAO-B, with a half-maximal inhibitory concentration below 10 μM. In this study, we explored quantitative-structure activity relationships (QSAR) of 60 derivatives of TT01001 evaluated for MAO-B. Approximately half of these 60 compounds showed IC50 values superior to that of TT01001 (10). Two of the compounds, 37 and 57, displayed improved MAO-B potency and selectivity from MAO-A, with IC50 values of 270 and 460 nM respectively. The mode of inhibition of was determined to be both competitive and reversible, and both compounds exhibited moderate ability to passively diffuse across biological membranes. These compounds can be offered as-is for subsequent drug development processes, or they can be derivatized further using the structure-activity relationship information found herein.
Collapse
Affiliation(s)
| | - Riley T Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown WV 26506, USA.
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV 26506, USA; Department of Neuroscience, School of Medicine, West Virginia University, Morgantown WV 26506, USA.
| |
Collapse
|
7
|
Park JH, Oh JE, Kim N, Kwak YL. Dexmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy. Korean J Anesthesiol 2024; 77:623-634. [PMID: 39355897 PMCID: PMC11637589 DOI: 10.4097/kja.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is inevitable during the perioperative period. The pancreas is susceptible to I/R injury. Autophagy, a self-digestion process, is upregulated during I/R injury and strongly induced by hypoxia. This study aims to determine whether dexmedetomidine can decrease pancreatic β-cell damage by regulating autophagy under hypoxia. METHODS INS-1 rat insulinoma cells were cultured in dexmedetomidine before being exposed to cobalt chloride (CoCl2)-induced hypoxia. Cell viability and the expression of autophagy-related proteins (light chain 3B [LC3B]-II, p62, and ATGs) were assessed. The expression of apoptosis-related proteins (BCL-2 and P-BAD) were also evaluated. CoCl2-treated INS-1 cells were pretreated with the autophagosome formation inhibitor, 3-methyladenine (3-MA), to compare its effects with those of dexmedetomidine. Bafilomycin-A1 (Baf-A1) that inhibits autophagosome degradation was used to confirm the changes in autophagosome formation induced by dexmedetomidine. RESULTS Dexmedetomidine attenuated the increased expression of autophagic proteins (LC3B-II, p62, and ATGs) and reversed the CoCl2-induced reduction in the proliferation of INS-1 cells after hypoxia. Dexmedetomidine also alleviated the decreased expression of the anti-apoptotic protein (BCL-2) and the increased expression of apoptotic protein (BAX). Dexmedetomidine reduces the activation of autophagy through inhibiting autophagosome formation, as confirmed by a decrease in LC3B-II/I ratio, a marker of autophagosome formation, in LC3B turnover assay combined with Baf-A1. CONCLUSIONS Dexmedetomidine alleviates the degree of cellular damage in INS-1 cells against CoCl2-induced hypoxia by regulating autophagosome formation. These results provide a basis for further studies to confirm these effects in clinical practice.
Collapse
Affiliation(s)
- Jin Ha Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Namo Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Cirilo MADS, Ribeiro FPB, Lima NKDS, Silva JK, Gomes JADS, Albuquerque JSS, Siqueira LCDS, Santos VBDS, Carvalho JMD, Tenorio FDCAM, Vieira LD. Paricalcitol prevents renal tubular injury induced by ischemia-reperfusion: Role of oxidative stress, inflammation and AT 1R. Mol Cell Endocrinol 2024; 594:112349. [PMID: 39233041 DOI: 10.1016/j.mce.2024.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
The vitamin D receptor (VDR) is associated with antioxidative and anti-inflammatory effects and modulation of the renin-angiotensin-aldosterone system. This study evaluated whether VDR agonist paricalcitol protects renal ischemia-reperfusion (IR) induced tubular injury in rats by evaluating: 1) ATP-dependent tubular Na+ transport; 2) renal redox signaling; 3) renal content of proinflammatory cytokines TNF-α and IL-6; and 4) renal content of renin and angiotensin II receptor type 1 (AT1R). Paricalcitol prevented IR-induced tubular injury, evidenced by the prevention of histopathological changes and renal fibrosis with preservation of the activity of ATP-dependent Na+ transporters in the renal cortex. Paricalcitol decreased renal oxidative stress by reducing NADPH oxidase activity and increasing catalase. Paricalcitol also decreased the renal content of TNF-α, IL-6, and AT1R. The NADPH oxidase inhibitor apocynin did not present additive protection to paricalcitol-induced effects. The protective effects of paricalcitol on tubular injury induced by renal IR may dependent on the modulation of redox and proinflammatory signaling and renal angiotensin II/AT1R signaling.
Collapse
Affiliation(s)
| | | | | | - Jeoadã Karollyne Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil.
| | - José Anderson da Silva Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; Department of Histology and Embriology, Federal University of Pernambuco, Recife, Brazil.
| | | | | | | | | | | | - Leucio Duarte Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
9
|
Yegin B, Donmez DB, Oz S, Aydin S. Dose-related effects of ciproxifan on brain tissue in rats with cerebral ischemia-reperfusion. Int J Neurosci 2024; 134:1569-1581. [PMID: 37874217 DOI: 10.1080/00207454.2023.2273767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Cerebral ischemia is the result of decreased or interrupted blood flow to the brain. It is the third leading cause of death after cardiovascular disease and cancer. Cerebral ischemia is reversible or irreversible in neurons in the affected area, and subsequent free radical damage can be exacerbated if reperfusion occurs. Ciproxifan is used to study the involvement of histaminergic neurons in different phases such as wakefulness and cognition. We wanted to find out whether ciproxifan has a protective effect on the brain of rats with cerebral ischemia-reperfusion injury. MATERIALS AND METHODS A total of 64 adult rats (32 male and 32 female) were used for the experiment. Eight cages were formed with randomly selected rats. No substance was administered to the rats in Group 1 and no surgical procedure was performed. The cerebral ischemia-reperfusion model (clamping of the left common carotid artery for 15 min followed by reperfusion for 24 h) was applied to rats in Group 2, Group 3, and Group 4 after 7 days/single dose of saline and ciproxifan (10 mg/kg, 30 mg/kg). After that, the activitymeter, forced swim test (FST), and Morris water maze (MWM) were performed on all animals. RESULTS Rats treated with ciproxifan exhibit neurons and glial cells with histologic structures similar to those of the control group, and interestingly, these differences became more pronounced with increasing dose. Rats administered ciproxifan improved motor coordination, decreased total distance behavior, and improved learning ability. However, when the groups were compared by sex, no significant difference was found in the parameters. CONCLUSION Thus, we could conclude that ciproxifan has a protective effect on the brain to a certain extent, regardless of the dose.
Collapse
Affiliation(s)
- Bengi Yegin
- Departmant of Anatomy, Faculty of Medicine, Yuksek Ihtisas University, Cankaya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Semih Oz
- Departmant of Vocational School of Health Services, Eskisehir Osmangazi University, Odunpazarı, Turkey
| | - Sule Aydin
- Department of Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Odunpazarı, Turkey
| |
Collapse
|
10
|
Shamshirgaran A, Mohamamdi A, Zahmatkesh P, Mesbah G, Guitynavard F, Saffarian Z, Khajavi A, Oliveira Reis L, Aghamir SMK. The Use of Autologous Omentum Transposition as a Therapeutic Intervention to Reduce the Complication of Ischemia/Reperfusion Injuries in a Rat Model. Can J Kidney Health Dis 2024; 11:20543581241300773. [PMID: 39610662 PMCID: PMC11603481 DOI: 10.1177/20543581241300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024] Open
Abstract
Background Ischemia/reperfusion injury (IRI) causes cellular dysfunction and death in organs like the kidney, heart, and brain. It involves energy depletion during ischemia and oxidative stress, inflammation, and apoptosis during reperfusion. Kidney IRI often leads to acute kidney injury (AKI) in various clinical scenarios. The omentum, an adipose tissue with healing properties, has been used to treat injuries in different organs. Objective This study aimed to assess the omentum's healing effects on reducing IRI's adverse effects after renal ischemia in Wistar rats. Method A total number of 36 male Wistar rats were used in a study on IRI-induced AKI. Rats were divided into 6 groups of normal kidneys wrapped with omentum "Sham-1" and "Sham-2," ischemic kidney wrapped with omentum as "OMT-1" and "OMT-2," and ischemic kidney without omentum as "Control-1" and "Control-2." Ischemia was induced by clamping the left renal artery for 45 minutes. The omentum was transposed onto the injured kidney in "OMT" group. After sacrifice at weeks 4 and 8, kidney histology and blood samples were analyzed for kidney function markers. Results On the first day after surgery, there was an immediate increase in creatinine and blood urea nitrogen (BUN) levels, which then decreased by day 28. Both OMT groups showed significantly lower levels of creatinine and BUN compared to Control groups on day 1, but after 28 days differences were not statistically significant. Histological analysis using H&E and Masson's trichrome staining revealed significantly higher levels of inflammatory cell infiltration and hyperemia in the OMT groups. However, fibrosis and glomerular shrinkage were higher in the Control groups. Conclusion Using an omental flap significantly prevented fibrosis within the renal parenchyma, slow down the AKI progression, and potentially serving as a promising therapeutic strategy for kidney dysfunction.
Collapse
Affiliation(s)
| | | | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Iran
| | | | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Khajavi
- Urology Research Center, Tehran University of Medical Sciences, Iran
- Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience, State University of Campinas, Unicamp, São Paulo, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
11
|
Johnson CF, Schafer CM, Burge KY, Coon BG, Chaaban H, Griffin CT. Endothelial RIPK3 minimizes organotypic inflammation and vascular permeability in ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625188. [PMID: 39651150 PMCID: PMC11623548 DOI: 10.1101/2024.11.25.625188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury. Here we performed inducible genetic deletion of endothelial Ripk3 ( Ripk iECKO ) in mice, which led to elevated vascular permeability in the small intestine and multiple distal organs after intestinal I/R injury. Mechanistically, this vascular permeability correlated with increased endothelial secretion of IL-6 and organ-specific expression of VCAM-1 and ICAM-1 adhesion molecules. Circulating monocyte depletion with clodronate liposomes reduced permeability in organs with elevated adhesion molecules, highlighting the contribution of monocyte adhesion and extravasation to Ripk iECKO barrier dysfunction. These results elucidate mechanisms by which RIPK3 regulates endothelial inflammation to minimize vascular permeability in I/R injury. GRAPHICAL ABSTRACT
Collapse
|
12
|
Díaz-Pérez A, Lope-Piedrafita S, Pérez B, Vázquez-Sufuentes P, Rodriguez-Garcia M, Briones AM, Navarro X, Penas C, Jiménez-Altayó F. Transient cerebral ischaemia alters mesenteric arteries in hypertensive rats: Limited reversal despite suberoylanilide hydroxamic acid cerebroprotection. Life Sci 2024; 359:123247. [PMID: 39547431 DOI: 10.1016/j.lfs.2024.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Stroke induces brain injury, especially severe in hypertensive patients, and elevates mortality rates through non-neurological complications. However, the potential effects of a transient ischaemic episode on the peripheral vasculature of hypertensive individuals remain unclear. We investigated whether transient cerebral ischaemia (90 min)/reperfusion (1 or 8 days) induces alterations in mesenteric resistance artery (MRA) properties in adult male spontaneously hypertensive rats (SHR). In addition, we assessed whether the reported cerebroprotective effects of suberoylanilide hydroxamic acid (SAHA; 50 mg/kg; administered intraperitoneally at 1, 4, or 6 h after reperfusion onset) extend over several days and include beneficial effects on MRAs. Functional and structural properties of MRAs were examined at 1- and 8-days post-stroke. Nuclei distribution, collagen content, and oxidative stress were assessed. Ischaemic brain damage was evaluated longitudinally using magnetic resonance imaging. Following stroke, MRAs from SHR exhibited non-reversible impaired contractile responses to the thromboxane A2 receptor agonist U46619. Stroke increased the MRA cross-sectional area, wall thickness, and wall/lm ratio due to augmented collagen deposition. These changes were partially sustained 8 days later. SAHA did not improve U46619-induced contractions but mitigated stroke-induced oxidative stress and collagen deposition, preventing MRA remodelling at 24 h of reperfusion. Furthermore, SAHA induced sustained cerebroprotective effects over 8 days, including reduced brain infarct and oedema, and improved neurological scores. However, SAHA had minimal impact on chronic MRA contractile impairments and remodelling. These findings suggest that stroke causes MRA changes in hypertensive subjects. While SAHA treatment offers sustained protection against brain damage, it cannot fully restore MRA alterations.
Collapse
Affiliation(s)
- Andrea Díaz-Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Lope-Piedrafita
- Department of Biochemistry and Molecular Biology, Biophysics Unit, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Paula Vázquez-Sufuentes
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Rodriguez-Garcia
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ana M Briones
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, Instituto Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Penas
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Wang Y, Sun W, Shen L, Yu P, Shen Q, Zhou Y, Yao L, Chen X. Tanshinone IIA Protects Ischemia/Reperfusion-Induced Cardiomyocyte Injury by Inhibiting the HAS2/ FGF9 Axis. Cardiol Res Pract 2024; 2024:2581638. [PMID: 39568660 PMCID: PMC11578662 DOI: 10.1155/2024/2581638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose This study aimed to investigate the impacts of tanshinone IIA (Tan IIA) on ischemia/reperfusion (I/R)-induced cardiomyocyte injury in coronary heart disease (CHD), and to determine whether Tan IIA regulates myocardial cell injury induced by I/R through the Hyaluronan Synthase 2/fibroblast growth factor 9 (HAS2/FGF9) axis. Methods Weighted gene co-expression network analysis (WGCNA) of the GSE23561 microarray dataset determined gene modules linked to CHD. The key genes were further explored through differential expression and protein-protein interaction (PPI) network analyses. Human AC16 cardiomyocytes were treated with Tan IIA, HAS2 knockdown, and FGF9 overexpression and they were exposed to normoxic, hypoxic, and I/R environments. Cell viability, apoptosis, gene/protein expression, and markers of oxidative stress were evaluated in vitro. Results The turquoise module was significantly correlated with CHD and HAS2 was identified as a hub gene. Under hypoxic conditions, Tan IIA exhibited a dose-dependent cardioprotective effect. Tan IIA ameliorated I/R-induced cellular injury, as evidenced by increased cell viability, decreased apoptosis, and regulation of key proteins (PCNA, Bax). After I/R conditions, knockdown of HAS2 increased cell viability and reduced apoptosis, whereas overexpression of FGF9 reversed these effects. Notably, HAS2 knockdown also ameliorated I/R-induced increases in inflammatory cytokines and oxidative stress, and synergistic protection was provided by combined treatment with FGF9 and Tan IIA. Conclusion Taken together, our findings confirm that Tan IIA protects cardiomyocytes from I/R-induced injury by controlling the HAS2/FGF9 axis. These findings reveal the potential therapeutic significance of Tan IIA in alleviating CHD-related myocardial dysfunction.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Cardiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixin Sun
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, China
| | - Le Shen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Yu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiusheng Shen
- Department of Cardiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yaozhong Zhou
- Department of Cardiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Lu Yao
- Department of Cardiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaohu Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Liu M, Chen J, Sun M, Zhang L, Yu Y, Mi W, Ma Y, Wang G. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy. Chin Med J (Engl) 2024; 137:2603-2614. [PMID: 38407220 PMCID: PMC11556958 DOI: 10.1097/cm9.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (R-I/R) injury is the most prevalent cause of acute kidney injury, with high mortality and poor prognosis. However, the underlying pathological mechanisms are not yet fully understood. Therefore, this study aimed to investigate the role of N-myc downstream-regulated gene 2 ( Ndrg2 ) in R-I/R injury. METHODS We examined the expression of Ndrg2 in the kidney under normal physiological conditions and after R-I/R injury by immunofluorescence staining, real-time polymerase chain reaction, and western blotting. We then detected R-I/R injury in Ndrg2-deficient ( Ndrg2-/- ) mice and wild type ( Ndrg2+/+ ) littermates in vivo , and detected oxygen and glucose deprivation and reperfusion (OGD-R) injury in HK-2 cells. We further conducted transcriptomic sequencing to investigate the role of Ndrg2 in R-I/R injury and detected levels of oxidative stress and mitochondrial damage by dihydroethidium staining, biochemical assays, and western blot. Finally, we measured the levels of mitophagy in Ndrg2+/+ and Ndrg2-/- mice after R-I/R injury or HK-2 cells in OGD-R injury. RESULTS Ndrg2 was primarily expressed in renal proximal tubules and its expression was significantly decreased 24 h after R-I/R injury. Ndrg2-/- mice exhibited significantly attenuated R-I/R injury compared to Ndrg2+/+ mice. Transcriptomics profiling showed that Ndrg2 deficiency induced perturbations of multiple signaling pathways, downregulated inflammatory responses and oxidative stress, and increased autophagy following R-I/R injury. Further studies revealed that Ndrg2 deficiency reduced oxidative stress and mitochondrial damage. Notably, Ndrg2 deficiency significantly activated phosphatase and tensin homologue on chromosome ten-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy. The downregulation of NDRG2 expression significantly increased cell viability after OGD-R injury, increased the expression of heme oxygenase-1, decreased the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, and increased the expression of the PINK1/Parkin pathway. CONCLUSION Ndrg2 deficiency might become a therapy target for R-I/R injury by decreasing oxidative stress, maintaining mitochondrial homeostasis, and activating PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jianwen Chen
- Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yao Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Weidong Mi
- Department of Anesthesiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
15
|
Zhao W, Li Q, He P, Li C, Aryal M, Fabiilli ML, Xiao H. Charge balanced aggregation: A universal approach to aqueous organic nanocrystals. J Control Release 2024; 375:552-573. [PMID: 39276800 DOI: 10.1016/j.jconrel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Organic nanocrystals, particularly those composed of conjugated molecules, hold immense potential for various applications. However, their practical utility is often hindered by the challenge of achieving stable aqueous dispersions, which are essential for biological compatibility and effective delivery. This study introduces a novel and versatile strategy for preparing stable aqueous organic nanocrystals using a modified reprecipitation method. We demonstrate the broad applicability of this approach by successfully preparing a diverse library of nanocrystals from 27 conjugated molecules. Our findings reveal a charge-balanced aggregation mechanism for nanocrystal formation, highlighting the crucial role of surface charge in controlling particle size and stability. Based on this mechanism, we establish a comprehensive molecular combination strategy that directly links molecular properties to colloidal behaviour, enabling the straightforward prediction and preparation of stable aqueous dispersions without the need for excipients. This strategy provides a practical workflow for tailoring the functionality of these nanocrystals for a wide range of applications. To illustrate their therapeutic potential, we demonstrate the enhanced efficacy of these nanocrystals in treating acute ulcerative colitis, myocardial ischemia/reperfusion injury, and cancer in mouse models. This work paves the way for developing next-generation nanomaterials with tailored functionalities for diverse biomedical applications.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266000, Shandong, China
| | - Peng He
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Changqing Li
- Department of Electrical Engineering, University of California Merced, Merced 95343, CA, USA
| | - Muna Aryal
- Chemical, Biological, and Bioengineering Department, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro 27411, NC, USA
| | - Mario L Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, 48109, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Haijun Xiao
- Department of Radiology, University of Michigan, Ann Arbor, 48109, MI, USA.
| |
Collapse
|
16
|
Duan X, Yan L, Zhang W. An Effective Treatment of Fulminant Hepatic Failure: A Single-Center Retrospective Study. EXP CLIN TRANSPLANT 2024; 22:859-864. [PMID: 39663792 DOI: 10.6002/ect.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Fulminant hepatic failure is a critical condition with a high mortality rate. Currently, liver transplantation is considered one of the most effective treatment methods, but the shortage of organ resources has presented a major obstacle. The use of marginal donor livers, including those from syphilis-positive donors, offers new opportunities. This study reviewed and analyzed data from our center to summarize the management experience of using syphilis-positive donor livers to treat fulminant hepatic failure. MATERIALS AND METHODS From January 2016 to December 2021, 17 adult patients with fulminant hepatic failure received liver transplants from syphilis-positive donors at our center. Given the imbalance in several baseline variables, propensity score matching was used. We compared outcomes, including complications, hospital stay, recovery of liver function, and survival rates between groups of patients with syphilis-positive and syphilis-negative grafts. We also reviewed treatment of recipients of syphilis-positive livers. RESULTS No significant differences were shown in complications and hospital stays between recipients of syphilis-positive and syphilis-negative grafts. Both groups showed similar trends in liver function recovery. Patient and graft survival rates were comparable between the groups. Benzathine penicillin effectively protected recipients from syphilis. CONCLUSIONS Use of liver grafts from syphilis-positive donors did not increase morbidity and mortality in recipients. Liver transplant can effectively treat patients with fulminant hepatic failure. In addition, prophylactic use of benzathine penicillin was beneficial.
Collapse
Affiliation(s)
- Xin Duan
- From the Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | | | | |
Collapse
|
17
|
Catarci M, Montemurro LA, Benedetti M, Ciano P, Millarelli M, Chiappa R. Extrarenal Visceral Arteries Injuries during Left Radical Nephrectomy: A 50-Year Continuing Problem. J Clin Med 2024; 13:6125. [PMID: 39458075 PMCID: PMC11508894 DOI: 10.3390/jcm13206125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Due to their proximity to the left renal hilum, injuries to the superior mesenteric artery and celiac trunk are still reported during left radical nephrectomy, whether performed via open, laparoscopic, or robotic methods. The aim of this 50-year narrative review is to emphasize the anatomical and pathophysiological bases, risk factors, and strategies for the prevention, diagnosis, and treatment of such injuries.
Collapse
Affiliation(s)
- Marco Catarci
- General Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (L.A.M.); (M.B.); (P.C.)
| | - Leonardo Antonio Montemurro
- General Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (L.A.M.); (M.B.); (P.C.)
| | - Michele Benedetti
- General Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (L.A.M.); (M.B.); (P.C.)
| | - Paolo Ciano
- General Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (L.A.M.); (M.B.); (P.C.)
| | - Massimiliano Millarelli
- Vascular Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (M.M.); (R.C.)
| | - Roberto Chiappa
- Vascular Surgery Unit, Sandro Pertini Hospital, ASL Roma 2, Via dei Monti Tiburtini 385, 00157 Rome, Italy; (M.M.); (R.C.)
| |
Collapse
|
18
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
19
|
Yu Z, Xie S. Loureirin B improves H/R-induced hepatic ischemia-reperfusion injury by downregulating ALOX5 to regulate mitochondrial homeostasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7561-7571. [PMID: 38662194 DOI: 10.1007/s00210-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
This study was conceived to explore the role and the mechanism of Loureirin B (LB) in hepatic IRI. The viability of LB-treated AML-12 cells was assessed using CCK-8 assay and inflammatory cytokines were detected using ELISA. The activities of ROS and oxidative stress markers MDA, SOD, and GSH-Px were detected using DCFH-DA and corresponding assay kits. The cell apoptosis and caspase3 activity were estimated with flow cytometry and caspase3 assay kits. The expressions of arachidonate 5-lipoxygenase (ALOX5) and apoptosis- and mitochondrial dynamics-related proteins were detected using western blot. The interaction between LB and ALOX5 was analyzed with molecular docking. The transfection efficacy of oe-ALOX5 was examined with RT-qPCR and western blot. Mitochondrial membrane potential was detected with JC-1 staining and immunofluorescence (IF) assay was employed to estimate mitochondrial fusion and fission. The present work found that LB revived the viability, inhibited inflammatory response, suppressed oxidative stress, repressed the apoptosis, and maintained mitochondrial homeostasis in H/R-induced AML-12 cells, which were all reversed by ALOX5 overexpression. Collectively, LB regulated mitochondrial homeostasis by downregulating ALOX5, thereby improving hepatic IRI.
Collapse
Affiliation(s)
- Zhaolong Yu
- Third Department of Internal Medicine, Yiwu Second People's Hospital, No. 1, Jiangbei Road, Fotang Town, Yiwu, 322000, Zhejiang, China.
| | - Shunying Xie
- Department of Emergency Medicine, Yiwu Second People's Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
20
|
Wang SY, Wang YJ, Dong MQ, Li GR. Acacetin is a Promising Drug Candidate for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1661-1692. [PMID: 39347953 DOI: 10.1142/s0192415x24500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phytochemical flavonoids have been proven to be effective in treating various disorders, including cardiovascular diseases. Acacetin is a natural flavone with diverse pharmacological effects, uniquely including atrial-selective anti-atrial fibrillation (AF) via the inhibition of the atrial specific potassium channel currents [Formula: see text] (ultra-rapidly delayed rectifier potassium current), [Formula: see text] (acetylcholine-activated potassium current), [Formula: see text] (calcium-activated small conductance potassium current), and [Formula: see text] (transient outward potassium current). [Formula: see text] inhibition by acacetin, notably, suppresses experimental J-wave syndromes. In addition, acacetin provides extensive cardiovascular protection against ischemia/reperfusion injury, cardiomyopathies/heart failure, autoimmune myocarditis, pulmonary artery hypertension, vascular remodeling, and atherosclerosis by restoring the downregulated intracellular signaling pathway of Sirt1/AMPK/PGC-1α followed by increasing Nrf2/HO-1/SOD thereby inhibiting oxidation, inflammation, and apoptosis. This review provides an integrated insight into the capabilities of acacetin as a drug candidate for treating cardiovascular diseases, especially atrial fibrillation and cardiomyopathies/heart failure.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Ya-Jing Wang
- Department of Pharmacy, School of Pharmacy, Changzhou University Changzhou, Jiangsu 213164, P. R. China
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| | - Ming-Qing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Gui-Rong Li
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| |
Collapse
|
21
|
Zhou M, Jia X, Liu H, Xue Y, Wang Y, Li Z, Wu Y, Rui Y. Bibliometric analysis of skeletal muscle ischemia/reperfusion (I/R) research from 1986 to 2022. Heliyon 2024; 10:e37492. [PMID: 39309867 PMCID: PMC11416534 DOI: 10.1016/j.heliyon.2024.e37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tissue damage due to ischemia and reperfusion is a critical medical problem worldwide. Studies in this field have made remarkable advances in understanding the pathogenesis of ischemia/reperfusion (I/R) injury and its treatment with new and known drugs. However, no bibliometric analysis exists in this area of research. Methods Research articles and reviews related to skeletal muscle I/R from 1986 to 2022 were retrieved from the Web of Science Core Collection. Bibliometric analysis was performed using Microsoft Excel 2019, VOSviewer (version 1.6.19), Bibliometrix (R-Tool for R-Studio), and CiteSpace (version 6.1.R5). Results A total of 3682 research articles and reviews from 2846 institutions in 83 countries were considered in this study. Most studies were conducted in the USA. Hobson RW (UMDNJ-New Jersey Medical School) had the highest publication, and Korthuis RJ (Louisiana State University) had the highest co-citations. Our analysis showed that, though the Journal of Surgical Research was most favored, the Journal of Biological Chemistry had the highest number of co-citations. The pathophysiology, interventions, and molecular mechanisms of skeletal muscle I/R injury emerged as the primary research areas, with "apoptosis," "signaling pathway," and "oxidative stress" as the main keywords of research hotspots. Conclusions This study provides a thorough overview of research trends and focal points in skeletal muscle I/R injury by applying bibliometric and visualization techniques. The insights gained from our findings offer a profound understanding of the evolving landscape of skeletal muscle I/R injury research, thereby functioning as a valuable reference and roadmap for future investigations.
Collapse
Affiliation(s)
| | | | | | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Zeqing Li
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| | - Yongjun Rui
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214000, China
| |
Collapse
|
22
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
23
|
Aboelez MO, Ezelarab HAA, Alotaibi G, Abouzed DEE. Inflammatory setting, therapeutic strategies targeting some pro-inflammatory cytokines and pathways in mitigating ischemia/reperfusion-induced hepatic injury: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6299-6315. [PMID: 38643452 DOI: 10.1007/s00210-024-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Ischemia/reperfusion injury (IRI) is a key determining agent in the pathophysiology of clinical organ dysfunction. It is characterized by an aseptic local inflammatory reaction due to a decrease in blood supply, hence deprivation of dependent oxygen and nutrients. In instances of liver transplantation, this injury may have irreversible implications, resulting in eventual organ rejection. The deterioration associated with IRI is affected by the hepatic health status and various factors such as alterations in metabolism, oxidative stress, and pro-inflammatory cytokines. The primary cause of inflammation is the initial immune response of pro-inflammatory cytokines, while Kupffer cells (KFCs) and neutrophil-produced chemokines also play a significant role. Upon reperfusion, the activation of inflammatory responses can elicit further cellular damage and organ dysfunction. This review discusses the interplay between chemokines, pro-inflammatory cytokines, and other inflammatory mediators that contribute to the damage to hepatocytes and liver failure in rats following IR. Furthermore, it delves into the impact of anti-inflammatory therapies in safeguarding against liver failure and hepatocellular damage in rats following IR. This review investigates the correlation between cytokine factors and liver dysfunction via examining databases, such as PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minya, 61519, Egypt.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, 11961, Al-Dawadmi, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
24
|
Sun H, Wang J, Bi W, Zhang F, Zhang K, Tian X, Gao X, Zhang Y. Mesenchymal stem cell-derived exosomal microRNA-367-3p mitigates lower limb ischemia/reperfusion injury in mouse skeletal muscle via EZH2 targeting. J Pharm Pharmacol 2024:rgae086. [PMID: 39137155 DOI: 10.1093/jpp/rgae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/22/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE This study aimed to investigate the protective effect of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-exo) against lower limb ischemia/reperfusion (I/R) injury-induced pyroptosis in skeletal muscle. METHODS A mouse model of lower limb I/R injury was utilized to assess the impact of BMSCs-exo, particularly when loaded with microRNA-367-3p (miR-367-3p), on pyroptosis. Histological examination, wet weight/dry weight ratio measurements, and luciferase assays were employed to elucidate the mechanisms involved. KEY FINDINGS BMSCs-exo effectively suppressed pyroptosis in injured skeletal muscle tissue. Loading BMSCs-exo with miR-367-3p enhanced this protective effect by downregulating key pyroptosis-related proteins. Luciferase assays identified enhancer of zeste homolog 2 (EZH2) as a direct target of miR-367-3p in BMSCs-exo. CONCLUSIONS BMSCs-exo loaded with miR-367-3p safeguarded mouse skeletal muscle against pyroptosis-induced I/R injury by targeting EZH2. These findings offer valuable insights into potential therapeutic strategies for lower limb I/R injuries, emphasizing the therapeutic potential of BMSCs-exo in mitigating tissue damage caused by pyroptosis.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Zhang
- Department of Vascular Surgery, Shijiazhuang Hospital of Traditional Chinese Medicine 050000, Hebei, China
| | - Xitao Tian
- The Department of Orthopedic, Wuqiang County People's Hospital, Hengshui, Hebei 053300, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yanrong Zhang
- Department of Vascular Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
25
|
Kura B, Slezak J. The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury. Int J Mol Sci 2024; 25:7884. [PMID: 39063126 PMCID: PMC11276695 DOI: 10.3390/ijms25147884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
26
|
Ayaz H, Aşır F, Korak T. Skimmianine Showed Neuroprotection against Cerebral Ischemia/Reperfusion Injury. Curr Issues Mol Biol 2024; 46:7373-7385. [PMID: 39057078 PMCID: PMC11276333 DOI: 10.3390/cimb46070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to investigate the antioxidant and anti-inflammatory effects of skimmianine on cerebral ischemia-reperfusion (IR) injury. Twenty-four female Wistar albino rats were randomly divided into three groups: Sham, Ischemia-Reperfusion (IR), and IR + Skimmianine (40 mg/kg Skimmianine). Cerebral ischemia was induced using a monofilament nylon suture to occlude the middle cerebral artery for 60 min. Following 23 h of reperfusion, the animals were sacrificed 14 days later. The effects of skimmianine on brain tissue post-IR injury were examined through biochemical and immunochemical analyses. In silico analysis using the Enrichr platform explored skimmianine's potential biological processes involving IBA-1, IL-6, and NF-κB proteins. In the IR group, MDA levels increased, while SOD and CAT antioxidant enzyme activities decreased. In the IR + Skimmianine group, skimmianine treatment resulted in decreased MDA levels and increased SOD and CAT activities. Significant increases in IBA-1 expression were observed in the IR group, which skimmianine treatment significantly reduced, modulating microglial activation. High levels of IL-6 expression were noted in pyramidal neurons, vascular structures, and neuroglial cells in the IR group; skimmianine treatment reduced IL-6 expression, demonstrating anti-inflammatory effects. Increased NF-κB expression was observed in neurons and blood vessels in the gray and white matter in the IR group; skimmianine treatment reduced NF-κB expression. Gene Ontology results suggest skimmianine impacts immune and inflammatory responses via IBA-1 and IL-6, with potential effects on estrogen mechanisms mediated by NF-κB. Skimmianine may be a potential therapeutic strategy due to its antioxidant and anti-inflammatory effects on cerebral IR injury.
Collapse
Affiliation(s)
- Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey;
| |
Collapse
|
27
|
Meurisse N, Wylin T, Heedfeld V, Fieuws S, Ceulemans L, Jochmans I, Pirenne J, Monbaliu D. Effects of Cyclodextrin Curcumin Formulation on Ischemia-Reperfusion Injury in Porcine DCD Liver Transplantation. Transplantation 2024:00007890-990000000-00796. [PMID: 38902859 DOI: 10.1097/tp.0000000000005117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND Curcumin is a pleiotropic antioxidant polyphenol, which has proven to be highly protective in various models of liver injury and inflammation. We hypothesized that adding a stable aqueous curcumin formulation which comprises a water-soluble cyclodextrin curcumin formulation (CDC) complex of the water-insoluble curcumin molecule (Novobion, Espoo, Finland) to preservation solution during liver procurement may reduce ischemia-reperfusion injury and improve graft function after liver transplantation using donation after circulatory death (DCD). METHODS In a preclinical pig model of DCD-liver transplantation, livers exposed to 15' of warm ischemia were either modulated (N = 6) with a flush of preservation solution (histidine-tryptophan-ketoglutarate) containing CDC (60 µmol/L) through the vena porta and the aorta, or not (controls, N = 6) before 4 h of cold storage. Area under the curve of log serum aspartate aminotransferase, markers of graft function (lactate, glycemia, prothrombin time, and bile production), inflammation (tumor necrosis factor-alpha), and survival were monitored. RESULTS Area under the curve of log serum aspartate aminotransferase were similar between curcumin and control groups (22.12 [20.87-24.88] versus 25.08 [22.1-26.55]; P = 0.28). No difference in the liver function markers were observed between groups except a lower serum lactate level 3-h post-reperfusion in the curcumin group (3 [1.95-6.07] versus 8.2 [4.85-13.45] mmol/L; P = 0.05). Serum tumor necrosis factor-alpha levels were similar in each group. Recipient survival rates were found similar. CONCLUSIONS CDC added to the preservation solution in DCD liver pig model did not improve ischemia-reperfusion injury severity, liver function, or survival. Further efforts are needed to explore this strategy, particularly with dynamic preservation, which finds its way into clinical practice.
Collapse
Affiliation(s)
- Nicolas Meurisse
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Abdominal Surgery and Transplantation, CHU Liège, University of Liege (CHU Liège), Liège, Belgium
| | - Tine Wylin
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle Heedfeld
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Laurens Ceulemans
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Li L, Wang M, Liu S, Zhang X, Chen J, Tao W, Li S, Qing Z, Tao Q, Liu Y, Huang L, Zhao S. [Soy isoflavones alleviates calcium overload in rats with cerebral ischemia-reperfusion by inhibiting the Wnt/Ca 2+ signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1048-1058. [PMID: 38977334 PMCID: PMC11237289 DOI: 10.12122/j.issn.1673-4254.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.
Collapse
Affiliation(s)
- L Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - M Wang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Liu
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - X Zhang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - J Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - W Tao
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Li
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Neurology, Nanjing First Hospital, Nanjing 210000, China
| | - Z Qing
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Q Tao
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Y Liu
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - L Huang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Zhao
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
29
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2024:10.1007/s12033-024-01173-y. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
30
|
Liu N, Liang H, Hong Y, Lu X, Jin X, Li Y, Tang S, Li Y, Cao W. Gallic acid pretreatment mitigates parathyroid ischemia-reperfusion injury through signaling pathway modulation. Sci Rep 2024; 14:12971. [PMID: 38839854 PMCID: PMC11153493 DOI: 10.1038/s41598-024-63470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.
Collapse
Affiliation(s)
- Nianqiu Liu
- Departments of Breast Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuan Hong
- Departments of Laboratory, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xiaokai Lu
- Departments of Ultrasound, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xin Jin
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China.
| |
Collapse
|
31
|
Tunç E, Durgun V, Akıncı O, Ergün S, Şimşek O, Bolayırlı IM, Kepil N. The role of geraniol on hepatic ischemia-reperfusion injury model in rats. ULUS TRAVMA ACIL CER 2024; 30:390-396. [PMID: 38863289 PMCID: PMC11230045 DOI: 10.14744/tjtes.2024.47004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats. METHODS Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically. RESULTS It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups. CONCLUSION The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.
Collapse
Affiliation(s)
- Emre Tunç
- Department of Surgical Oncology, Ankara Etlik City Hospital, Ankara-Türkiye
| | - Vedat Durgun
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University, İstanbul-Türkiye
| | - Ozan Akıncı
- Department of General Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, İstanbul-Türkiye
| | - Sefa Ergün
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University, İstanbul-Türkiye
| | - Osman Şimşek
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University, İstanbul-Türkiye
| | - Ibrahim Murat Bolayırlı
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University, İstanbul-Türkiye
| | - Nuray Kepil
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, İstanbul, İstanbul-Türkiye
| |
Collapse
|
32
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
33
|
Kashef SM, Abo Elnasr SE. Effect of peripheral blood mononuclear cells on ischemia-reperfusion injury of sciatic nerve of adult male albino rat: histological, immunohistochemical, and ultrastructural study. Ultrastruct Pathol 2024; 48:172-191. [PMID: 38421153 DOI: 10.1080/01913123.2024.2321144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Ischemia/reperfusion (I/R) injury of sciatic nerve is a serious condition that results in nerve fiber degeneration, and reperfusion causes oxidative injury. Peripheral blood mononuclear cells (PBMNCs) have neuroregenerative power. This study was carried out to evaluate the potential ameliorative effect of PBMNCs on changes induced by I/R injury of the sciatic nerve. Fifty adult male albino rats were divided into donor and experimental groups that were subdivided into four groups: group I (control group), group II received 50 µL PBNMCs once intravenously via the tail vein, group III rubber tourniquet was placed around their Rt hind limb root for 2 hours to cause ischemia, group IV was subjected to limb ischemia as group III, then they were injected with 50 ul PBMNCs as group II before reperfusion. I/R injury showed disorganization of nerve fascicles with wide spaces in between nerve fibers. The mean area of collagen fibers, iNOS immunoexpression, and number of GFAP-positive Schwann cells of myelinated fibers showed a highly significant increase, while a highly significant reduction in the G-ratio and neurofilament immunoexpression was observed. Myelin splitting, invagination, evagination, and myelin figures were detected. PBMNC-treated group showed a marked improvement that was confirmed by histological, immunohistochemical, and ultrastructural findings.
Collapse
|
34
|
Singh C, Thorpe L, Villanueva S, Valencerina-Javier G, Koyuncu F, Sohal S. Maintaining Skin Integrity of Patients Diagnosed With SARS CoV2: A Quality Improvement Project. J Wound Ostomy Continence Nurs 2024; 51:185-190. [PMID: 38820215 DOI: 10.1097/won.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE This purpose of this quality improvement project was to develop and evaluate a protocol (intervention bundle) designed to prevent pressure injuries in patients admitted with SARS-CoV2 and required prone positioning. PARTICIPANTS AND SETTING The sample comprised 267 patients aged 18 years and older, who were admitted with SARS-CoV2 and required prone positioning. Their age ranged from 32 to 76 years; a majority (54%, n = 145) were intubated. The study setting was an urban 220 bed acute care hospital in Northern California. APPROACH A task force comprising the quality management team, certified wound care nurses and nursing leadership used the plan-do-study-act cycle completed a quality improvement project designed for preventing pressure injuries among patients admitted with SARS-CoV2 and managed with prone positioning, either with or without mechanical ventilation. The five phases of the quality improvement project were protocol development, education, implementation, and evaluation. Data collection period for this quality improvement was between April 2020 and August 2020. Outcomes were evaluated using descriptive statistics. OUTCOMES Sixteen patients (6%) experienced a total of 25 pressure injuries. The time between initial prone placement and change back to supine positioning was 24 hours (36 ± 12 hours). The most common pressure injuries were deep tissue injuries, primarily over the heels and sacrum. IMPLICATIONS FOR PRACTICE This protocol maintained the skin integrity of 94% of a group critically ill patients admitted with SARS-CoV2 and managed by prone positioning.
Collapse
Affiliation(s)
- Charleen Singh
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| | - Lee Thorpe
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| | - Stephanie Villanueva
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| | - Gladys Valencerina-Javier
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| | - Fadime Koyuncu
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| | - Sarina Sohal
- Charleen Singh, PhD MBA, FNP-BC, CWOCN, University of California, Davis, Betty Irene Moore School of Nursing, Sacramento, California; Cottage Hospital, Santa Barbara, California; and Regional Medical Center of San Jose, San Jose, California
- Lee Thorpe, MSN, Regional Medical Center of San Jose, San Jose, California
- Stephanie Villanueva, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Gladys Valencerina-Javier, BSN, CWCN, Regional Medical Center of San Jose, San Jose, California
- Fadime Koyuncu, MSN, RN, University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkey
- Sarina Sohal, BSc, University of California, Davis, Global Disease Biology, Davis, California
| |
Collapse
|
35
|
Khang AR, Kim DH, Kim MJ, Oh CJ, Jeon JH, Choi SH, Lee IK. Reducing Oxidative Stress and Inflammation by Pyruvate Dehydrogenase Kinase 4 Inhibition Is Important in Prevention of Renal Ischemia-Reperfusion Injury in Diabetic Mice. Diabetes Metab J 2024; 48:405-417. [PMID: 38311057 PMCID: PMC11140394 DOI: 10.4093/dmj.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Reactive oxygen species (ROS) and inflammation are reported to have a fundamental role in the pathogenesis of ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury. The present study investigated the role of pyruvate dehydrogenase kinase 4 (PDK4) in ROS production and inflammation following IR injury. METHODS We used a streptozotocin-induced diabetic C57BL6/J mouse model, which was subjected to IR by clamping both renal pedicles. Cellular apoptosis and inflammatory markers were evaluated in NRK-52E cells and mouse primary tubular cells after hypoxia and reoxygenation using a hypoxia work station. RESULTS Following IR injury in diabetic mice, the expression of PDK4, rather than the other PDK isoforms, was induced with a marked increase in pyruvate dehydrogenase E1α (PDHE1α) phosphorylation. This was accompanied by a pronounced ROS activation, as well as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) production. Notably, sodium dichloroacetate (DCA) attenuated renal IR injury-induced apoptosis which can be attributed to reducing PDK4 expression and PDHE1α phosphorylation levels. DCA or shPdk4 treatment reduced oxidative stress and decreased TNF-α, IL-6, IL-1β, and MCP-1 production after IR or hypoxia-reoxygenation injury. CONCLUSION PDK4 inhibition alleviated renal injury with decreased ROS production and inflammation, supporting a critical role for PDK4 in IR mediated damage. This result indicates another potential target for reno-protection during IR injury; accordingly, the role of PDK4 inhibition needs to be comprehensively elucidated in terms of mitochondrial function during renal IR injury.
Collapse
Affiliation(s)
- Ah Reum Khang
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Dong Hun Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
36
|
Karimkhani H, Shojaolsadati P, Yiğitbaşı T, Kolbası B, Emekli N. The effect of calpain inhibitor-I on copper oxide nanoparticle-induced damage and cerebral ischemia-reperfusion in a rat model. Biomed Pharmacother 2024; 174:116539. [PMID: 38615610 DOI: 10.1016/j.biopha.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.
Collapse
Affiliation(s)
- Hadi Karimkhani
- Department of Biochemistry, School of Medicine, Istanbul Okan University, Istanbul, Turkey; Department of Stem Cell, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Paria Shojaolsadati
- Department of Anatomy, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Türkan Yiğitbaşı
- Department of Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bircan Kolbası
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Neslin Emekli
- Department of Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
37
|
Shokeir AA, Awadalla A, Hamam ET, Hussein AM, Mahdi MR, Abosteta AN, Shahin M, Barakat N, El-Adl M, El-Sherbiny M, Eldesoqui M, AlMadani M, Ali SK, El-Sherbini ES, Khirallah SM. Human Wharton's jelly-derived mesenchymal stromal stem cells preconditioned with valproic acid promote cell migration and reduce renal inflammation in ischemia/reperfusion injury by activating the AKT/P13K and SDF1/CXCR4 pathways. Arch Biochem Biophys 2024; 755:109985. [PMID: 38579957 DOI: 10.1016/j.abb.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-β1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Eman T Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt; Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Alyaa Naeem Abosteta
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mirna Shahin
- Mansoura Manchester Medical Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Departement of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Moneer AlMadani
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - El-Said El-Sherbini
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Salma M Khirallah
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
38
|
Koyan Karadeniz GN, Karadeniz O, Bulutlar E, Yilmaz B, Gedikbasi A, Arslan HS, Cetin BA, Polat İ. Comparison of salpingectomy and tubal detorsion procedures after experimental ischemia-reperfusion injury in a rat fallopian tube model: biochemical and histopathological evaluation. F&S SCIENCE 2024; 5:195-203. [PMID: 38580179 DOI: 10.1016/j.xfss.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To compare salpingectomy and detorsion procedures and investigate the biochemical and histopathological changes in the fallopian tubes in the experimentally isolated fallopian tube torsion model in rats. DESIGN Experimental study. SETTING Experimental surgery laboratory in a training and research hospital. ANIMAL(S) Twenty-seven Sprague-Dawley rats in the reproductive period. INTERVENTION(S) Group 1, control group (n = 6); group 2, bilateral total salpingectomy group after 4 hours of tubal ischemia (n = 7); group 3: 4 hours of bilateral tubal ischemia plus 1 week of reperfusion (n = 7); and group 4, 4-hour period of bilateral tubal ischemia plus 30 days of reperfusion (n = 7). A 22-gauge catheter was administered before and after surgery using methylene blue through the uterine horn of the rat to evaluate tubal patency. MAIN OUTCOME MEASURE(S) Preoperative and postoperative serum antimüllerian hormone (AMH) levels, histopathological examination of the rat tuba uterine and histopathological damage scores, antioxidant compounds (superoxide dismutase [SOD], catalase, and glutathione peroxidase [GSH-Px]), and oxidative stress end product levels (malondialdehyde [MDA] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]). RESULT(S) Although a significant difference was observed in the tissue SOD, GSH-Px, MDA, and 8-OHdG values, no significant difference was observed between the groups in serum samples. The tissue SOD and tissue GSH-Px levels in group 2 significantly decreased, and a significant increase was observed in the tissue MDA and 8-OHdG values in group 2. Among the histopathological parameters, epithelial changes, vascular congestion, and the total fallopian tube mean damage score of 4 showed a significant decrease in group 4. When the methylene blue transitions before and after ischemia-reperfusion injury were compared, the values of the methylene blue transition after ischemia-reperfusion injury in groups 2-4 significantly decreased. When the serum AMH levels were analyzed, the postoperative AMH value in group 2 significantly increased. CONCLUSION(S) This study reveals that biochemical and histopathological improvement is observed in the fallopian tube tissues gradually when the detorsion procedure is performed for the necrotized tubal tissue instead of salpingectomy. Although there is restoration of epithelial integrity after reperfusion, tubal passage remains absent. CLINICAL TRIAL REGISTRATION NUMBER This study was approved by the Local Ethics Committee for Animal Experiments of the Health Sciences University, Istanbul Hamidiye Medicine Faculty (approval number 27.05.2022-9269). The study followed the ethics standards recommended by the Declaration of Helsinki.
Collapse
Affiliation(s)
- Gizem Nur Koyan Karadeniz
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Ozan Karadeniz
- Department of Gynaecology and Obstetrics, Arnavutkoy State Hospital, Istanbul, Turkey
| | - Eralp Bulutlar
- Department of Obstetrics and Gynecology, Health Sciences University, Zeynep Kamil Women and Children's Diseases Training and Research Hospital, Istanbul, Turkey
| | - Bugra Yilmaz
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Asuman Gedikbasi
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hilal Serap Arslan
- Department of Pathology, University of Health Sciences, Basaksehir Cam ve Sakura City Hospital, Istanbul, Turkey
| | - Berna Aslan Cetin
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - İbrahim Polat
- Department of Gynaecology and Obstetrics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
39
|
Ding S, Kim YJ, Huang KY, Um D, Jung Y, Kong H. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. NANO CONVERGENCE 2024; 11:18. [PMID: 38689075 PMCID: PMC11061094 DOI: 10.1186/s40580-024-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.
Collapse
Affiliation(s)
- Shengzhe Ding
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Yu-Jin Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kai-Yu Huang
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Daniel Um
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjoon Kong
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub-Chicago, Chicago, USA.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
40
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
41
|
Sayaf K, Battistella S, Russo FP. NLRP3 Inflammasome in Acute and Chronic Liver Diseases. Int J Mol Sci 2024; 25:4537. [PMID: 38674122 PMCID: PMC11049922 DOI: 10.3390/ijms25084537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is an intracellular complex that upon external stimuli or contact with specific ligands, recruits other components, forming the NLRP3 inflammasome. The NLRP3 inflammasome mainly mediates pyroptosis, a highly inflammatory mode of regulated cell death, as well as IL-18 and IL-1β production. Acute and chronic liver diseases are characterized by a massive influx of pro-inflammatory stimuli enriched in reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs) that promote the assemblage and activation of the NLRP3 inflammasome. As the major cause of inflammatory cytokine storm, the NLRP3 inflammasome exacerbates liver diseases, even though it might exert protective effects in regards to hepatitis C and B virus infection (HCV and HBV). Here, we summarize the current knowledge concerning NLRP3 inflammasome function in both acute and chronic liver disease and in the post liver transplant setting, focusing on the molecular mechanisms involved in NLRP3 activity.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
| | - Sara Battistella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy; (K.S.); (S.B.)
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35128 Padua, Italy
| |
Collapse
|
42
|
Kovacevic P, Dragic S, Jandric M, Momcicevic D, Malesevic V, Kovacevic T, Matejic-Spasic M, Knezevic T, Zlojutro B. Does adjunctive hemoadsorption provide benefit in the management of ischemia-reperfusion syndrome following near-drowning? A case report. Front Med (Lausanne) 2024; 11:1341156. [PMID: 38633302 PMCID: PMC11021721 DOI: 10.3389/fmed.2024.1341156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Drowning remains a significant global health concern, claiming over 300,000 lives annually, with a disproportionate impact on young individuals in low-and middle-income countries. Conventional mechanical ventilation, while common, falls short in addressing the hypoxemia and hypercapnia often observed in severe near-drowning cases. Veno-venous extracorporeal membrane oxygenation (vvECMO) emerges as a critical intervention for cardiopulmonary failure post-drowning. This case report delves into the pivotal role of ischemia-reperfusion injury (IRI) in a near-drowning-related pathology. Following the initial insult, reoxygenation exacerbates the inflammatory cascade, resulting in a surge of pro-inflammatory mediators. In this context, CytoSorb®, a hemoadsorption cartridge, demonstrates promise by effectively removing these mediators from circulation. This report outlines its application in a critically ill adolescent patient who experienced near-drowning, presenting a compelling case for CytoSorb as an adjunctive therapy in managing IRI-induced hyperinflammation.
Collapse
Affiliation(s)
- Pedja Kovacevic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Sasa Dragic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Milka Jandric
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Danica Momcicevic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vedrana Malesevic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Tijana Kovacevic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Tanja Knezevic
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Biljana Zlojutro
- Medical Intensive Care Unit, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
43
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Garzali IU, Aloun A, Abuzeid EED, Sheshe AA. Early outcome of machine perfusion vs static cold storage of liver graft: A systemic review and meta-analysis of randomized controlled trials. HEPATOLOGY FORUM 2024; 5:211-216. [PMID: 39355837 PMCID: PMC11440224 DOI: 10.14744/hf.2023.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 10/03/2024]
Abstract
The use of marginal grafts is very challenging and is associated with post-reperfusion syndrome and early allograft dysfunction. The outcomes of machine perfusion for the preservation of marginal grafts have been compared with that of static cold storage, with studies reporting a reduced risk of ischemic cholangiopathy and graft loss. We performed this systematic review and meta-analysis of randomized controlled trials (RCTs) comparing outcomes of machine perfusion of liver grafts to static cold storage (SCS) of liver grafts during liver transplantation. Two independent researchers thoroughly searched for literature in the following databases: PubMed (Medline), Cochrane Central Register of Controlled Studies (CENTRAL), clinical trial registry, ResearchGate, Google Scholar, and Scopus (ELSEVIER) databases (last search: November 2023). The search terms used were: "dynamic perfusion," "normothermic perfusion," "hypothermic perfusion," "liver transplantation," "static cold storage," "NMP," "HOPE," "extended criteria grafts," "marginal grafts," "RCTs," "randomized controlled trials," "warm ischemia," and "cold ischemia." Eight RCTs published between 2019 and 2023 were included in the data synthesis and meta-analysis. The primary outcome considered was the overall incidence of early allograft dysfunction (EAD) between the two methods of graft perfusion after liver transplantation. The secondary outcome considered was the rate of retransplantation. Our meta-analysis revealed that SCS is associated with more EAD when compared with machine perfusion, with a p-value of <0.00001. We also found that the rate of retransplantation is higher among patients who received a liver preserved by SCS, with a p-value of 0.02. The use of machine perfusion in the preservation of liver grafts showed a significant reduction in early allograft dysfunction and retransplantation.
Collapse
Affiliation(s)
| | - Ali Aloun
- Department of Surgery, King Hussein Medical Centre, Amman, Jordan
| | | | | |
Collapse
|
45
|
Xue L, Jiang S, Wan XY. Protective Effects of Sesamol on Renal Ischemia-Reperfusion Injury Via Regulation of Nuclear Factor Erythroid 2-Related Factor 2 Pathway. Transplant Proc 2024; 56:290-296. [PMID: 38350822 DOI: 10.1016/j.transproceed.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Sesamol is a natural antioxidant known for its potent antioxidant and free radical scavenging properties. This study aimed to explore the therapeutic effects and underlying mechanisms of sesamol in the development of renal ischemia-reperfusion injury (IRI) in mice. METHODS C57BL/6J wild-type mice were divided into 3 groups: IR group, treated with normal saline after undergoing the IRI procedure; Sesamol + IR group, treated with 30 mg/kg/d of sesamol after the IRI procedure; and Sham group, treated with normal saline but not subjected to the IRI process. Renal IRI was induced by performing a right kidney nephrectomy and subjecting the left kidney to 30-minute ischemia, followed by 24-hour reperfusion. Kidney tissues and serum were collected 24 hours post-IRI to assess the impact of sesamol on renal function after IRI. Serum creatinine and blood urea nitrogen levels were assessed, and renal cell apoptosis was detected through terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. The levels of interleukin 1β and interleukin 18 in kidney tissues, as well as indicators of oxidative stress, were also measured. Furthermore, Nrf2-deficient mice were used to examine the protective function of the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) signaling pathways induced by sesamol, as determined by western blot assay. RESULTS Sesamol demonstrated significant improvement in renal function, along with reductions in renal tubular injury, cell necrosis, and apoptosis in mice. It also effectively lowered key inflammatory mediator levels. Sesamol exhibited antioxidant properties by reducing malondialdehyde levels and enhancing superoxide dismutase activities 24 hours after IRI. Western blot assay revealed increased Nrf2, HO-1, and NQO-1 protein levels with sesamol treatment. Notably, Nrf2-deficient mice did not exhibit the beneficial effects of sesamol. CONCLUSIONS This study demonstrates that sesamol effectively alleviates renal IRI by enhancing antioxidant defenses and reducing inflammation potentially through the Nrf2/HO-1 and NQO1 signaling pathways.
Collapse
Affiliation(s)
- Lu Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Su Jiang
- Department of Rehabilitation Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, People's Republic of China
| | - Xian-Yao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
46
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
47
|
Kulshrestha K, Greenberg JW, Guzman-Gomez AM, Kennedy JT, Hossain MM, Zhang Y, Zafar F, Morales DLS. Up to an Hour of Donor Resuscitation Does Not Affect Pediatric Heart Transplantation Survival. Ann Thorac Surg 2024; 117:611-618. [PMID: 37271442 PMCID: PMC10693647 DOI: 10.1016/j.athoracsur.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND In pediatric heart transplantation, surgeons historically avoided donors requiring cardiopulmonary resuscitation (CPR), despite evidence that donor CPR does not change posttransplant survival (PTS). This study sought to determine whether CPR duration affects PTS. METHODS All potential brain-dead donors aged <40 years from 2001 to 2021 consented for heart procurement were identified in the United Network for Organ Sharing database (n = 54,671). Organ acceptance was compared by CPR administration and duration. All recipients aged <18 years with donor CPR data were then identified (n = 5680). Survival analyses were conducted using increasing CPR duration as a cut point to identify the shortest duration beyond which PTS worsened. Additional analyses were performed with multivariable and cubic spline regression. RESULTS Fifty-one percent of donors (28,012 of 54,671) received CPR. Donor acceptance was lower after CPR (54% vs 66%; P < .001) and across successive quartiles of CPR duration (P < .001). Of the transplant recipients, 48% (2753 of 5680) belonged to the no-CPR group, and 52% (2927 of 5680) belonged to the CPR group. Kaplan-Meier analyses of CPR duration attained significance at 55 minutes, after which PTS worsened (11.1 years vs 9.2 years; P = .025). There was no survival difference between the CPR ≤55 minutes group and the no-CPR group (11.1 years vs 11.2 years; P = .571). A cubic spline regression model confirmed that PTS worsened at more than 55 minutes of CPR. A Cox regression demonstrated that CPR >55 minutes predicted worsened PTS relative to no CPR (HR, 1.51; P = .007) but CPR ≤55 minutes did not (HR, 1.01; P = .864). CONCLUSIONS Donor CPR decreases organ acceptance for transplantation; however, shorter durations (≤55 minutes) had equivalent PTS when controlling for other risk factors.
Collapse
Affiliation(s)
- Kevin Kulshrestha
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jason W Greenberg
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amalia M Guzman-Gomez
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John T Kennedy
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Md Monir Hossain
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yin Zhang
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Farhan Zafar
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David L S Morales
- Division of Cardiothoracic Surgery, The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
48
|
Jung SE, Kim SW, Choi JW. Exploring Cardiac Exosomal RNAs of Acute Myocardial Infarction. Biomedicines 2024; 12:430. [PMID: 38398032 PMCID: PMC10886708 DOI: 10.3390/biomedicines12020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), often a frequent symptom of coronary artery disease (CAD), is a leading cause of death and disability worldwide. Acute myocardial infarction (AMI), a major form of cardiovascular disease, necessitates a deep understanding of its complex pathophysiology to develop innovative therapeutic strategies. Exosomal RNAs (exoRNA), particularly microRNAs (miRNAs) within cardiac tissues, play a critical role in intercellular communication and pathophysiological processes of AMI. METHODS This study aimed to delineate the exoRNA landscape, focusing especially on miRNAs in animal models using high-throughput sequencing. The approach included sequencing analysis to identify significant miRNAs in AMI, followed by validation of the functions of selected miRNAs through in vitro studies involving primary cardiomyocytes and fibroblasts. RESULTS Numerous differentially expressed miRNAs in AMI were identified using five mice per group. The functions of 20 selected miRNAs were validated through in vitro studies with primary cardiomyocytes and fibroblasts. CONCLUSIONS This research enhances understanding of post-AMI molecular changes in cardiac tissues and investigates the potential of exoRNAs as biomarkers or therapeutic targets. These findings offer new insights into the molecular mechanisms of AMIs, paving the way for RNA-based diagnostics and therapeutics and therapies and contributing to the advancement of cardiovascular medicine.
Collapse
Affiliation(s)
- Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Sang Woo Kim
- International St. Mary's Hospital, Incheon 22711, Republic of Korea
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
49
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
50
|
Bi PY, Killackey SA, Schweizer L, Girardin SE. NLRX1: Versatile functions of a mitochondrial NLR protein that controls mitophagy. Biomed J 2024; 47:100635. [PMID: 37574163 PMCID: PMC10837482 DOI: 10.1016/j.bj.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
NLRX1 is a member of the of the Nod-like receptor (NLR) family, and it represents a unique pattern recognition molecule (PRM) as it localizes to the mitochondrial matrix in resting conditions. Over the past fifteen years, NLRX1 has been proposed to regulate multiple cellular processes, including antiviral immunity, apoptosis, reactive oxygen species (ROS) generation and mitochondrial metabolism. Similarly, in vivo models have shown that NLRX1 was associated with the control of a number of diseases, including multiple sclerosis, colorectal cancer and ischemia-reperfusion injury. This apparent versatility in function hinted that a common and general overarching role for NLRX1 may exist. Recent evidence has suggested that NLRX1 controls mitophagy through the detection of a specific "danger signal", namely the defective import of proteins into mitochondria, or mitochondrial protein import stress (MPIS). In this review article, we propose that mitophagy regulation may represent the overarching process detected by NLRX1, which could in turn impact on a number of diseases if dysfunctional.
Collapse
Affiliation(s)
- Paul Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|