1
|
Rahman MM, Jo YY, Kim YH, Park CK. Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci 2024; 355:122954. [PMID: 39128820 DOI: 10.1016/j.lfs.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Neuropathic pain, a common symptom of several disorders, exerts a substantial socioeconomic burden worldwide. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel predominantly ex-pressed in nociceptive neurons, plays a pivotal role in nociception, by detecting various endogenous and exogenous stimuli, including heat, pro-inflammatory mediators, and physical stressors. Dysregulation of TRPV1 signaling further contributes to the pathophysiology of neuropathic pain. Therefore, targeting TRPV1 is a promising strategy for developing novel analgesics with improved efficacy and safety profiles. Several pharmacological approaches to modulate TRPV1 activity, including agonists, antagonists, and biological TRPV1 RNA interference (RNAi, small interfering RNA [siRNA]) have been explored. Despite preclinical success, the clinical translation of TRPV1-targeted therapies has encountered challenges, including hyperthermia, hypothermia, pungency, and desensitization. Nevertheless, ongoing research efforts aim to refine TRPV1-targeted interventions through structural modifications, development of selective modulators, and discovery of natural, peptide-based drug candidates. Herein, we provide guidance for researchers and clinicians involved in the development of new interventions specifically targeting TRPV1 by reviewing the existing literature and highlighting current research activities. This study further discusses potential future research endeavors for enhancing the efficacy, safety, and tolerability of TRPV1 candidates, and thereby facilitates the translation of these discoveries into effective clinical interventions to alleviate neuropathic pain disorders.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Youn-Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
2
|
Friedrich N, Németh K, Tanner M, Rosta J, Dobos I, Oszlács O, Jancsó G, Messlinger K, Dux M. Anti-CGRP antibody galcanezumab modifies the function of the trigeminovascular nocisensor complex in the rat. J Headache Pain 2024; 25:9. [PMID: 38243174 PMCID: PMC10799508 DOI: 10.1186/s10194-024-01717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) are effective in the prevention of chronic and frequent episodic migraine. Since the antibodies do not cross the blood brain barrier, their antinociceptive effect is attributed to effects in meningeal tissues. We aimed to probe if such an antibody can be visualized within the dura mater and the trigeminal ganglia following its administration to rats and to examine if the activity of the trigeminovascular nocisensor complex is influenced by this treatment. METHODS Effects of the anti-CGRP antibody galcanezumab on the trigeminovascular nocisensor complex was examined by measuring release of sensory neuropeptides and histamine from the rat dura mater. Deposits of galcanezumab were visualized by fluorescence microscopy in the trigeminal ganglion and the dura mater. RESULTS Fluorophore-labelled galcanezumab was detected in the dura mater and the trigeminal ganglion up to 30 days after treatment affirming the long-lasting modulatory effect of this antibody. In female rats, seven days after systemic treatment with galcanezumab the capsaicin-induced release of CGRP was decreased, while that of substance P (SP) was increased in the dura mater. In control rats, release of the inhibitory neuropeptide somatostatin (SOM) was higher in females than in males. Stimulation with high concentration of KCl did not significantly change the release of SOM in control animals, while in rats treated with galcanezumab SOM release was slightly reduced. Galcanezumab treatment also reduced the amount of histamine released from dural mast cells upon stimulation with CGRP, while the effect of compound 48/80 on histamine release was not changed. CONCLUSIONS Galcanezumab treatment is followed by multiple changes in the release of neuropeptides and histamine in the trigeminal nocisensor complex, which may contribute to the migraine preventing effect of anti-CGRP antibodies. These changes affecting the communication between the components of the trigeminal nocisensor complex may reduce pain susceptibility in migraine patients treated with CGRP targeting monoclonal antibodies.
Collapse
Affiliation(s)
- Nadine Friedrich
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117, Budapest, Hungary
| | - Martin Tanner
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Judit Rosta
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Ildikó Dobos
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Orsolya Oszlács
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, 91054, Erlangen-Nuremberg, Germany
| | - Mária Dux
- Department of Physiology, University of Szeged, Dóm Tér 10, 6720, Szeged, Hungary.
| |
Collapse
|
3
|
Anand S, Rajagopal S. A Comprehensive Review on the Regulatory Action of TRP Channels: A Potential Therapeutic Target for Nociceptive Pain. Neurosci Insights 2023; 18:26331055231220340. [PMID: 38146332 PMCID: PMC10749524 DOI: 10.1177/26331055231220340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
The transient receptor potential (TRP) superfamily of ion channels in humans comprises voltage-gated, non-selective cation channels expressed both in excitable as well as non-excitable cells. Four TRP channel subunits associate to create functional homo- or heterotetramers that allow the influx of calcium, sodium, and/or potassium. These channels are highly abundant in the brain and kidney and are important mediators of diverse biological functions including thermosensation, vascular tone, flow sensing in the kidney and irritant stimuli sensing. Inherited or acquired dysfunction of TRP channels influences cellular functions and signaling pathways resulting in multifaceted disorders affecting skeletal, renal, cardiovascular, and nervous systems. Studies have demonstrated the involvement of these channels in the generation and transduction of pain. Based on the multifaceted role orchestrated by these TRP channels, modulation of the activity of these channels presents an important strategy to influence cellular function by regulating intracellular calcium levels as well as membrane excitability. Therefore, there has been a remarkable pharmaceutical inclination toward TRP channels as therapeutic interventions. Several candidate drugs influencing the activity of these channels are already in the clinical trials pipeline. The present review encompasses the current understanding of TRP channels and TRP modulators in pain and pain management.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Senthilkumar Rajagopal
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, Villalón CM. Serotonergic Modulation of Neurovascular Transmission: A Focus on Prejunctional 5-HT Receptors/Mechanisms. Biomedicines 2023; 11:1864. [PMID: 37509503 PMCID: PMC10377335 DOI: 10.3390/biomedicines11071864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
5-Hydroxytryptamine (5-HT), or serotonin, plays a crucial role as a neuromodulator and/or neurotransmitter of several nervous system functions. Its actions are complex, and depend on multiple factors, including the type of effector or receptor activated. Briefly, 5-HT can activate: (i) metabotropic (G-protein-coupled) receptors to promote inhibition (5-HT1, 5-HT5) or activation (5-HT4, 5-HT6, 5-HT7) of adenylate cyclase, as well as activation (5-HT2) of phospholipase C; and (ii) ionotropic receptor (5-HT3), a ligand-gated Na+/K+ channel. Regarding blood pressure regulation (and beyond the intricacy of central 5-HT effects), this monoamine also exerts direct postjunctional (on vascular smooth muscle and endothelium) or indirect prejunctional (on autonomic and sensory perivascular nerves) effects. At the prejunctional level, 5-HT can facilitate or preclude the release of autonomic (e.g., noradrenaline and acetylcholine) or sensory (e.g., calcitonin gene-related peptide) neurotransmitters facilitating hypertensive or hypotensive effects. Hence, we cannot formulate a specific impact of 5-HT on blood pressure level, since an increase or decrease in neurotransmitter release would be favoured, depending on the type of prejunctional receptor involved. This review summarizes and discusses the current knowledge on the prejunctional mechanisms involved in blood pressure regulation by 5-HT and its impact on some vascular-related diseases.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Mexico City 20100, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Calzada de los Tenorios 235, Colonia Granjas-Coapa, Delegación Tlalpan, Mexico City 14330, Mexico
| |
Collapse
|
5
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
6
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Zhang D, Li X, Jing B, Chen Z, Shi H, Zheng Y, Chang S, Sun J, Zhao G. α-Asarone attenuates chronic sciatica by inhibiting peripheral sensitization and promoting neural repair. Phytother Res 2023; 37:151-162. [PMID: 36070878 DOI: 10.1002/ptr.7603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
This study explored the therapeutic effect of α-asarone on chronic sciatica. Thirty-two Sprague-Dawley (SD) rats were divided into four groups: the sham group, chronic constriction injury (CCI) group, pregabalin group, and α-asarone group. Hot hyperalgesia was induced after the CCI operation, and α-asarone was found to relieve chronic neuralgia. Furthermore, α-asarone reduced IL1β, IL6, TNF-α, CRP, and LPS levels and increased IL10 levels in serum. α-Asarone decreased the protein levels of TRPA1, TRPM8, and TRPV1-4 and the mRNA levels of TRPA1, TRPM8, TRPV1-4, IL1β, and TNF-α in dorsal root ganglion neurons. In the sciatic nerve, α-asarone treatment reduced the number of inflammatory cells and promoted the proliferation of Schwann cells, favouring recovery of the nerve structure. In cellular experiments, LPS induced Schwann cell apoptosis via TLR4/p38MAPK signalling; α-asarone attenuated LPS-induced Schwann cell apoptosis by decreasing TLR4, p-p38MAPK, cleaved-caspase3, and cleaved-caspase7 levels and increasing Bcl-2 and Bcl-xl expression. Overall, these findings suggest that α-asarone relieves chronic sciatica by decreasing the levels of inflammatory factors, inhibiting peripheral sensitization, and favouring the repair of damaged nerves.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhenni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huimei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jianxin Sun
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Kc E, Islam J, Park YS. Trigeminal ganglion itself can be a viable target to manage trigeminal neuralgia. J Headache Pain 2022; 23:150. [PMID: 36424545 PMCID: PMC9686102 DOI: 10.1186/s10194-022-01512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Excruciating trigeminal neuralgia (TN) management is very difficult and severely affects the patient's quality of life. Earlier studies have shown that the trigeminal ganglion (TG) comprises several receptors and signal molecules that are involved in the process of peripheral sensitization, which influences the development and persistence of neuropathic pain. Targeting TG can modulate this sensitization pathway and mediate the pain-relieving effect. So far,there are few studies in which modulation approaches to TG itself have been suggested so far. "Trigeminal ganglion modulation" and "trigeminal neuralgia" were used as search phrases in the Scopus Index and PubMed databases to discover articles that were pertinent to the topic. In this review, we address the role of the trigeminal ganglion in TN and underlying molecules and neuropeptides implicated in trigeminal pain pathways in processing pathological orofacial pain. We also reviewed different modulation approaches in TG for TN management. Furthermore, we discuss the prospect of targeting trigeminal ganglion to manage such intractable pain.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
9
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
10
|
Citak A, Kilinc E, Torun IE, Ankarali S, Dagistan Y, Yoldas H. The effects of certain TRP channels and voltage-gated KCNQ/Kv7 channel opener retigabine on calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 2022; 42:1375-1386. [PMID: 35861239 DOI: 10.1177/03331024221114773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide release in trigeminovascular system is a pivotal component of neurogenic inflammation underlying migraine pathophysiology. Transient receptor potential channels and voltage-gated KCNQ/Kv7 potassium channels expressed throughout trigeminovascular system are important targets for modulation of calcitonin gene-related peptide release. We investigated the effects of certain transient receptor potential (TRP) channels the vanilloid 1 and 4 (TRPV1 and TRPV4), the ankyrin 1 (TRPA1), and metastatin type 8 (TRPM8), and voltage-gated potassium channel (Kv7) opener retigabine on calcitonin gene-related peptide release from peripheral (dura mater and trigeminal ganglion) and central (trigeminal nucleus caudalis) trigeminal components of rats. METHODS The experiments were carried out using well-established in-vitro preparations (hemiskull, trigeminal ganglion and trigeminal nucleus caudalis) from male Wistar rats. Agonists and antagonists of TRPV1, TRPV4, TRPA1 and TRPM8 channels, and also retigabine were tested on the in-vitro release of calcitonin gene-related peptide. Calcitonin gene-related peptide concentrations were measured using enzyme-linked immunosorbent assay. RESULTS Agonists of these transient receptor potential channels induced calcitonin gene-related peptide release from hemiskull, trigeminal ganglion and trigeminal nucleus caudalis, respectively. The transient receptor potential channels-induced calcitonin gene-related peptide releases were blocked by their specific antagonists and reduced by retigabine. Retigabine also decreased basal calcitonin gene-related peptide releases in all preparations. CONCLUSION Our findings suggest that favorable antagonists of these transient receptor potential channels, or Kv7 channel opener retigabine may be effective in migraine therapy by inhibiting neurogenic inflammation that requires calcitonin gene-related peptide release.
Collapse
Affiliation(s)
- Arzu Citak
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Seyit Ankarali
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Yasar Dagistan
- Department of Neurosurgery, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Hamit Yoldas
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
11
|
Mathew T, John SK, Javali M, Vasireddy M, Nadig R, Sarma GRK. Substance use related cluster headache: A case series. Headache 2022; 62:908-910. [DOI: 10.1111/head.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Thomas Mathew
- Department of Neurology St. John's Medical College Hospital Bengaluru India
| | | | - Mahendra Javali
- Department of Neurology Ramaiah Medical College Bengaluru India
| | | | - Raghunandan Nadig
- Department of Neurology St. John's Medical College Hospital Bengaluru India
| | | |
Collapse
|
12
|
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022; 11:cells11111768. [PMID: 35681463 PMCID: PMC9179471 DOI: 10.3390/cells11111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.
Collapse
|
13
|
Stöckl SK, de Col R, Filipovic MR, Messlinger K. Nitroxyl Delivered by Angeli's Salt Causes Short-Lasting Activation Followed by Long-Lasting Deactivation of Meningeal Afferents in Models of Headache Generation. Int J Mol Sci 2022; 23:ijms23042330. [PMID: 35216445 PMCID: PMC8878050 DOI: 10.3390/ijms23042330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The role of TRPA1 receptor channels in meningeal nociception underlying the generation of headaches is still unclear. Activating as well as inhibitory effects of TRPA1 agonists have been reported in animal models of headache. The aim of the present study was to clarify the effect of the TRPA1 agonist nitroxyl (HNO) delivered by Angeli's salt in two rodent models of meningeal nociception. Single fibre recordings were performed using half-skull preparations of mice (C57BL/6) in vitro. Angeli's salt solution (AS, 300 µM) caused short-lasting vigorous increases in neuronal activity of primary meningeal afferents, followed by deactivation and desensitisation. These effects were similar in TRPA1 knockout and even more pronounced in TRPA1/TRPV1 double-knockout mice in comparison to wild-type mice. The activity of spinal trigeminal neurons with afferent input from the dura mater was recorded in vivo in anesthetised rats. AS (300 µM) or the TRPA1 agonist acrolein (100 and 300 µM) was applied to the exposed dura mater. AS caused no significant changes in spontaneous activity, while the mechanically evoked activity was reduced after acrolein application. These results do not confirm the assumption that activation of trigeminal TRPA1 receptor channels triggers the generation of headaches or contributes to its aggravation. Instead, there is evidence that TRPA1 activation may have an inhibitory function in the nociceptive trigeminal system.
Collapse
Affiliation(s)
- Stephanie K. Stöckl
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (S.K.S.); (R.d.C.)
| | - Roberto de Col
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (S.K.S.); (R.d.C.)
| | - Milos R. Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227 Dortmund, Germany;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (S.K.S.); (R.d.C.)
- Correspondence: ; Tel.: +49-160-5521215
| |
Collapse
|
14
|
Son HW, Ali DW. Endocannabinoid Receptor Expression in Early Zebrafish Development. Dev Neurosci 2022; 44:142-152. [PMID: 35168237 DOI: 10.1159/000522383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system is widely studied due to its interactions with cannabis and its role in modulating physiological responses. While most research has focused on the effects of cannabis on adult endocannabinoid systems, recent studies have begun to investigate the role of the endocannabinoid system in developing organisms. However, little is known about the spatial or temporal expression of these receptors during early development. This study combines reverse-transcriptase PCR with in situ hybridizations to compile a timeline of the developmental expression of six key cannabinoid receptors; cb1, cb2, trpv1, trpa1a, trpa1b, and gpr55 in zebrafish embryos, starting from as early as 6 hours post fertilization (hpf) until 3 days post fertilization. This time frame is roughly equivalent to two to ten weeks in human embryonic development. All six genes were confirmed to be expressed within this time range and share similarities with human and rodent expression. Cb1 expression was first detected between 12 and 24 hpf in the retina and CNS, and its expression increased thereafter and was more evident in the olfactory bulb, tegmentum, hypothalamus and gut. Cb2 expression was relatively high at the 6 and 24 hpf timepoints, as determined by RT-PCR, but was undetectable at other times. Trpv1 was first detected at 1 dpf in the trigeminal ganglia, Rohon-Beard neurons and lateral line, and its expression increased in the first 3 days post fertilization (dpf). Expression of trpa1a was first detected as late as 3 dpf in vagal neurons, whereas trpa1b was first detected at 1 dpf associated with trigeminal, glossopharyngeal and vagal ganglia. Expression of gpr55 was diffuse and widespread throughout the brain and head region but was undetectable elsewhere in the embryo. Thus, receptor expression was found to be enriched in the central nervous system and within sensory neurons. This work aims to serve as a foundation for further investigation on the role of cannabinoid and cannabinoid-interacting receptors in early embryonic development.
Collapse
Affiliation(s)
- Hae-Won Son
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Kumar A, Williamson M, Hess A, DiPette DJ, Potts JD. Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine. Front Physiol 2022; 13:826122. [PMID: 35222088 PMCID: PMC8874280 DOI: 10.3389/fphys.2022.826122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maelee Williamson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Andrew Hess
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- *Correspondence: Jay D. Potts,
| |
Collapse
|
16
|
Rosta J, Tóth M, Friedrich N, Sántha P, Jancsó G, Dux M. Insulin sensitizes neural and vascular TRPV1 receptors in the trigeminovascular system. J Headache Pain 2022; 23:7. [PMID: 35033025 PMCID: PMC8903670 DOI: 10.1186/s10194-021-01380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Clinical observations suggest that hyperinsulinemia and insulin resistance can be associated with migraine headache. In the present study we examined the effect of insulin on transient receptor potential vanilloid 1 (TRPV1) receptor-dependent meningeal nociceptor functions in rats. Methods The effects of insulin on the TRPV1 receptor stimulation-induced release of calcitonin gene related peptide (CGRP) from trigeminal afferents and changes in meningeal blood flow were studied. Colocalization of the insulin receptor, the TRPV1 receptor and CGRP was also analyzed in trigeminal ganglion neurons. Results Insulin induced release of CGRP from meningeal afferents and consequent increases in dural blood flow through the activation of TRPV1 receptors of trigeminal afferents. Insulin sensitized both neural and vascular TRPV1 receptors making them more susceptible to the receptor agonist capsaicin. Immunohistochemistry revealed colocalization of the insulin receptor with the TRPV1 receptor and CGRP in a significant proportion of trigeminal ganglion neurons. Conclusions Insulin may activate or sensitize meningeal nociceptors that may lead to enhanced headache susceptibility in persons with increased plasma insulin concentration.
Collapse
Affiliation(s)
- Judit Rosta
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Máté Tóth
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Nadine Friedrich
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary
| | - Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, Szeged, H-6720, Hungary.
| |
Collapse
|
17
|
Togha M, Ghorbani Z, Ramazi S, Zavvari F, Karimzadeh F. Evaluation of Serum Levels of Transient Receptor Potential Cation Channel Subfamily V Member 1, Vasoactive Intestinal Polypeptide, and Pituitary Adenylate Cyclase-Activating Polypeptide in Chronic and Episodic Migraine: The Possible Role in Migraine Transformation. Front Neurol 2022; 12:770980. [PMID: 35002925 PMCID: PMC8733698 DOI: 10.3389/fneur.2021.770980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: This study aimed to investigate the role of serum levels of transient receptor potential cation channel subfamily V member 1 (TRPV1), vasoacive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP) in the development and also the transformation of migraine in patients suffering from migraine. Methods: Eighty-nine participants with a mean age of 39 years were divided into 23 episodic migraine (EM), 36 chronic migraine (CM), and 30 healthy control groups. Demographic, anthropometric, and headache characteristic information, and also blood samples, was collected. Serum levels of TRPV1, VIP, and PACAP were measured using the enzyme-linked immunosorbent assay (ELISA) technique. Results: Based on our findings, the serum level of TRPV1 was significantly higher in CM compared to the control group (p < 0.05), whereas serum levels of VIP (p < 0.01) and PACAP (p < 0.05) in the EM group were significantly more than the control group. There was no significant difference between EM and CM groups. Conclusions: An elevation in the serum levels of TRVP1 among chronic migraineurs and increments in the levels of VIP and PACAP were observed among EM patients compared to healthy subjects. However, our data failed to demonstrate the probable role of these biomarkers in migraine progression, and more studies are needed to clarify the molecular mechanisms involved in migraine progression.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samira Ramazi
- Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Zavvari
- Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021; 10:76. [PMID: 35052756 PMCID: PMC8773152 DOI: 10.3390/biomedicines10010076] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder characterized by a unilateral, throbbing, pulsing headache, which lasts for hours to days, and the pain can interfere with daily activities. It exhibits various symptoms, such as nausea, vomiting, sensitivity to light, sound, and odors, and physical activity consistently contributes to worsening pain. Despite the intensive research, little is still known about the pathomechanism of migraine. It is widely accepted that migraine involves activation and sensitization of the trigeminovascular system. It leads to the release of several pro-inflammatory neuropeptides and neurotransmitters and causes a cascade of inflammatory tissue responses, including vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Convincing evidence obtained in rodent models suggests that neurogenic inflammation is assumed to contribute to the development of a migraine attack. Chemical stimulation of the dura mater triggers activation and sensitization of the trigeminal system and causes numerous molecular and behavioral changes; therefore, this is a relevant animal model of acute migraine. This narrative review discusses the emerging evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology of migraine, presenting the most recent advances in preclinical research and the novel therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
| | - Masaru Tanaka
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
19
|
Dalmasso C, Leachman JR, Ghuneim S, Ahmed N, Schneider ER, Thibault O, Osborn JL, Loria AS. Epididymal Fat-Derived Sympathoexcitatory Signals Exacerbate Neurogenic Hypertension in Obese Male Mice Exposed to Early Life Stress. Hypertension 2021; 78:1434-1449. [PMID: 34601958 PMCID: PMC8516729 DOI: 10.1161/hypertensionaha.121.17298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Eve R. Schneider
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jeffrey L. Osborn
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| |
Collapse
|
20
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
21
|
Fila M, Chojnacki J, Pawlowska E, Szczepanska J, Chojnacki C, Blasiak J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders. Int J Mol Sci 2021; 22:ijms221810134. [PMID: 34576297 PMCID: PMC8469852 DOI: 10.3390/ijms221810134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine, the leading cause of disability in the population aged below 50, is associated with functional gastrointestinal (GI) disorders (FGIDs) such as functional nausea, cyclic vomiting syndrome, and irritable bowel syndrome (IBS). Conversely, changes in intestinal GI transit may cause diarrhea or constipation and are a component of the autonomic symptoms associated with pre- and post-dorsal phases of migraine attack. These mutual relationships provoke a question on a common trigger in migraine and FGIDs. The kynurenine (l-kyn) pathway (KP) is the major route for l-tryptophan (l-Trp) metabolism and transforms l-Trp into several neuroactive compounds. Changes in KP were reported in both migraine and FGIDs. Migraine was largely untreatable, but several drugs approved lately by the FDA, including monoclonal antibodies for calcitonin gene-related peptide (CGRP) and its receptor, create a hope for a breakthrough in migraine treatment. Derivatives of l-kyn were efficient in pain relief with a mechanism including CGRP inhibition. KP products are important ligands to the aryl hydrocarbon receptor (AhR), whose activation is implicated in the pathogenesis of GI and migraine. Toll-like receptors (TLRs) may play a role in migraine and IBS pathogeneses, and KP metabolites detected downstream of TLR activation may be an IBS marker. The TLR4 signaling was observed in initiating and maintaining migraine-like behavior through myeloid differentiation primary response gene 88 (MyD88) in the mouse. The aim of this review is to justify the view that KP modulation may provide common triggers for migraine and FGIDs with the involvement of TLR, AhR, and MyD88 activation.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
22
|
Mathew T, John SK, Javali MV. Essential oils and cluster headache: insights from two cases. BMJ Case Rep 2021; 14:e243812. [PMID: 34373243 PMCID: PMC8354251 DOI: 10.1136/bcr-2021-243812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Essential oils with proconvulsive properties are known to cause seizures and may worsen migraine. Here, we report two cases of cluster headache temporally related to the use of toothpastes containing essential oils of camphor and eucalyptus.
Collapse
Affiliation(s)
- Thomas Mathew
- Department of Neurology, St John's National Academy of Health Sciences, Bangalore, Karnataka, India
| | - Saji Kaithavalappil John
- Department of Neurology, St John's National Academy of Health Sciences, Bangalore, Karnataka, India
| | - Mahendra Vishwanath Javali
- Department of Neurology, M S Ramaiah Academy of Health and Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
24
|
Do TP, Al-Saoudi A, Ashina M. Future prophylactic treatments in migraine: Beyond anti-CGRP monoclonal antibodies and gepants. Rev Neurol (Paris) 2021; 177:827-833. [PMID: 34294458 DOI: 10.1016/j.neurol.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Migraine is ranked as a leading cause of years lived with disability among all neurological disorders. Therapies targeting the calcitonin gene-related peptide (CGRP) signaling pathway, including monoclonal antibodies against the receptor or ligand and small molecule CGRP receptor antagonists (gepants), are today approved for migraine prophylaxis with additional compounds expected to be introduced to the market soon. In this review, we consider other putative prophylactic migraine drugs in development, including compounds targeting G-protein coupled receptors, glutamate, ion channels, and neuromodulatory devices. Emergence of these new interventions could complement our current treatment armamentarium for migraine management.
Collapse
Affiliation(s)
- T P Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Al-Saoudi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark.
| |
Collapse
|
25
|
Messlinger K, Vogler B, Kuhn A, Sertel-Nakajima J, Frank F, Broessner G. CGRP measurements in human plasma - a methodological study. Cephalalgia 2021; 41:1359-1373. [PMID: 34266288 PMCID: PMC8592105 DOI: 10.1177/03331024211024161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Calcitonin gene-related peptide plasma levels have frequently been determined as a biomarker for primary headaches. However, published data is often inconsistent resulting from different methods that are not precisely described in most studies. Methods We applied a well-proven enzyme-linked immunosorbent assay to measure calcitonin gene-related peptide concentrations in human blood plasma, we modified parameters of plasma preparation and protein purification and used calcitonin gene-related peptide-free plasma for standard solutions, which are described in detail. Results Calcitonin gene-related peptide levels are stable in plasma with peptidase inhibitors and after deep-freezing. Calcitonin gene-related peptide standard solutions based on synthetic intercellular fluid or pooled plasma with pre-absorbed calcitonin gene-related peptide influenced the measurements but yielded both comprehensible results. In a sample of 56 healthy subjects the calcitonin gene-related peptide plasma levels varied considerably from low (<50 pg/mL) to very high (>500 pg/mL) values. After a 12-hour exposure of these subjects to normobaric hypoxia the individual calcitonin gene-related peptide levels remained stable. Conclusion Buffering with peptidase inhibitors and immediate freezing or processing of plasma samples is essential to achieve reliable measurements. Individuals show considerable differences and partly high calcitonin gene-related peptide plasma levels without detectable pathological reason. Thus plasma measurements are suited particularly to follow calcitonin gene-related peptide levels in longitudinal studies. The use of data for this study was approved by the Ethics Committee of the Medical University of Innsbruck (https://www.i-med.ac.at/ethikkommission/; EK Nr: 1242/2017).
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Annette Kuhn
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Julika Sertel-Nakajima
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Florian Frank
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Austria
| | - Gregor Broessner
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Austria
| |
Collapse
|
26
|
Kleeberg-Hartmann J, Vogler B, Messlinger K. Petasin and isopetasin reduce CGRP release from trigeminal afferents indicating an inhibitory effect on TRPA1 and TRPV1 receptor channels. J Headache Pain 2021; 22:23. [PMID: 33849430 PMCID: PMC8042690 DOI: 10.1186/s10194-021-01235-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Butterbur root extract with its active ingredients petasin and isopetasin has been used in the prophylactic treatment of migraine for years, while its sites of action are not completely clear. Calcitonin gene-related peptide (CGRP) is known as a biomarker and promoting factor of migraine. We set out to investigate the impact of petasins on the CGRP release from trigeminal afferents induced by activation of the calcium conducting transient receptor potential channels (TRPs) of the subtypes TRPA1 and TRPV1. Methods We used well-established in vitro preparations, the hemisected rodent skull and dissected trigeminal ganglia, to examine the CGRP release from rat and mouse cranial dura mater and trigeminal ganglion neurons, respectively, after pre-incubation with petasin and isopetasin. Mustard oil and capsaicin were used to stimulate TRPA1 and TRPV1 receptor channels. CGRP concentrations were measured with a CGRP enzyme immunoassay. Results Pre-incubation with either petasin or isopetasin reduced mustard oil- and capsaicin-evoked CGRP release compared to vehicle in an approximately dose-dependent manner. These results were validated by additional experiments with mice expressing functionally deleted TRPA1 or TRPV1 receptor channels. Conclusions Earlier findings of TRPA1 receptor channels being involved in the site of action of petasin and isopetasin are confirmed. Furthermore, we suggest an important inhibitory effect on TRPV1 receptor channels and assume a cooperative action between the two TRP receptors. These mechanisms may contribute to the migraine prophylactic effect of petasins.
Collapse
Affiliation(s)
- Johanna Kleeberg-Hartmann
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
27
|
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices. Int J Mol Sci 2021; 22:ijms22073794. [PMID: 33917574 PMCID: PMC8038766 DOI: 10.3390/ijms22073794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.
Collapse
|
28
|
Ala M, Ghasemi M, Mohammad Jafari R, Dehpour AR. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review. Drug Dev Res 2021; 82:896-906. [PMID: 33792938 DOI: 10.1002/ddr.21819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Sumatriptan is the first available medication from triptans family that was approved by the U.S. Food and Drug Administration for migraine attacks and cluster headaches in 1991. Most of its action is mediated by selective 5-HT1B/1D receptor agonism. Recent investigations raised the possibility of repositioning of this drug to other indications beyond migraine, as increasing evidence suggests for an anti-inflammatory property of sumatriptan. We performed a literature search using PubMed, Web of Science, Scopus, and Google Scholar using "inflammation AND sumatriptan" or "inflammation AND 5HT1B/D" as the keywords. Then, articles were screened for their relevance and those directly discussing the correlation between inflammation and sumatriptan or 5HT1B/D were included. Total references reviewed or inclusion/exclusion were 340 retrieved full-text articles (n = 340), then based on critical assessment 66 of them were included in this systematic review. Our literature review indicates that at low doses, sumatriptan can reduce inflammatory markers (e.g., interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB), affects caspases and changes cells lifespan. Additionally, nitric oxide synthase and nitric oxide signaling seem to be regulated by this drug. It also inhibits the release of calcitonin gene-related peptide. Sumatriptan protects against many inflammatory conditions including cardiac and mesenteric ischemia/reperfusion, skin flap, pruritus, peripheral, and central nervous system injuries such as spinal cord injury, testicular torsion-detorsion, oral mucositis, and other experimental models. Considering the safety and potency of low dose sumatriptan compared to corticosteroids and other immunosuppressive medications, it is worth to take advantage of sumatriptan in inflammatory conditions.
Collapse
Affiliation(s)
- Moein Ala
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Backaert W, Steelant B, Hellings PW, Talavera K, Van Gerven L. A TRiP Through the Roles of Transient Receptor Potential Cation Channels in Type 2 Upper Airway Inflammation. Curr Allergy Asthma Rep 2021; 21:20. [PMID: 33738577 PMCID: PMC7973410 DOI: 10.1007/s11882-020-00981-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Despite their high prevalence, the pathophysiology of allergic rhinitis (AR) and chronic rhinosinusitis (CRS) remains unclear. Recently, transient receptor potential (TRP) cation channels emerged as important players in type 2 upper airway inflammatory disorders. In this review, we aim to discuss known and yet to be explored roles of TRP channels in the pathophysiology of AR and CRS with nasal polyps. RECENT FINDINGS TRP channels participate in a plethora of cellular functions and are expressed on T cells, mast cells, respiratory epithelial cells, and sensory neurons of the upper airways. In chronic upper airway inflammation, TRP vanilloid 1 is mostly studied in relation to nasal hyperreactivity. Several other TRP channels such as TRP vanilloid 4, TRP ankyrin 1, TRP melastatin channels, and TRP canonical channels also have important functions, rendering them potential targets for therapy. The role of TRP channels in type 2 inflammatory upper airway diseases is steadily being uncovered and increasingly recognized. Modulation of TRP channels may offer therapeutic perspectives.
Collapse
Affiliation(s)
- Wout Backaert
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Laboratory of Upper Airways Research, University of Ghent, Ghent, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Van Gerven
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
- Department of Neurosciences, Experimental Otorhinolaryngology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Lengyel M, Hajdu D, Dobolyi A, Rosta J, Czirják G, Dux M, Enyedi P. TRESK background potassium channel modifies the TRPV1-mediated nociceptor excitability in sensory neurons. Cephalalgia 2021; 41:827-838. [PMID: 33525904 DOI: 10.1177/0333102421989261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND TWIK-related spinal cord potassium channel (TRESK) background potassium channels have a key role in controlling resting membrane potential and excitability of sensory neurons. A frameshift mutation leading to complete loss of TRESK function has been identified in members of a family suffering from migraine with aura. In the present study, we examined the role of TRESK channels on nociceptor function in mice. METHODS Calcium imaging was used to investigate the role of TRESK channels in the modulation of the response evoked by transient receptor potential vanilloid 1 (TRPV1) receptor stimulation in dorsal root ganglion neurons. Release of calcitonin gene-related peptide from trigeminal afferents and changes in meningeal blood flow were also measured. Experiments were performed on wild-type and TRESK knockout animals. RESULTS Inhibition of TRESK increased the TRPV1-mediated calcium signal in dorsal root ganglion neurons and potentiated capsaicin-induced increases in calcitonin gene-related peptide release and meningeal blood flow. Activation of TRESK decreased the capsaicin sensitivity of sensory neurons, leading to an attenuation of capsaicin-induced increase in meningeal blood flow. In TRESK knockout animals, TRPV1-mediated nociceptive reactions were unaffected by pretreatment with TRESK modulators. CONCLUSIONS Pharmacological manipulation of TRESK channels influences the TRPV1-mediated functions of nociceptors. Altered TRESK function might contribute to trigeminal nociceptor sensitization in migraine patients.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dominika Hajdu
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Rosta
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Dux
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Kopruszinski CM, Thornton P, Arnold J, Newton P, Lowne D, Navratilova E, Swiokla J, Dodick DW, Dobson C, Gurrell I, Chessell IP, Porreca F. Characterization and preclinical evaluation of a protease activated receptor 2 (PAR2) monoclonal antibody as a preventive therapy for migraine. Cephalalgia 2020; 40:1535-1550. [PMID: 33131305 DOI: 10.1177/0333102420966581] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Migraine pain is thought to result from activation of meningeal nociceptors that might involve dural mast cell degranulation and release of proteases and pronociceptive mediators. Tryptase, the most abundant dural mast cell protease, has been demonstrated to stimulate dural mast cells, as well as trigeminal nociceptors by activating the protease activated receptor 2. Mast cell or neuronal protease activated receptors 2 may therefore represent a novel target for migraine treatment. In this study, we characterized and evaluated a novel protease activated receptor 2 monoclonal antibody as a preventive anti-migraine pain therapy in preclinical models. METHODS Flow cytometry, immunocytochemistry, calcium imaging, Homogeneous Time Resolved Technology (HTRF) epitope competition assay and serum pharmacokinetic (PK) assay in rats were performed to confirm the activity, specificity and in vivo stability of PAR650097, a novel anti- protease activated receptor 2 monoclonal antibody. In vivo assessment was performed in female C57BL/6J mice by evaluation of PAR650097 in preventing cutaneous allodynia elicited by (a) supradural injection of the protease activated receptor 2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide trifluoroacetate (SLIGRL), or calcitonin gene-related (CGRP) peptide, and (b) induction of latent sensitization by priming with three daily episodes of restraint stress followed by challenge with a subthreshold inhalational exposure to umbellulone (UMB), a transient receptor potential ankyrin 1 (TRPA1) agonist. PAR650097 was administered as a pretreatment prior to the first restraint stress, umbellulone exposure, SLIGRL or calcitonin gene-related peptide injection. Additionally, fremanezumab, a calcitonin gene-related peptide antibody was administered as pre-treatment prior to supradural administration of calcitonin gene-related peptide or SLIGRL. RESULTS In vitro, PAR650097 demonstrated rapid interaction with protease activated receptor 2, enabling it to fully inhibit protease-induced protease activated receptor 2 activation, in human and mouse cells, with high potency. Furthermore, PAR650097 was highly selective for protease activated receptor 2, demonstrating no affinity for protease activated receptor 1 protein and no functional effect on the activation of cellular protease activated receptor 1 with thrombin. In addition, PAR650097 had an acceptable PK profile, compatible with testing the effects of selective protease activated receptor 2 inhibition in vivo. In vivo, PAR650097 blocked cutaneous allodynia induced by either supradural SLIGRL or calcitonin gene-related peptide. Fremanezumab abolished cutaneous allodynia induced by supradural CGRP, and partially attenuated cutaneous allodynia induced by SLIGRL. Administration of PAR650097, before the first restraint stress episode, did not prevent the acute stress-induced cutaneous allodynia or restraint stress priming revealed by cutaneous allodynia induced by inhalational umbellulone. In contrast, PAR650097 prevented expression of cutaneous allodynia when given before the umbellulone challenge in restraint stress-primed animals. CONCLUSION PAR650097 specifically inhibits endogenously expressed protease activated receptor 2 in human and mouse cells with high potency. This antibody has an acceptable PK profile in rodents and effectively blocked SLIGR-induced cutaneous allodynia. PAR650097 additionally prevented cutaneous allodynia induced by supradural calcitonin gene-related peptide, indicating that the protease activated receptor 2 receptor is a downstream consequence of calcitonin gene-related peptide actions. Fremanezumab effectively blocked calcitonin gene-related peptide-induced cutaneous allodynia and only partially reduced cutaneous allodynia induced by a protease activated receptor 2 activator, suggesting both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine pain. While PAR650097 did not prevent stress-induced cutaneous allodynia or priming, it effectively prevented cutaneous allodynia induced by a TRPA1 agonist in animals with latent sensitization. Activation of protease activated receptor 2, therefore, contributes to both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine-like pain. Therapeutic targeting of protease activated receptor 2 receptors may represent an anti-migraine pain strategy with a potentially broad efficacy profile.
Collapse
Affiliation(s)
| | - Peter Thornton
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Joanne Arnold
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Philip Newton
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - David Lowne
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Claire Dobson
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Ian Gurrell
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
32
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|