1
|
Chhabra A, Bashirians G, Petropoulos CJ, Wrin T, Paliwal Y, Henstock PV, Somanathan S, da Fonseca Pereira C, Winburn I, Rasko JE. Global seroprevalence of neutralizing antibodies against adeno-associated virus serotypes used for human gene therapies. Mol Ther Methods Clin Dev 2024; 32:101273. [PMID: 39022744 PMCID: PMC11253686 DOI: 10.1016/j.omtm.2024.101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Adeno-associated virus (AAV) vectors are promising gene therapy candidates, but pre-existing anti-AAV neutralizing antibodies (NAbs) pose a significant challenge to successful gene delivery. Knowledge of NAb seroprevalence remains limited and inconsistent. We measured activity of NAbs against six clinically relevant AAV serotypes across 10 countries in adults (n = 502) and children (n = 50) using a highly sensitive transduction inhibition assay. NAb prevalence was generally highest for AAV1 and lowest for AAV5. There was considerable variability across countries and geographical regions. NAb prevalence increased with age and was higher in females, participants of Asian ethnicity, and participants in cancer trials. Co-prevalence was most frequently observed between AAV1 and AAV6 and less frequently between AAV5 and other AAVs. Machine learning analyses revealed a unique clustering of AAVs that differed from previous phylogenetic classifications. These results offer insights into the biological relationships between the immunogenicity of AAVs in humans beyond that observed previously using standard clades, which are based on linear capsid sequences. Our findings may inform improved vector design and facilitate the development of AAV vector-mediated clinical gene therapies.
Collapse
Affiliation(s)
| | | | | | - Terri Wrin
- Labcorp-Monogram Biosciences, South San Francisco, CA, USA
| | | | | | | | | | | | - John E.J. Rasko
- University of Sydney, Central Clinical School, Faculty of Medicine & Health, Sydney, NSW, Australia
- Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
4
|
Liu X, Pacwa A, Bresciani G, Swierczynska M, Dorecka M, Smedowski A. Retinal primary cilia and their dysfunction in retinal neurodegenerative diseases: beyond ciliopathies. Mol Med 2024; 30:109. [PMID: 39060957 PMCID: PMC11282803 DOI: 10.1186/s10020-024-00875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cilia are sensory organelles that extend from the cellular membrane and are found in a wide range of cell types. Cilia possess a plethora of vital components that enable the detection and transmission of several signaling pathways, including Wnt and Shh. In turn, the regulation of ciliogenesis and cilium length is influenced by various factors, including autophagy, organization of the actin cytoskeleton, and signaling inside the cilium. Irregularities in the development, maintenance, and function of this cellular component lead to a range of clinical manifestations known as ciliopathies. The majority of people with ciliopathies have a high prevalence of retinal degeneration. The most common theory is that retinal degeneration is primarily caused by functional and developmental problems within retinal photoreceptors. The contribution of other ciliated retinal cell types to retinal degeneration has not been explored to date. In this review, we examine the occurrence of primary cilia in various retinal cell types and their significance in pathology. Additionally, we explore potential therapeutic approaches targeting ciliopathies. By engaging in this endeavor, we present new ideas that elucidate innovative concepts for the future investigation and treatment of retinal ciliopathies.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Anna Pacwa
- GlaucoTech Co, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | | | - Marta Swierczynska
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co, Katowice, Poland.
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland.
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
| |
Collapse
|
5
|
Colombo L, Bonetti G, Maltese PE, Iarossi G, Ziccardi L, Fogagnolo P, De Ruvo V, Murro V, Giorgio D, Falsini B, Placidi G, Martella S, Galantin E, Bertelli M, Rossetti L. Genotypic and Phenotypic Characterization of a Cohort of Patients Affected by Rod Cyclic Nucleotide Channel-Associated Retinitis Pigmentosa. Ophthalmic Res 2024; 67:301-310. [PMID: 38705136 DOI: 10.1159/000538746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Gabriele Bonetti
- MAGI'S LAB S.R.L., Rovereto, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Paolo Fogagnolo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Valentino De Ruvo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Eleonora Galantin
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Matteo Bertelli
- MAGI'S LAB S.R.L., Rovereto, Italy
- MAGI EUREGIO, Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, Peachtree Corners, Georgia, USA
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Salehi O, Mack H, Colville D, Lewis D, Savige J. Ocular manifestations of renal ciliopathies. Pediatr Nephrol 2024; 39:1327-1346. [PMID: 37644229 PMCID: PMC10942941 DOI: 10.1007/s00467-023-06096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Renal ciliopathies are a common cause of kidney failure in children and adults, and this study reviewed their ocular associations. Genes affected in renal ciliopathies were identified from the Genomics England Panels. Ocular associations were identified from Medline and OMIM, and the genes additionally examined for expression in the human retina ( https://www.proteinatlas.org/humanproteome/tissue ) and for an ocular phenotype in mouse models ( http://www.informatics.jax.org/ ). Eighty-two of the 86 pediatric-onset renal ciliopathies (95%) have an ocular phenotype, including inherited retinal degeneration, oculomotor disorders, and coloboma. Diseases associated with pathogenic variants in ANK6, MAPKBP1, NEK8, and TCTN1 have no reported ocular manifestations, as well as low retinal expression and no ocular features in mouse models. Ocular abnormalities are not associated with the most common adult-onset "cystic" kidney diseases, namely, autosomal dominant (AD) polycystic kidney disease and the AD tubulointerstitial kidney diseases (ADTKD). However, other kidney syndromes with cysts have ocular features including papillorenal syndrome (optic disc dysplasia), Hereditary Angiopathy Nephropathy, Aneurysms and muscle Cramps (HANAC) (tortuous retinal vessels), tuberous sclerosis (retinal hamartomas), von Hippel-Lindau syndrome (retinal hemangiomas), and Alport syndrome (lenticonus, fleck retinopathy). Ocular abnormalities are associated with many pediatric-onset renal ciliopathies but are uncommon in adult-onset cystic kidney disease. However the demonstration of ocular manifestations may be helpful diagnostically and the features may require monitoring or treatment.
Collapse
Affiliation(s)
- Omar Salehi
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Heather Mack
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Deb Colville
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Debbie Lewis
- Nephrology Department, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
7
|
Giacalone JC, Parkinson DH, Balikov DA, Rajesh CR. AMD and Stem Cell-Based Therapies. Int Ophthalmol Clin 2024; 64:21-33. [PMID: 38146879 PMCID: PMC10783850 DOI: 10.1097/iio.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) is a prevalent and complex disease leading to severe vision loss. Stem cells offer promising prospects for AMD treatment as they can be differentiated into critical retinal cell types that could replace lost host retinal cells or provide trophic support to promote host retinal cell survival. However, challenges such as immune rejection, concerns regarding tumorigenicity, and genomic integrity must be addressed. Clinical trials with stem cell-derived retinal pigment epithelial cells have shown preliminary safety in treating dry AMD, but improvements in manufacturing and surgical techniques cell delivery are needed. Late-stage AMD poses additional hurdles, possibly requiring multi-layered grafts. Advancements in automation technologies and gene correction strategies show potential to enhance iPSC-based therapies. Stem cell-based treatments offer hope for AMD management, but further research and optimization are essential for successful clinical implementation.
Collapse
Affiliation(s)
- Joseph C. Giacalone
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - David H. Parkinson
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A. Balikov
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - C. Rao Rajesh
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Chwiejczak K, Byles D, Gerry P, Von Lany H, Tasiopoulou A, Hattersley A. Multimodal analysis in symptomatic MIDD-associated retinopathy. A case report and literature review. GMS OPHTHALMOLOGY CASES 2023; 13:Doc23. [PMID: 38111473 PMCID: PMC10726563 DOI: 10.3205/oc000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Purpose To present results of contemporary multimodal ophthalmic imaging in a case of maternally inherited diabetes and deafness (MIDD) and a literature review of MIDD. Methods A case of a 47-year-old female with diabetes mellitus, severe insulin resistance, familial lipodystrohy, deafness and increasing problems with vision is reported. A full ophthalmic examination was done, including best corrected visual acuity (BCVA, LogMAR), funduscopy, and imaging studies: optical coherence tomography (OCT), OCT angiography (OCT-A), fundus autofloresence (FAF), visual fields (HVF) 10-2 , electrophysiology (EP) and genetic testing were performed. Literature available on the topic was reviewed. Results BCVA was 0.06 LogMAR in the right eye and 0.1 LogMAR in the left. Funduscopy revealed atrophy (AT) and pigmentary changes but no diabetic retinopathy. HVF confirmed corresponding defects. The imaging and diagnostic tests showed the following abnormalities: FAF: hypoautofluoresence in areas of AT and mottled appearance in the macular and peripapillary area; OCT: attenuation of outer retinal layers and retinal pigment epithelium (RPE) in the AT; OCT-A: thinning of the deep capillary plexus and choriocapillaris; EP: abnormalities on full field electroretinogram (ERG), 30 Hz flicker and single cone flash response; multifocal ERG: reduced responses; genetic testing: A-to-G transition mutation at position 3243 of the mitochondrial genome, typical for MIDD. After one year OCT ganglion cell analysis showed loss of thickness. Conclusions Genetic testing should be considered in diabetic patients with pigmentary retinopathy. Imaging studies and diagnostic testing showed structural and functional retinal changes, confined to the macula and progressive in nature.
Collapse
Affiliation(s)
- Katarzyna Chwiejczak
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- The University of Sydney, Australia
| | - Daniel Byles
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Paul Gerry
- Neurophysiology Department, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Hirut Von Lany
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Anastasia Tasiopoulou
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- Athens Eye Center, Athens, Greece
| | - Andrew Hattersley
- The MacLeod Diabetes and Endocrine Centre, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- College of Medicine and Health, University of Exeter, United Kingdom
| |
Collapse
|
9
|
Paez-Escamilla M, Alabek ML, Beale O, Prensky CJ, Lejoyeux R, Friberg TR, Sahel JA, Rosin B. An Optical Coherence Tomography-Based Measure as an Independent Estimate of Retinal Function in Retinitis Pigmentosa. Diagnostics (Basel) 2023; 13:3521. [PMID: 38066762 PMCID: PMC10706660 DOI: 10.3390/diagnostics13233521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND With the clinical advances in the field of gene therapy, the development of objective measures of visual function of patients with inherited retinal dystrophies (IRDs) is of utmost importance. Here, we propose one such measure. METHODS We retrospectively analyzed data from a cohort of 194 eyes of 97 genetically diagnosed patients with retinitis pigmentosa (RP), the most common IRD, followed at the UPMC Vision Institute. The analyzed data included the reflectivity ratio (RR) of the retinal nerve fiber layer (RNFL) to that of the entire retina, visual acuity (VA) and the thickness of the retinal outer nuclear layer (ONL) and the RNFL. RESULTS There was a strong positive correlation between the RR and VA. Both VA and the RR were negatively correlated with disease duration; VA, but not the RR, was negatively correlated with age. The RR correlated with the ONL but not with the RNFL thickness or the intraocular pressure. Age, RR, disease duration and ONL thickness were found to be independent predictors of VA by multivariate analysis. CONCLUSION The OCT RR could serve as an independent predictor of visual acuity, and by extension of retinal function, in genetically diagnosed RP patients. Such objective measures can be of great value in patient selection for therapeutic trials.
Collapse
Affiliation(s)
- Manuel Paez-Escamilla
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
- Department of Ophthalmology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michelle L. Alabek
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| | - Oliver Beale
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| | - Colin J. Prensky
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| | - Raphael Lejoyeux
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
- Rothschild Foundation Hospital, 75019 Paris, France
- Institut Oeil Paupiere, Viry-Chatillon, 91170 Paris, France
| | - Thomas R. Friberg
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| | - Jose-Alain Sahel
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| | - Boris Rosin
- Department of Ophthalmology/UPMC Vision Institute, University of Pittsburgh Medical Center (UPMC), 1622 Locust Street, Pittsburgh, PA 15219, USA; (M.P.-E.); (M.L.A.); (O.B.); (C.J.P.); (R.L.); (T.R.F.); (J.-A.S.)
| |
Collapse
|
10
|
Matsevich C, Gopalakrishnan P, Chang N, Obolensky A, Beryozkin A, Salameh M, Kostic C, Sharon D, Arsenijevic Y, Banin E. Gene augmentation therapy attenuates retinal degeneration in a knockout mouse model of Fam161a retinitis pigmentosa. Mol Ther 2023; 31:2948-2961. [PMID: 37580905 PMCID: PMC10556223 DOI: 10.1016/j.ymthe.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.
Collapse
Affiliation(s)
- Chen Matsevich
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Ning Chang
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Manar Salameh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
11
|
Danish E, Alhashem A, Aljehani R, Aljawi A, Aldarwish MM, Al Mutairi F, Alfadhel M, Alrifai MT, Alobaisi S. Phenotype and genotype of 15 Saudi patients with achromatopsia: A case series. Saudi J Ophthalmol 2023; 37:301-306. [PMID: 38155673 PMCID: PMC10752271 DOI: 10.4103/sjopt.sjopt_108_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE Achromatopsia is a rare stationary retinal disorder that primarily affects the cone photoreceptors. Individuals with achromatopsia present with photophobia, nystagmus, reduced visual acuity (VA), and color blindness. Multiple genes responsible for achromatopsia have been identified (e.g. cyclic nucleotide-gated channel subunit alpha 3 [CNGA3] and activating transcription factor 6). Studies have assessed the role of gene therapy in achromatopsia. Therefore, for treatment and prevention, the identification of phenotypes and genotypes is crucial. Here, we described the clinical manifestations and genetic mutations associated with achromatopsia in patients from Saudi Arabia. METHODS This case series study included 15 patients with clinical presentations, suggestive of achromatopsia, who underwent ophthalmological and systemic evaluations. Patients with typical achromatopsia phenotype underwent genetic evaluation using whole-exome testing. RESULTS All patients had nystagmus (n = 15) and 93.3% had photophobia (n = 14). In addition, all patients (n = 15) had poor VA. Hyperopia with astigmatism was observed in 93.3% (n = 14) and complete color blindness in 93.3% of the patients (n = 14). In the context of family history, both parents of all patients (n = 15) were genetic carriers, with a high consanguinity rate (82%, n = 9 families). Electroretinography showed cone dysfunction with normal rods in 66.7% (n = 10) and both cone-rod dysfunction in 33.3% (n = 5) patients. Regarding the genotypic features, 93% of patients had variants in CNGA3 (n = 14) categorized as pathogenic Class 1 (86.7%, n = 13). Further, 66.7% (n = 10) of patients also harbored the c.661C>T DNA variant. Further, the patients were homozygous for these mutations. Three other variants were also identified: c.1768G>A (13.3%, n = 2), c.830G>A (6.6%, n = 1), and c. 822G >T (6.6%, n = 1). CONCLUSION Consanguinity and belonging to the same tribe are major risk factors for disease inheritance. The most common genotype was CNGA3 with the c.661C>T DNA variant. We recommend raising awareness among families and providing genetic counseling for this highly debilitating disease.
Collapse
Affiliation(s)
- Enam Danish
- Department of Ophthalmology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatric, Division of Genetic and Metabolic Medicine, Prince Sultan Medical Military City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Reham Aljehani
- Department of Ophthalmology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anan Aljawi
- Department of Ophthalmology, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Manar M. Aldarwish
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhammad T. Alrifai
- King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Pediatric Ophthalmology Division, Department of Pediatric Surgery, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Saif Alobaisi
- Pediatric Ophthalmology Division, Department of Pediatric Surgery, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Areblom M, Kjellström S, Andréasson S, Öhberg A, Gränse L, Kjellström U. A Description of the Yield of Genetic Reinvestigation in Patients with Inherited Retinal Dystrophies and Previous Inconclusive Genetic Testing. Genes (Basel) 2023; 14:1413. [PMID: 37510321 PMCID: PMC10379620 DOI: 10.3390/genes14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the present era of evolving gene-based therapies for inherited retinal dystrophies (IRDs), it has become increasingly important to verify the genotype in every case, to identify all subjects eligible for treatment. Moreover, combined insight concerning phenotypes and genotypes is crucial for improved understanding of thevisual impairment, prognosis, and inheritance. The objective of this study was to investigate to what extent renewed comprehensive genetic testing of patients diagnosed with IRD but with previously inconclusive DNA test results can verify the genotype, if confirmation of the genotype has an impact on the understanding of the clinical picture, and, to describe the genetic spectrum encountered in a Swedish IRD cohort. The study included 279 patients from the retinitis pigmentosa research registry (comprising diagnosis within the whole IRD spectrum), hosted at the Department of Ophthalmology, Skåne University hospital, Sweden. The phenotypes had already been evaluated with electrophysiology and other clinical tests, e.g., visual acuity, Goldmann perimetry, and fundus imaging at the first visit, sometime between 1988-2015 and the previous-in many cases, multiple-genetic testing, performed between 1995 and 2020 had been inconclusive. All patients were aged 0-25 years at the time of their first visit. Renewed genetic testing was performed using a next generation sequencing (NGS) IRD panel including 322 genes (Blueprint Genetics). Class 5 and 4 variants, according to ACMG guidelines, were considered pathogenic. Of the 279 samples tested, a confirmed genotype was determined in 182 (65%). The cohort was genetically heterogenous, including 65 different genes. The most prevailing were ABCA4 (16.5%), RPGR (6%), CEP290 (6%), and RS1 (5.5%). Other prevalent genes were CACNA1F (3%), PROM1 (3%), CHM (3%), and NYX (3%). In 7% of the patients there was a discrepancy between the diagnosis made based on phenotypical or genotypical findings alone. To conclude, repeated DNA-analysis was beneficial also in previously tested patients and improved our ability to verify the genotype-phenotype association increasing the understanding of how visual impairment manifests, prognosis, and the inheritance pattern. Moreover, repeated testing using a widely available method could identify additional patients eligible for future gene-based therapies.
Collapse
Affiliation(s)
- Maria Areblom
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Sten Andréasson
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Lotta Gränse
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Ulrika Kjellström
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
13
|
Li B, Tan W, Wang Z, Zhou H, Zou J, Li Y, Yoshida S, Zhou Y. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: A bibliometric analysis. Heliyon 2023; 9:e18228. [PMID: 37539253 PMCID: PMC10395483 DOI: 10.1016/j.heliyon.2023.e18228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Background Gene therapy is a treatment approach at the genetic level, which brings great advances in many diseases and develops rapidly in recent years. Currently, its mechanism of action is mainly through the replacement of missing or defective genes, or the reduction of harmful gene products. However, the application of gene therapy in ophthalmology remains limited. Methods A total of 1143 articles and reviews published in the field of ocular gene therapies were found in the Web of Science Core Collection database and used for the bibliometric analysis. CiteSpace was mainly applied to the network analysis of countries, institutions, keywords, and dual-map overlay of journals. The visual analysis of authors, journals, and references was used by VOSviewer. The geographical distribution of publications was conducted by R language. Results The annual publications are increasing in general. Currently, the USA and the UK are two main sources of publications in this field. Switzerland, Denmark, and Finland are the top 3 countries that establish the most cooperation and exchanges with other countries or regions. The most cited and co-cited journal in this field is Investigative Ophthalmology & Visual Science. Gene therapy studies for eye diseases are mainly focused on retinal dysfunctions by the analysis of references, keywords, and counting of original research, including Leber's congenital amaurosis and retinitis pigmentosa. Conclusion This study used bibliometrics to analyze overall characteristics and put forward prospects for the future in the field of gene therapy in ophthalmology. Ocular diseases, especially hereditary retinal diseases, will be the major focus of gene therapy in the future.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
14
|
Lisbjerg K, Bertelsen M, Lyng Forman J, Grønskov K, Prener Holtan J, Kessel L. Disease progression of retinitis pigmentosa caused by PRPF31 variants in a Nordic population: a retrospective study with up to 36 years follow-up. Ophthalmic Genet 2023; 44:139-146. [PMID: 36164253 DOI: 10.1080/13816810.2022.2123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND/AIMS To investigate the natural history of PRPF31-related retinitis pigmentosa (RP11). MATERIALS AND METHODS We identified individuals with RP11 and collected retrospective data from disease onset to present date including genetics, demographic data, Goldmann visual field areas, and visual acuity measurements. Visual fields were evaluated as summed squared degrees and best-corrected visual acuity was converted to logMAR. We performed linear mixed model regression analysis to evaluate annual disease progression, and survival analysis to evaluate the age of legal blindness. RESULTS We included 46 subjects with RP11. Median age of disease onset was 10 years (range 5-65). Follow-up spanned from 0 to 36 years with a median of 8 years. Median Goldmann visual field areas decreased by 10.0% per year (95% CI 7.5%-12.4%) with target IV4e, 7.9% (95% CI 4.5% - 11.2%) with target III4e, and 9.3% (95% CI: 7.0% -11.5%) when combining target sizes. Individuals with RP11 maintained good visual acuity until late stage of disease. Legal blindness was reached at a median age of 57 years (95% CI 50-75 years). CONCLUSIONS PRPF31 variants cause autosomal dominant retinitis pigmentosa that most commonly manifests in childhood with a variable disease progression. Visual field area deteriorates faster than visual acuity and was the major cause of legal blindness in our study population. This study characterizes disease progression in retinitis pigmentosa caused by PRPF31-variants and demonstrates the importance of differentiation between specific genotypes when counselling patients and conducting natural history studies of RP.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Adachi H, Pan Y, He X, Chen JL, Klein B, Platenburg G, Morais P, Boutz P, Yu YT. Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes. Mol Cell 2023; 83:637-651.e9. [PMID: 36764303 PMCID: PMC9975048 DOI: 10.1016/j.molcel.2023.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi Pan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xueyang He
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bart Klein
- ProQR Therapeutics, Leiden, the Netherlands
| | | | | | - Paul Boutz
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA; Center for Biomedical Informatics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
17
|
Simonelli F, Sodi A, Falsini B, Bacci G, Iarossi G, Di Iorio V, Giorgio D, Placidi G, Andrao A, Reale L, Fiorencis A, Aoun M. Narrative medicine to investigate the quality of life and emotional impact of inherited retinal disorders through the perspectives of patients, caregivers and clinicians: an Italian multicentre project. BMJ Open 2022; 12:e061080. [PMID: 36123082 PMCID: PMC9486281 DOI: 10.1136/bmjopen-2022-061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Although inherited retinal disorders (IRDs) related to the gene encoding the retinal pigment epithelium 65kD protein (RPE65) significantly impact the vision-related quality of life (VRQoL), their emotional and social aspects remain poorly investigated in Italy. Narrative Medicine (NM) reveals the more intimate aspects of the illness experience, providing insights into clinical practice. DESIGN AND SETTING This NM project was conducted in Italy between July and December 2020 and involved five eye clinics specialised in IRDs. Illness plots and parallel charts, together with a sociodemographic survey, were collected through the project's website; remote in-depth interviews were also conducted. Narratives and interviews were analysed through NVivo software and interpretive coding. PARTICIPANTS 3 paediatric and 5 adult patients and eight caregivers participated in the project; 11 retinologists globally wrote 27 parallel charts; 5 professionals from hospital-based multidisciplinary teams and one patient association member were interviewed. RESULTS Findings confirmed that RPE65-related IRDs impact VRQoL in terms of activities and mobility limitations. The emotional aspects emerged as crucial in the clinical encounter and as informative on IRD management challenges and real-life experiences, while psychological support was addressed as critical from clinical diagnosis throughout the care pathway for both patients and caregivers; the need for an IRDs 'culture' emerged to acknowledge these conditions, and therefore, promoting diversity within society. CONCLUSIONS The project was the first effort to investigate the impact of RPE65-related IRDs on the illness experience through NM, concomitantly addressing the perspectives of paediatric and adult patients, caregivers and healthcare professionals and provided preliminary insights for the knowledge of RPE65-related IRDs and the clinical practice.
Collapse
Affiliation(s)
- Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli, Naples, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Benedetto Falsini
- UOC Oftalmologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Giacomo Bacci
- Pediatric Ophthalmology Unit, Children's Hospital A. Meyer, University of Florence, Florence, Italy
| | - Giancarlo Iarossi
- Ophthalmology Department, Bambino Gesù IRCCS Pediatric Hospital, Rome, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli, Naples, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Giorgio Placidi
- UOC Oftalmologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | | | | | | | | |
Collapse
|
18
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
19
|
Battu R, Ratra D, Gopal L. Newer therapeutic options for inherited retinal diseases: Gene and cell replacement therapy. Indian J Ophthalmol 2022; 70:2316-2325. [PMID: 35791112 PMCID: PMC9426045 DOI: 10.4103/ijo.ijo_82_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal diseases (IRD) are genotypically and phenotypically varied disorders that lead to progressive degeneration of the outer retina and the retinal pigment epithelium (RPE) eventually resulting in severe vision loss. Recent research and developments in gene therapy and cell therapy have shown therapeutic promise in these hitherto incurable diseases. In gene therapy, copies of a healthy gene are introduced into the host cells via a viral vector. Clinical trials for several genes are underway while treatment for RPE65 called voretigene neparvovec, is already approved and commercially available. Cell therapy involves the introduction of stem cells that can replace degenerated cells. These therapies are delivered to the target tissues, namely the photoreceptors (PR) and RPE via subretinal, intravitreal, or suprachoroidal delivery systems. Although there are several limitations to these therapies, they are expected to slow the disease progression and restore some visual functions. Further advances such as gene editing technologies are likely to result in more precise and personalized treatments. Currently, several IRDs such as retinitis pigmentosa, Stargardt disease, Leber congenital amaurosis, choroideremia, achromatopsia, and Usher syndrome are being evaluated for possible gene therapy or cell therapy. It is important to encourage patients to undergo gene testing and maintain a nationwide registry of IRDs. This article provides an overview of the basics of these therapies and their current status.
Collapse
Affiliation(s)
- Rajani Battu
- Aster CMI Hospital; Centre for Eye Genetics and Research, Bengaluru, Karnataka, India
| | - Dhanashree Ratra
- Department of Vitreoretinal Diseases, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Lingam Gopal
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Eye Research, Singapore
| |
Collapse
|
20
|
Kwak JJ, Kim HR, Byeon SH. Short-Term Outcomes of the First in Vivo Gene Therapy for RPE65-Mediated Retinitis Pigmentosa. Yonsei Med J 2022; 63:701-705. [PMID: 35748082 PMCID: PMC9226827 DOI: 10.3349/ymj.2022.63.7.701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Here, we report early treatment outcomes of gene therapy for early onset retinitis pigmentosa (RP) (Leber congenital amaurosis) associated with biallelic RPE65 mutation in a 30-year-old female patient. Initially, her visual acuity (VA) was 20/200, and her visual field (VF) was severely constricted to the center in the left eye. Her electroretinography showed nearly extinct signals. Full-field stimulus threshold test (FST) revealed diminished dark-adapted light sensitivity. Voretigene neparvovec-rzyl (VN) is the first in vivo viral gene therapy agent to be approved. At 3 months after subretinal injection of VN in the left eye, VA, VF, and FST showed sustained improvement. She did not exhibit any signs of adverse effects from the treatment. Gene therapy for RP proved to be an effective and safe treatment in an advanced case of RPE65-associatied early onset RP.
Collapse
Affiliation(s)
- Jay Jiyong Kwak
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hae Rang Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Brophy ML, Stansfield JC, Ahn Y, Cheng SH, Murphy JE, Bell RD. AAV-mediated expression of galactose-1-phosphate uridyltransferase corrects defects of galactose metabolism in classic galactosemia patient fibroblasts. J Inherit Metab Dis 2022; 45:481-492. [PMID: 34918784 DOI: 10.1002/jimd.12468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022]
Abstract
Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury. Consequently, developing a therapeutic strategy that reverses both the oxidative and ER stress in CG cells may be helpful in combating this disease. Recombinant adeno-associated virus (AAV)-mediated gene therapy to restore GALT activity offers the potential to address the unmet medical needs of galactosemia patients. Here, utilizing fibroblasts derived from CG patients we demonstrated that AAV-mediated augmentation of GALT protein and activity resulted in the prevention of ER and oxidative stress. We also demonstrate that these CG patient fibroblasts exhibit reduced CD109 and TGFβRII protein levels and that these effectors of cellular homeostasis could be restored following AAV-mediated expression of GALT. Finally, we show initial in vivo proof-of-concept restoration of galactose metabolism in a GALT knockout mouse model following treatment with AAV-GALT.
Collapse
Affiliation(s)
- Megan L Brophy
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - John C Stansfield
- Early Clinical Development, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Youngwook Ahn
- Target Sciences, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Seng H Cheng
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - John E Murphy
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Robert D Bell
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Bonillo M, Pfromm J, Fischer MD. Challenges to Gene Editing Approaches in the Retina. Klin Monbl Augenheilkd 2022; 239:275-283. [PMID: 35316854 DOI: 10.1055/a-1757-9810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retinal gene therapy has recently been at the cutting edge of clinical development in the diverse field of genetic therapies. The retina is an attractive target for genetic therapies such as gene editing due to the distinctive anatomical and immunological features of the eye, known as immune privilege, so that inherited retinal diseases (IRDs) have been studied in several clinical studies. Thus, rapid strides are being made toward developing targeted treatments for IRDs. Gene editing in the retina faces a group of heterogenous challenges, including editing efficiencies, off-target effects, the anatomy of the target organ, immune responses, inactivation, and identifying optimal application methods. As clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) based technologies are at the forefront of current gene editing advances, their specific editing efficiency challenges and potential off-target effects were assessed. The immune privilege of the eye reduces the likelihood of systemic immune responses following retinal gene therapy, but possible immune responses must not be discounted. Immune responses to gene editing in the retina may be humoral or cell mediated, with immunologically active cells, including microglia, implicated in facilitating possible immune responses to gene editing. Immunogenicity of gene therapeutics may also lead to the inactivation of edited cells, reducing potential therapeutic benefits. This review outlines the broad spectrum of potential challenges currently facing retinal gene editing, with the goal of facilitating further advances in the safety and efficacy of gene editing therapies.
Collapse
Affiliation(s)
- Mario Bonillo
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Julia Pfromm
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany.,Oxford University NHS Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
23
|
Wang Y, Punzo C, Ash JD, Lobanova ES. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc Natl Acad Sci U S A 2022; 119:e2118479119. [PMID: 35275792 PMCID: PMC8931319 DOI: 10.1073/pnas.2118479119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceStudies in multiple experimental systems have demonstrated that an increase in proteolytic capacity of post-mitotic cells improves cellular resistance to a variety of stressors, delays cellular aging and senescence. Therefore, approaches to increase the ability of cells to degrade misfolded proteins could potentially be applied to the treatment of a broad spectrum of human disorders. An example would be retinal degenerations, which cause irreversible loss of vision and are linked to impaired protein degradation. This study suggests that chronic activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in degenerating photoreceptor neurons could stimulate the degradation of ubiquitinated proteins and enhance proteasomal activity through phosphorylation.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655
| | - John D. Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
24
|
Liu C, Chen B, Shi W, Huang W, Qian H. Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol Pharm 2022; 19:1033-1046. [PMID: 35274963 DOI: 10.1021/acs.molpharmaceut.1c00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ionic liquids (ILs) are a class of nonmolecular compounds composed only of ions. Compared with traditional organic solvents, ILs have the advantages of wide chemical space, diverse and flexible structures, negligible vapor pressure, and high thermal stability, which make them widely used in many fields of modern science, such as chemical synthesis and catalytic decomposition, electrochemistry, biomass conversion, and biotransformation biotechnology. Because of their special characteristics, ILs have been favored in the pharmaceutical field recently, especially for the development of efficient drug delivery systems. So far, ILs have been successfully designed to promote the dissolution of poorly soluble drugs and the destruction of physiological barriers, such as the tight junction between the stratum corneum and the intestinal epithelium. In addition, ILs can also be combined with other drug strategies to stabilize the structure of small molecules. This Review mainly introduces the application of ILs in drug delivery, emphasizes the potential mechanism of ILs, and presents the key research directions of ILs in the future.
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
25
|
Sallum JMF, Kaur VP, Shaikh J, Banhazi J, Spera C, Aouadj C, Viriato D, Fischer MD. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv Ther 2022; 39:1179-1198. [PMID: 35098484 PMCID: PMC8918161 DOI: 10.1007/s12325-021-02036-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inherited retinal dystrophies (IRDs) represent a genetically diverse group of progressive, visually debilitating diseases. Adult and paediatric patients with vision loss due to IRD caused by biallelic mutations in the 65-kDa retinal pigment epithelium (RPE65) gene are often clinically diagnosed as retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA). This study aimed to understand the epidemiological landscape of RPE65 gene-mediated IRD through a systematic review of the literature, as the current evidence base for its epidemiology is very limited. METHODS Medline, Embase, and other databases were searched for articles on the epidemiology of RPE65 gene-mediated IRDs from inception until June 2021. Studies were included if they were original research articles reporting the epidemiology of RP and LCA and/or proportion of RPE65 gene mutations in these clinically diagnosed or molecularly confirmed IRDs patients. RESULTS A total of 100 studies with relevant data were included in this systematic review. The range for prevalence of LCA and RP in the literature was 1.20-2.37 and 11.09-26.43 per 100,000, respectively. The proportion of RPE65 mutations in clinically diagnosed patients with LCA was found to be between ~ 2-16% within the US and major European countries (France, Germany, Italy, Spain, and the UK). This range was also comparable to our findings in the Asian region for RPE65-LCA (1.26-16.67%). Similarly, for these European countries, RPE65-RP was estimated between 0.23 and 1.94%, and RPE65-IRD range was 1.2-14%. Further, in the Americas region, mutations in RPE65 were reported to cause 1-3% of RP and 0.8-3.7% of IRD cases. Lastly, the RPE65-IRD range was 4.81-8% in the Middle East region. CONCLUSIONS There are significant variations in reporting of RPE65 proportions within countries as well as regions. Generating robust epidemiological evidence on RPE65 gene-mediated IRDs would be fundamental to support rare disease awareness, timely therapeutic intervention, and public health decision-making.
Collapse
Affiliation(s)
- Juliana M F Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | | | | | | | | | | | | | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
26
|
Yuan B, Aziz MRF, Li S, Wu J, Li D, Li RK. An electro-spun tri-component polymer biomaterial with optoelectronic properties for neuronal differentiation. Acta Biomater 2022; 139:82-90. [PMID: 34082104 DOI: 10.1016/j.actbio.2021.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022]
Abstract
Optoelectronic biomaterials have recently emerged as a potential treatment option for neurodegenerative diseases, such as optic macular degeneration. Though initial works in the field have involved bulk heterojunctions mimicking solar panels with photovoltaics (PVs) and conductive polymers (CPs), recent developments have considered abandoning CPs in such systems. Here, we developed a simple antioxidant, biocompatible, and fibrous membrane heterojunction composed of photoactive polymer poly(3-hexylthiophene) (P3HT), polycaprolactone (PCL) and polypyrrole (PPY), to facilitate neurogenesis of PC-12 cells when photo-stimulated in vitro. The photoactive prototype, referred to as PCL-P3HT/PPY, was fabricated via polymerization of pyrrole on electro-spun PCL-P3HT nanofibers to form a membrane. Four experimental groups, namely PCL alone, PCL/PPY, PCL-P3HT and PCL-P3HT/PPY, were tested. In the absence of the CP, PCL-P3HT demonstrated lower cell survival due to increased intracellular reactive oxygen/nitrogen species production. PCL-P3HT/PPY rescued these cells by virtue of scavenging radicals, where the CP, PPY, acted as an antioxidant. Apart from having lower impedance, the material also enhanced neurogenesis of PC-12 cells when photo-stimulated, compared to the traditional PCL-P3HT. Lastly, the in vitro system with PC-12 was used to demonstrate the practicality of the material for potential use as a cellular patch in optic and nerve regeneration. This work demonstrated the importance of maintaining PV-CP heterojunctions while simultaneously providing an optoelectrical platform for neural and optical tissue engineering. STATEMENT OF SIGNIFICANCE: Regeneration and repair of injured nervous systems have always been a major clinical challenge. Stem cell therapy is a promising approach for nerve regeneration, and opto-electrical stimulation, which converts light into an electrical signal, has been shown to efficiently regulate stem cell behaviors with enhanced neurogenesis. We developed a micro-fibrous membrane, composed of photoactive polymer, P3HT, scaffold material PCL and conductive polymer PPY. Our heterojunction system improved cell survival via PPY quenching PCL-P3HT-generated cell-damaging reactive oxygen species. PPY also conducted electrons produced from light-stimulated P3HT to promote neurogenesis. This photoactive microfiber biomaterial has great potential as a highly biocompatible and efficient platform to wirelessly promote neurogenesis and survival. Our approach thus showed possibilities with respect to optical tissue engineering.
Collapse
|
27
|
Girach A, Audo I, Birch DG, Huckfeldt RM, Lam BL, Leroy BP, Michaelides M, Russell SR, Sallum JM, Stingl K, Tsang SH, Yang P. RNA-based therapies in inherited retinal diseases. Ther Adv Ophthalmol 2022; 14:25158414221134602. [PMID: 36388727 PMCID: PMC9643766 DOI: 10.1177/25158414221134602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a genetically and phenotypically heterogeneous group of genetic eye disorders. There are more than 300 disease entities, and together this group of disorders affects millions of people globally and is a frequent cause of blindness or low-vision certification. However, each type is rare or ultra-rare. Characteristically, the impaired vision in IRDs is due to retinal photoreceptor dysfunction and loss resulting from mutation in a gene that codes for a retinal protein. Historically, IRDs have been considered incurable and individuals living with these blinding conditions could be offered only supportive care. However, the treatment landscape for IRDs is beginning to evolve. Progress is being made, driven by improvements in understanding of genotype-phenotype relationships, through advances in molecular genetic testing and retinal imaging. Alongside this expanding knowledge of IRDs, the current era of precision medicine is fueling a growth in targeted therapies. This has resulted in the first treatment for an IRD being approved. Several other therapies are currently in development in the IRD space, including RNA-based therapies, gene-based therapies (such as augmentation therapy and gene editing), cell therapy, visual prosthetics, and optogenetics. RNA-based therapies are a novel approach within precision medicine that have demonstrated success, particularly in rare diseases. Three antisense oligonucleotides (AONs) are currently in development for the treatment of specific IRD subtypes. These RNA-based therapies bring several key advantages in the setting of IRDs, and the potential to bring meaningful vision benefit to individuals living with inherited blinding disorders. This review will examine the increasing breadth and relevance of RNA-based therapies in clinical medicine, explore the key features that make AONs suitable for treating genetic eye diseases, and provide an overview of the three-leading investigational AONs in clinical trials.
Collapse
Affiliation(s)
- Aniz Girach
- ProQR Therapeutics, Zernikedreef 9, 2333 CK
Leiden, the Netherlands
| | - Isabelle Audo
- Centre Hospitalier National d’Ophtalmologie des
Quinze-Vingts, Centre de référence maladies rares REFERET and INSERM-DHOS
CIC 1423, CHNO des Quinze-Vingts, Paris, France
- Institute of Ophthalmology, University College
London, London, UK
- Sorbonne Université, INSERM, CNRS, Institut de
la Vision, Paris, France
| | | | - Rachel M. Huckfeldt
- Department of Ophthalmology, Harvard Medical
School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of
Miami Miller School of Medicine, Miami, FL, USA
| | - Bart P. Leroy
- Department of Ophthalmology & Center for
Medical Genetics, Ghent University Hospital & Ghent University, Ghent,
Belgium
- Division of Ophthalmology & Center for
Cellular & Molecular Therapeutics, The Children’s Hospital of
Philadelphia, Philadelphia, PA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University
College London and Moorfields Eye Hospital, London, UK
| | - Stephen R. Russell
- The University of Iowa Institute for Vision
Research, University of Iowa, Iowa City, IA, USA
| | - Juliana M.F. Sallum
- Department of Ophthalmology, Universidade
Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo,
Brazil
| | - Katarina Stingl
- Center for Ophthalmology, University Eye
Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of
Tübingen, Tübingen, Germany
| | - Stephen H. Tsang
- Jonas Children’s Vision Care and Bernard and
Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Vagelos
College of Physicians and Surgeons, Columbia University, New York, NY,
USA
- Edward S. Harkness Eye Institute, New
York-Presbyterian Hospital, New York, NY, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health &
Science University, Portland, OR, USA
| |
Collapse
|
28
|
Kaur G, Singh NK. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int J Mol Sci 2021; 23:ijms23010386. [PMID: 35008812 PMCID: PMC8745623 DOI: 10.3390/ijms23010386] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
29
|
Simonelli F, Sodi A, Falsini B, Bacci G, Iarossi G, Di Iorio V, Giorgio D, Placidi G, Andrao A, Reale L, Fiorencis A, Aoun M. Care Pathway of RPE65-Related Inherited Retinal Disorders from Early Symptoms to Genetic Counseling: A Multicenter Narrative Medicine Project in Italy. Clin Ophthalmol 2021; 15:4591-4605. [PMID: 34880596 PMCID: PMC8648274 DOI: 10.2147/opth.s331218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose Timely detection and multidisciplinary management of RPE65-related inherited retinal disorders (IRDs) can significantly improve both disease management and patient care. Thus, this Narrative Medicine (NM) project aimed to investigate the evolution of the care pathway and the expectations on genetic counseling and gene therapy by patients, caregivers, and healthcare professionals. Patients and Methods This project was conducted between July and December 2020, involving five Italian eye clinics specialized in IRDs, targeted pediatric and adult patients, their caregivers, attending retinologists and multidisciplinary healthcare professionals. Narratives and parallel charts, together with a sociodemographic survey, were collected through the project webpage. In-depth interviews were conducted with Patient Association (PA) members and multidisciplinary healthcare professionals. All data were entered into the Nvivo Software for coding and analysis. Results Three pediatric and five adult patients with early-onset RPE65-related IRDs as well as eight caregivers were enrolled; 11 retinologists globally wrote 27 parallel charts; in-depth interviews were done with five multidisciplinary healthcare professionals and one PA member. Early diagnosis remains challenging, and patients reported to have changed up to 10 healthcare professionals before accessing their specialized center. Despite the oftentimes lack of awareness of patients and caregivers on the purpose of genetic testing, participants generally consider gene therapy as a therapeutic chance and a historic breakthrough for the management of RPE65-related IRDs. Well-organized networks to support the patient’s referral to specialized centers – as well as a proper communication of the clinical and genetic diagnosis and the multidisciplinary approach – emerge as crucial aspects in facilitating an early diagnosis and management and a timely initiation of the rehabilitation pathway. Conclusion The project investigated the RPE65-related IRDs care pathway while integrating the different perspectives involved through NM. The analysis explored the patient’s pathway in Italy and confirmed the need for a well-organized network and multidisciplinary care while highlighting several preliminary areas of improvement in the management of RPE65-related IRDs.
Collapse
Affiliation(s)
- Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetto Falsini
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Testa-collo e organi di senso, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Bacci
- Paediatric Ophthalmology Unit, Children's Hospital "A. Meyer", University of Florence, Florence, Italy
| | - Giancarlo Iarossi
- Ophthalmology Department, Bambino Gesù IRCCS Paediatric Hospital, Rome, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giorgio Placidi
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Testa-collo e organi di senso, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Luigi Reale
- Healthcare Department, Fondazione ISTUD, Milan, Italy
| | | | - Manar Aoun
- Medical Department, Novartis Farma, Origgio, Italy
| |
Collapse
|
30
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
31
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
32
|
Chung DC, Birch DG, MacLaren RE. Endpoints for Measuring Efficacy in Clinical Trials for Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:63-78. [PMID: 34584045 DOI: 10.1097/iio.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Macpherson K, Aiyegbusi OL, Elston L, Myles S, Washington J, Sungum N, Briggs M, Newsome P, Calvert M. A scoping review of patient and public perspectives on cell and gene therapies. Regen Med 2021; 16:1005-1017. [PMID: 34553606 DOI: 10.2217/rme-2020-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The development and introduction of cell and gene therapies presents complex social and economic issues. Fully addressing these challenges requires engagement with patients and the public. Materials & methods: A systematically conducted scoping review was undertaken to gauge current patient and public knowledge and perspectives, and as such inform requirements for future research, education and engagement activities. Results: A heterogeneous collection of 35 studies were identified. Levels of knowledge among patients and the public were extremely variable. Studies indicated general acceptance of therapies. Conclusion: The review identified the need for tailored educational activities, and in particular the importance of addressing misconceptions. There is also a need for robust qualitative research considering perspectives on current and forthcoming licensed therapies.
Collapse
Affiliation(s)
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, B15 2TT, UK.,National Institute for Health Research (NIHR) Applied Research Centre West Midlands, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Susan Myles
- Health Technology Wales, Cardiff, CF10 4PL, UK
| | | | - Nisha Sungum
- University Hospital Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark Briggs
- Velindre University NHS Trust, Nantgarw, Cardiff, CF15 7QZ, UK
| | - Philip Newsome
- National Institute for Health Research (NIHR) Applied Research Centre West Midlands, University of Birmingham, Birmingham, B15 2TT, UK.,University Hospital Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Melanie Calvert
- Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, B15 2TT, UK.,National Institute for Health Research (NIHR) Applied Research Centre West Midlands, University of Birmingham, Birmingham, B15 2TT, UK.,National Institute for Health Research Surgical Reconstruction & Microbiology Research Centre, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
34
|
Key considerations in formulation development for gene therapy products. Drug Discov Today 2021; 27:292-303. [PMID: 34500102 DOI: 10.1016/j.drudis.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/13/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy emerged as an important area of research and led to the success of multiple product approvals in the clinic. The number of clinical trials for this class of therapeutics is expected to grow over the next decade. Gene therapy products are complex and heterogeneous, employ different types of vectors and are susceptible to degradation. The product development process for commercially viable gene-based pharmaceuticals remains challenging. In this review, challenges, stability, and drug product formulation development strategies using viral or non-viral vectors, as well as accelerated regulatory approval pathways for gene therapy products are discussed.
Collapse
|
35
|
Rasoulinejad SA, Maroufi F. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Mol Biotechnol 2021; 63:768-779. [PMID: 34057656 DOI: 10.1007/s12033-021-00345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Retinal diseases are the primary reasons for severe visual defects and irreversible blindness. Retinal diseases are also inherited and acquired. Both of them are caused by mutations in genes or disruptions in specific gene expression, which can be treated by gene-editing therapy. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) system is a frontier of gene-editing tools with great potential for therapeutic applications in the ophthalmology field to modify abnormal genes and treat the genome or epigenome-related retinal diseases. The CRISPR system is able to edit and trim the gene include deletion, insertion, inhibition, activation, replacing, remodeling, epigenetic alteration, and modify the gene expression. CRISPR-based genome editing techniques have indicated the enormous potential to treat retinal diseases that previous treatment was not available for them. Also, recent CRISPR genome surgery experiments have shown the improvement of patient's vision who suffered from severe visual loss. In this article, we review the applications of the CRISPR-Cas9 system in human or animal models for treating retinal diseases such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR), then we survey limitations of CRISPR system for clinical therapy.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
36
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
37
|
García-González J, Marhuenda-Castillo S, Romero-Carretero S, Beltrán-García J. New era of personalized medicine: Advanced therapy medicinal products in Europe. World J Immunol 2021; 11:1-10. [DOI: 10.5411/wji.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced therapy medicinal products are human medical therapies based on genes, cells, or tissues, and due to their characteristics, they offer new innovative opportunities for the treatment of diseases and injuries, especially for diseases beyond the reach of traditional approaches. These therapies are at the forefront of innovation and have historically been very controversial, although in the last decade they have gained prominence while the number of new advanced therapies has increased every year. In this regard, despite the controversy they may generate, they are expected to dominate the market in the coming decades. Technologies based on advanced therapies are the present and future of medicine and bring us closer to the long-awaited precision medicine. Here we review the field as it stands today, with a focus on the molecular mechanisms that guided the different advanced therapies approved by the European Medicines Agency, their current status, and their legal approval.
Collapse
Affiliation(s)
| | | | | | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia 46010, Spain
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, Valencia 46010, Spain
- INCLIVA Institute of Sanitary Research, Valencia 46010, Spain
| |
Collapse
|
38
|
Colombo L, Maltese PE, Castori M, El Shamieh S, Zeitz C, Audo I, Zulian A, Marinelli C, Benedetti S, Costantini A, Bressan S, Percio M, Ferri P, Abeshi A, Bertelli M, Rossetti L. Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33576794 PMCID: PMC7884295 DOI: 10.1167/iovs.62.2.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To describe the molecular epidemiology of nonsyndromic retinitis pigmentosa (RP) and Usher syndrome (US) in Italian patients. Methods A total of 591 probands (315 with family history and 276 sporadics) were analyzed. For 155 of them, we performed a family segregation study, considering a total of 382 relatives. Probands were analyzed by a customized multigene panel approach. Sanger sequencing was used to validate all genetic variants and to perform family segregation studies. Copy number variants of selected genes were analyzed by multiplex ligation-dependent probe amplification. Four patients who tested negative to targeted next-generation sequencing analysis underwent clinical exome sequencing. Results The mean diagnostic yield of molecular testing among patients with a family history of retinal disorders was 55.2% while the diagnostic yield including sporadic cases was 37.4%. We found 468 potentially pathogenic variants, 147 of which were unpublished, in 308 probands and 66 relatives. Mean ages of onset of the different classes of RP were autosomal dominant RP, 19.3 ± 12.6 years; autosomal recessive RP, 23.2 ± 16.6 years; X-linked RP, 13.9 ± 9.9 years; and Usher syndrome, 18.9 ± 9.5 years. We reported potential new genotype-phenotype correlations in three probands, two revealed by TruSight One testing. All three probands showed isolated RP caused by biallelic variants in genes usually associated with syndromes such as PERCHING and Senior-Loken or with retinal dystrophy, iris coloboma, and comedogenic acne syndrome. Conclusions This is the largest molecular study of Italian patients with RP in the literature, thus reflecting the epidemiology of the disease in Italy with reasonable accuracy.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | | | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | | | | | | | | | | | - Paolo Ferri
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Andi Abeshi
- MAGI's Lab s.r.l., Rovereto, Italy.,Department of Otolaryngology, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
39
|
How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy? Int J Mol Sci 2021; 22:ijms22147545. [PMID: 34299164 PMCID: PMC8304344 DOI: 10.3390/ijms22147545] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 01/14/2023] Open
Abstract
Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.
Collapse
|
40
|
Delivery of Genetic Information: Viral Vector and Nonviral Vector Gene Therapies. Int Ophthalmol Clin 2021; 61:35-57. [PMID: 34196317 DOI: 10.1097/iio.0000000000000360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Pleyer U, Neri P, Deuter C. New pharmacotherapy options for noninfectious posterior uveitis. Int Ophthalmol 2021; 41:2265-2281. [PMID: 33634341 PMCID: PMC8172489 DOI: 10.1007/s10792-021-01763-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Noninfectious inflammation of the posterior eye segment represents an important cause of visual impairment. It often affects relatively young people and causes a significant personal and social impact. Although steroids and nonbiologic- Disease-Modifying Antirheumatic Drugs (nbDMARDs) are effective both in acute and long- lasting diseases, however they are increasingly being replaced by biologic (DMARDs). bDMARD. This article therefore aims to identify recent advances in the therapy of noninfectious posterior segment uveitis. METHODS A Medline-search was conducted using the terms: nbDMARD, bDMARD, posterior uveitis, intermediate uveitis, treatment, corticosteroid. In addition, clinical studies were included as registered at ClinicalTrials.gov. RESULTS Currently two major lines of treatments can be identified: (1) the intraocular application of anti-inflammatory agents and (2) the introduction of new agents, e.g., (bDMARDs) and small-molecule-inhibitors. Whereas intravitreal treatments have the advantage to avoid systemic side effects, new systemic agents are progressively earning credit on the basis of their therapeutic effects. CONCLUSION Even when current treatment strategies are still hampered by the limited number of randomized controlled trials, promising progress and continuous efforts are seen.
Collapse
Affiliation(s)
- Uwe Pleyer
- Department of Ophthalmology, Charité – Universitätsmedizin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Piergiorgio Neri
- Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH USA
| | - Christoph Deuter
- Centre for Ophthalmology, University Hospital, 72076 Tuebingen, Germany
| |
Collapse
|
42
|
Thorsteinsson DA, Stefansdottir V, Eysteinsson T, Thorisdottir S, Jonsson JJ. Molecular genetics of inherited retinal degenerations in Icelandic patients. Clin Genet 2021; 100:156-167. [PMID: 33851411 PMCID: PMC8360171 DOI: 10.1111/cge.13967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022]
Abstract
The study objective was to delineate the genetics of inherited retinal degenerations (IRDs) in Iceland, a small nation of 364.000 and a genetic isolate. Benefits include delineating novel pathogenic genetic variants and defining genetically homogenous patients as potential investigative molecular therapy candidates. The study sample comprised patients with IRD in Iceland ascertained through national centralized genetic and ophthalmological services at Landspitali, a national social support institute, and the Icelandic patient association. Information on patients' disease, syndrome, and genetic testing was collected in a clinical registry. Variants were reevaluated according to ACMG/AMP guidelines. Overall, 140 IRD patients were identified (point prevalence of 1/2.600), of which 70 patients had a genetic evaluation where two-thirds had an identified genetic cause. Thirteen disease genes were found in patients with retinitis pigmentosa, with the RLBP1 gene most common (n = 4). The c.1073 + 5G > A variant in the PRPF31 gene was homozygous in two RP patients. All tested patients with X-linked retinoschisis (XLRS) had the same possibly unique RS1 pathogenic variant, c.441G > A (p.Trp147X). Pathologic variants and genes for IRDs in Iceland did not resemble those described in ancestral North-Western European nations. Four variants were reclassified as likely pathogenic. One novel pathogenic variant defined a genetically homogenous XLRS patient group.
Collapse
Affiliation(s)
| | - Vigdis Stefansdottir
- Department of Genetics and Molecular Medicine, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Thor Eysteinsson
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Ophthalmology, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Sigridur Thorisdottir
- Department of Ophthalmology, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Jon J Jonsson
- Department of Genetics and Molecular Medicine, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland.,Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
43
|
Lacy GD, Abalem MF, Andrews CA, Abuzaitoun R, Popova LT, Santos EP, Yu G, Rakine HY, Baig N, Ehrlich JR, Fahim AT, Branham KH, Swenor BK, Lichter PR, Dagnelie G, Stelmack JA, Musch DC, Jayasundera KT. The Michigan Vision-Related Anxiety Questionnaire: A Psychosocial Outcomes Measure for Inherited Retinal Degenerations. Am J Ophthalmol 2021; 225:137-146. [PMID: 33309692 DOI: 10.1016/j.ajo.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We sought to construct and validate a patient-reported outcome measure for screening and monitoring vision-related anxiety in patients with inherited retinal degenerations. DESIGN Item-response theory and graded response modeling to quantitatively validate questionnaire items generated from qualitative interviews and patient feedback. METHODS Patients at the Kellogg Eye Center (University of Michigan, Ann Arbor, Michigan, USA) with a clinical diagnosis of an inherited retinal degeneration (n = 128) participated in an interviewer-administered questionnaire. The questionnaire consisted of 166 items, 26 of which pertained to concepts of "worry" and "anxiety." The subset of vision-related anxiety questions was analyzed by a graded response model using the Cai Metropolis-Hastings Robbins-Monro algorithm in the R software mirt package. Item reduction was performed based on item fit, item information, and item discriminability. To assess test-retest variability, 25 participants completed the questionnaire a second time 4 to 16 days later. RESULTS The final questionnaire consisted of 14 items divided into 2 unidimensional domains: rod function anxiety and cone function anxiety. The questionnaire exhibited convergent validity with the Patient Health Questionnaire for symptoms of depression and anxiety. This vision-related anxiety questionnaire has high marginal reliability (0.81 for rod-function anxiety, 0.83 for cone-function anxiety) and exhibits minimal test-retest variability (ρ = 0.81 [0.64-0.91] for rod-function anxiety and ρ = 0.83 [0.68-0.92] for cone-function anxiety). CONCLUSIONS The Michigan Vision-Related Anxiety Questionnaire is a psychometrically validated 14-item patient-reported outcome measure to be used as a psychosocial screening and monitoring tool for patients with inherited retinal degenerations. It can be used in therapeutic clinical trials for measuring the benefit of an investigational therapy on a patient's vision-related anxiety.
Collapse
|
44
|
Leroy BP, Birch DG, Duncan JL, Lam BL, Koenekoop RK, Porto FBO, Russell SR, Girach A. LEBER CONGENITAL AMAUROSIS DUE TO CEP290 MUTATIONS-SEVERE VISION IMPAIRMENT WITH A HIGH UNMET MEDICAL NEED: A Review. Retina 2021; 41:898-907. [PMID: 33595255 PMCID: PMC8078118 DOI: 10.1097/iae.0000000000003133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Leber congenital amaurosis due to CEP290 mutations (LCA10) is an inherited retinal disease that often results in severe visual impairment or blindness in early childhood. Currently, there are no approved treatments, highlighting the considerable unmet medical need associated with LCA10. We aimed to review the clinical characteristics of LCA10, its impact on patients and society, and the investigational treatment strategies currently in development. METHODS Review of the current literature. RESULTS LCA10 is an autosomal recessive ciliopathy, for which the CEP290 intronic variant c.2991+1655A>G (p.Cys998X) is the most common mutation. Usually diagnosed in early childhood, most patients with LCA10 have severe visual impairment during their first decade of life, which significantly affects the quality of life and development. LCA10 also has a significant societal burden (direct and indirect costs). RNA editing using antisense oligonucleotides or Staphylococcus aureus CRISPR-associated protein-9 nuclease is currently under investigation for treatment of p.Cys998X LCA10. Specifically, the antisense oligonucleotide therapy QR-110 (sepofarsen) has demonstrated encouraging safety and efficacy data in a first-in-human trial; a phase 3 clinical trial is ongoing. CONCLUSION Interventions that can preserve or improve vision in patients with LCA10 have considerable potential to improve the patient quality of life and reduce burden of disease.
Collapse
Affiliation(s)
- Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David G. Birch
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Retina Foundation of the Southwest, Dallas, Texas
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Byron L. Lam
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robert K. Koenekoop
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fernanda B. O. Porto
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa; and
| | | |
Collapse
|
45
|
Frasson LT, Dalmaso B, Akamine PS, Kimura ET, Hamassaki DE, Del Debbio CB. Let-7, Lin28 and Hmga2 Expression in Ciliary Epithelium and Retinal Progenitor Cells. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 33749722 PMCID: PMC7991968 DOI: 10.1167/iovs.62.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Ciliary epithelium (CE) of adult mammalian eyes contains quiescent retinal progenitor/stem cells that generate neurospheres in vitro and differentiate into retinal neurons. This ability doesn't evolve efficiently probably because of regulatory mechanisms, such as microRNAs (miRNAs) that control pluripotent, progenitor, and differentiation genes. Here we investigate the presence of Let-7 miRNAs and its regulator and target, Lin28 and Hmga2, in CE cells from neurospheres, newborns, and adult tissues. Methods Newborn and adult rats CE cells were dissected into pigmented and nonpigmented epithelium (PE and NPE). Newborn PE cells were cultured with growth factors to form neurospheres and we analyzed Let-7, Lin28a, and Hmga2 expression. During the neurospheres formation, we added chemically modified single-stranded oligonucleotides designed to bind and inhibit or mimic endogenous mature Let-7b and Let-7c. After seven days in culture, we analyzed neurospheres size, number and expression of Let-7, Lin28, and Hmga2. Results Let-7 miRNAs were expressed at low rates in newborn CE cells with significant increase in adult tissues, with higher levels on NPE cells, that does not present the stem cells reprogramming ability. The Lin28a and Hmga2 protein and transcripts were more expressed in newborns than adults cells, opposed to Let-7. Neurospheres presented higher Lin28 and Hmga2 expression than newborn and adult, but similar Let-7 than newborns. Let-7b inhibitor upregulated Hmga2 expression, whereas Let-7c mimics upregulated Lin28 and downregulated Hmga2. Conclusions This study shows the dynamic of Lin28-Let-7-Hmga regulatory axis in CE cells. These components may develop different roles during neurospheres formation and postnatal CE cells.
Collapse
Affiliation(s)
- Lorena Teixeira Frasson
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Barbara Dalmaso
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla Sayami Akamine
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
46
|
Puranik N, Yadav D, Chauhan PS, Kwak M, Jin JO. Exploring the Role of Gene Therapy for Neurological Disorders. Curr Gene Ther 2021; 21:11-22. [PMID: 32940177 DOI: 10.2174/1566523220999200917114101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Gene therapy is one of the frontier fields of medical breakthroughs that poses as an effective solution to previously incurable diseases. The delivery of the corrective genetic material or a therapeutic gene into the cell restores the missing gene function and cures a plethora of diseases, incurable by the conventional medical approaches. This discovery holds the potential to treat many neurodegenerative disorders such as muscular atrophy, multiple sclerosis, Parkinson's disease (PD) and Alzheimer's disease (AD), among others. Gene therapy proves as a humane, cost-effective alternative to the exhaustive often arduous and timely impossible process of finding matched donors and extensive surgery. It also overcomes the shortcoming of conventional methods to cross the blood-brain barrier. However, the use of gene therapy is only possible after procuring the in-depth knowledge of the immuno-pathogenesis and molecular mechanism of the disease. The process of gene therapy can be broadly categorized into three main steps: elucidating the target gene, culling the appropriate vector, and determining the best mode of transfer; each step mandating pervasive research. This review aims to dissertate and summarize the role, various vectors and methods of delivery employed in gene therapy with special emphasis on therapy directed at the central nervous system (CNS) associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Science Department, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
47
|
Sauter MM, Brandt CR. Knockdown of TRIM5α or TRIM11 increases lentiviral vector transduction efficiency of human Muller cells. Exp Eye Res 2021; 204:108436. [PMID: 33440192 DOI: 10.1016/j.exer.2021.108436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
The goal of this study was to determine the expression and distribution of the host restriction factors (RFs) TRIM5α and TRIM11 in non-human primate (NHP) neural retina tissue and the human Muller cell line MIO-M1. In addition, experiments were performed to determine the effect of TRIM5α and TRIM11 knockdown on FIVGFP transduction of MIO-M1 cells with the goal of devising strategies to increase the efficiency of lentiviral (LV) gene delivery. Immunofluorescence (IF) studies indicated that TRIM5α and TRIM11 were localized predominantly in nuclei within the outer nuclear layer (ONL) and inner nuclear layer (INL) of NHP retina tissue. Double label IF indicated that TRIM5α and TRIM11 were localized to some of the retinal Muller cell nuclei. MIO-M1 cells expressed TRIM5α predominantly in the nucleus and TRIM11 primarily in the cytosol. FIVGFP transduction efficiency was significantly increased, at 4 and 7 days post transduction, in TRIM5α and TRIM11 knockdown clones (KD) compared to WT MIO-M1 cells. In addition, pretreatment with the proteasome inhibitor MG132 increased the transduction efficiency of FIVGFP in WT MIO-M1 cells. The nuclear translocation of NF-κB (p65), at 72 h post FIVGFP transduction, was enhanced in TRIM5α and TRIM11 KD clones. The expression of TRIM5α and TRIM11 in macaque neural retina tissue and MIO-M1 cells indicate the presence of these RFs in NHP retina and human Muller cells. Our data indicate that even partial knockdown of TRIM5α or TRIM11, or a short proteasome inhibitor pretreatment, can increase the transduction efficiency of a LV vector.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Minnaert AK, Devoldere J, Peynshaert K, Vercruysse L, De Smedt SC, Remaut K. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics 2021; 13:74. [PMID: 33430462 PMCID: PMC7827308 DOI: 10.3390/pharmaceutics13010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023] Open
Abstract
In the last few years, interest has grown in the use of nucleic acids as an ocular therapy for retinal genetic diseases. Recently, our research group has demonstrated that mRNA delivery could result in effective protein expression in ocular cells following subretinal injection. Yet, although mRNA therapy comes with many advantages, its immunogenicity resulting in hampered mRNA translation delays development to the clinic. Therefore, several research groups investigate possible strategies to reduce this innate immunity. In this study, we focus on B18R, an immune inhibitor to suppress the mRNA-induced innate immune responses in two ocular cell types. We made use of retinal pigment epithelial (RPE) cells and Müller cells both as immortalized cell lines and primary bovine cells. When cells were co-incubated with both B18R and mRNA-MessengerMAX lipoplexes we observed an increase in transfection efficiency accompanied by a decrease in interferon-β production, except for the Müller cells. Moreover, uptake efficiency and cell viability were not hampered. Taken together, we showed that the effect of B18R is cell type-dependent but remains a possible strategy to improve mRNA translation in RPE cells.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Laure Vercruysse
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
| | - Stefaan C. De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
49
|
EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Sci Rep 2020; 10:20770. [PMID: 33247286 PMCID: PMC7695703 DOI: 10.1038/s41598-020-77558-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing (NGS) has greatly advanced the studies of causative genes and variants of inherited diseases. While it is sometimes challenging to determine the pathogenicity of identified variants in NGS, the American College of Medical Genetics and Genomics established the guidelines to help the interpretation. However, as to the genetic screenings for patients with retinitis pigmentosa (RP) in Japan, none of the previous studies utilized the guidelines. Considering that EYS is the major causative gene of RP in Japan, we conducted stepwise genetic screening of 220 Japanese patients with RP utilizing the guidelines. Step 1-4 comprised the following, in order: Sanger sequencing for two major EYS founder mutations; targeted sequencing of all coding regions of EYS; whole genome sequencing; Sanger sequencing for Alu element insertion in RP1, a recently determined founder mutation for RP. Among the detected variants, 2, 19, 173, and 1 variant(s) were considered pathogenic and 8, 41, 44, and 5 patients were genetically solved in step 1, 2, 3, and 4, respectively. Totally, 44.5% (98/220) of the patients were genetically solved, and 50 (51.0%) were EYS-associated and 5 (5.1%) were Alu element-associated. Among the unsolved 122 patients, 22 had at least one possible pathogenic variant.
Collapse
|
50
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|