1
|
Tsujii M, Tanudjaja E, Zhang H, Shimizukawa H, Konishi A, Furuta T, Ishimaru Y, Uozumi N. Dissecting structure and function of the monovalent cation/H + antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae. J Bacteriol 2024; 206:e0018224. [PMID: 39082862 PMCID: PMC11340316 DOI: 10.1128/jb.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca2+/H+ antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K+/H+ exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na+/H+ antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na+ efflux activity. Measurement of transport activity across E. coli-inverted membranes showed that Mdm38 and Ylh47 had K+/H+, Na+/H+, and Li+/H+ antiport activity, but unlike Letm1, they lacked Ca2+/H+ antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na+ efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H+ transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca2+/H+ antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca2+ but instead are selective for K+ and Na+. Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.
Collapse
Affiliation(s)
- Masaru Tsujii
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ellen Tanudjaja
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haoyu Zhang
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haruto Shimizukawa
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ayumi Konishi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| |
Collapse
|
2
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
3
|
Sun S, Wang S, Yin Y, Yang Y, Wang Y, Zhang J, Wang W. Competitive mechanism of salt-tolerance/degradation-performance of organic pollutant in bacteria: Na +/H + antiporters contribute to salt-stress resistance but impact phenol degradation. WATER RESEARCH 2024; 255:121448. [PMID: 38503180 DOI: 10.1016/j.watres.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Phenolic-laden wastewater is typically characterized by its high toxicity and high salinity, imposing serious limits on the application of bioremediation. Although a few halotolerant microorganisms have been reported to degrade phenol, their removal efficiency on high concentrations of phenol remains unsatisfactory. What's more, the deep interaction molecular mechanism of salt-tolerance/phenol-degradation performance has not been clearly revealed. Here, a halotolerant strain Aeribacillus pallidus W-12 employed a meta-pathway to efficiently degrade high concentration of phenol even under high salinity conditions. Investigation of salt-tolerance strategy indicated that four Na+/H+ antiporters, which are widely distributed in bacteria, synergistically endowed the strain with excellent salt adaptability. All these antiporters differentially but positively responded to salinity changes and induction of phenol, forming a synergistic transport effect on salt ions and phenol. In-depth analysis revealed a competitive relationship between salt tolerance and degradation performance, which significantly impaired the degradation efficiency at relatively high salinity. The efficient degradation performance of W-12 under different phenol concentrations and salinity conditions indicated its bioremediation potential for multiple types of phenolic wastewater. Collectively, the competitive mechanism of salt tolerance and degradation performance enlightens a new strategy of introducing or re-constructing Na+/H+ antiporters to further improve bioremediation efficiency of hypersaline organic wastewater.
Collapse
Affiliation(s)
- Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yue Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Yue CP, Han L, Sun SS, Chen JF, Feng YN, Huang JY, Zhou T, Hua YP. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed. Gene 2024; 894:148025. [PMID: 38007163 DOI: 10.1016/j.gene.2023.148025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.
Collapse
Affiliation(s)
- Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Liao Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Malik AA, Martiny JBH, Ribeiro A, Sheridan PO, Weihe C, Brodie EL, Allison SD. Bacterial population-level trade-offs between drought tolerance and resource acquisition traits impact decomposition. THE ISME JOURNAL 2024; 18:wrae224. [PMID: 39495619 PMCID: PMC11569415 DOI: 10.1093/ismejo/wrae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024]
Abstract
Microbes drive fundamental ecosystem processes, such as decomposition. Environmental stressors are known to affect microbes, their fitness, and the ecosystem functions that they perform; yet, understanding the causal mechanisms behind this influence has been difficult. We used leaf litter on soil surface as a model in situ system to assess changes in bacterial genomic traits and decomposition rates for 18 months with drought as a stressor. We hypothesized that genome-scale trade-offs due to investment in stress tolerance traits under drought reduce the capacity for bacterial populations to carry out decomposition, and that these population-level trade-offs scale up to impact emergent community traits, thereby reducing decomposition rates. We observed drought tolerance mechanisms that were heightened in bacterial populations under drought, identified as higher gene copy numbers in metagenome-assembled genomes. A subset of populations under drought had reduced carbohydrate-active enzyme genes that suggested-as a trade-off-a decline in decomposition capabilities. These trade-offs were driven by community succession and taxonomic shifts as distinct patterns appeared in populations. We show that trait-trade-offs in bacterial populations under drought could scale up to reduce overall decomposition capabilities and litter decay rates. Using a trait-based approach to assess the population ecology of soil bacteria, we demonstrate genome-level trade-offs in response to drought with consequences for decomposition rates.
Collapse
Affiliation(s)
- Ashish A Malik
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Paul O Sheridan
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States
- Department of Earth System Science, University of California, Irvine, CA 92697, United States
| |
Collapse
|
6
|
Wang Q, Qiao M, Song J. Characterization of Two Na +(K +, Li +)/H + Antiporters from Natronorubrum daqingense. Int J Mol Sci 2023; 24:10786. [PMID: 37445962 DOI: 10.3390/ijms241310786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The Na+/H+ antiporter NhaC family protein is a kind of Na+/H+ exchanger from the ion transporter (IT) superfamily, which has mainly been identified in the halophilic bacteria of Bacillus. However, little is known about the Na+/H+ antiporter NhaC family of proteins in the extremely halophilic archaea. In this study, two Na+/H+ antiporter genes, nhaC1 and nhaC2, were screened from the genome of Natronorubrum daqingense based on the gene library and complementation of salt-sensitive Escherichia coli KNabc. A clone vector pUC18 containing nhaC1 or nhaC2 could make KNabc tolerate 0.6 M/0.7 M NaCl or 30 mM/40 mM LiCl and a pH of up to 8.5/9.5, respectively. Functional analysis shows that the Na+(K+, Li+)/H+ antiport activities of NhaC1 and NhaC2 are both pH-dependent in the range of pH 7.0-10.0, and the optimal pH is 9.5. Phylogenetic analysis shows that both NhaC1 and NhaC2 belong to the Na+/H+ antiporter NhaC family of proteins and are significantly distant from the identified NhaC proteins from Bacillus. In summary, we have identified two Na+(K+, Li+)/H+ antiporters from N. daqingense.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengwei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
7
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
8
|
Nishii M, Ito S, Osanai T. Citrate synthase from Cyanidioschyzon merolae exhibits high oxaloacetate and acetyl-CoA catalytic efficiency. PLANT MOLECULAR BIOLOGY 2023; 111:429-438. [PMID: 36884198 DOI: 10.1007/s11103-023-01335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Citrate synthase (CS) catalyzes the reaction that produces citrate and CoA from oxaloacetate and acetyl-CoA in the tricarboxylic acid (TCA) cycle. All TCA cycle enzymes are localized to the mitochondria in the model organism, the red alga Cyanidioschyzon merolae. The biochemical properties of CS have been studied in some eukaryotes, but the biochemical properties of CS in algae, including C. merolae, have not been studied. We then performed the biochemical analysis of CS from C. merolae mitochondria (CmCS4). The results showed that the kcat/Km of CmCS4 for oxaloacetate and acetyl-CoA were higher than those of the cyanobacteria, such as Synechocystis sp. PCC 6803, Microcystis aeruginosa PCC 7806 and Anabaena sp. PCC 7120. Monovalent and divalent cations inhibited CmCS4, and in the presence of KCl, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher in the presence of MgCl2, the Km of CmCS4 for oxaloacetate and acetyl-CoA was higher and kcat lower. However, in the presence of KCl and MgCl2, the kcat/Km of CmCS4 was higher than those of the three cyanobacteria species. The high catalytic efficiency of CmCS4 for oxaloacetate and acetyl-CoA may be a factor in the increased carbon flow into the TCA cycle in C. merolae.
Collapse
Affiliation(s)
- Maki Nishii
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan
| | - Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
9
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
10
|
Ageyeva M, Veselov A, Vodeneev V, Brilkina A. Cell-Type-Specific Length and Cytosolic pH Response of Superficial Cells of Arabidopsis Root to Chronic Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243532. [PMID: 36559645 PMCID: PMC9783886 DOI: 10.3390/plants11243532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 05/30/2023]
Abstract
Soil salinity negatively affects the growth, development and yield of plants. Acidification of the cytosol in cells of glycophytes was reported under salinity, while various types of plant cells can have a specific reaction under the same conditions. Transgenic Arabidopsis plants expressing the pH sensor Pt-GFP in the cytosol were used in this work for determination of morphometric changes and cytosolic pH changes in the superficial cells of Arabidopsis roots under chronic salinity in vitro. We did not find changes in the length of the root cap cells, while there was a decrease in the length of the differentiation zone under 50, 75 mM NaCl and the size of the epidermal cells of the differentiation zone under 75 mM NaCl. The most significant changes of cytosolic pH to chronic salinity was noted in columella (decrease by 1 pH unit at 75 mM NaCl) and epidermal cells of the differentiation zone (decrease by 0.6 and 0.4 pH units at 50 and 75 mM NaCl, respectively). In developed lateral root cap cells, acidification of cytosol by 0.4 units occurred only under 75 mM NaCl in the medium. In poorly differentiated lateral cells of the root cap, there were no changes in pH under chronic salinity.
Collapse
Affiliation(s)
- Maria Ageyeva
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Alexander Veselov
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| |
Collapse
|
11
|
Yamanashi T, Uchiyama T, Saito S, Higashi T, Ikeda H, Kikunaga H, Yamagami M, Ishimaru Y, Uozumi N. Potassium transporter KUP9 participates in K + distribution in roots and leaves under low K + stress. STRESS BIOLOGY 2022; 2:52. [PMID: 37676337 PMCID: PMC10441886 DOI: 10.1007/s44154-022-00074-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is a major essential element in plant cells, and KUP/HAK/KT-type K+ transporters participate in the absorption of K+ into roots and in the long-distance transport to above-ground parts. In Arabidopsis thaliana, KUP9 is involved in the transport of K+ and Cs+ in roots. In this study, we investigated KUP9 function in relation to the K+ status of the plant. The expression of KUP9 was upregulated in older leaves on K+-depleted medium, compared to the expression of the other 12 KUP genes in the KUP/HAK/KT family in Arabidopsis. When grown on low K+ medium, the kup9 mutant had reduced chlorophyll content in seedlings and chlorosis in older rosette leaves. Tissue-specific expression of KUP9 determined by KUP9 promoter:GUS assay depended on the K+ status of the plants: In K+ sufficient medium, KUP9 was expressed in the leaf blade towards the leaf tip, whereas in K+ depleted medium expression was mainly found in the petioles. In accordance with this, K+ accumulated in the roots of kup9 plants. The short-term 43K+ tracer measurement showed that 43K was transferred at a lower rate in roots and shoots of kup9, compared to the wild type. These data show that KUP9 participates in the distribution of K+ in leaves and K+ absorption in roots under low K+ conditions.
Collapse
Affiliation(s)
- Taro Yamanashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takeshi Uchiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Taiki Higashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hayato Ikeda
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| | - Hidetoshi Kikunaga
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
| | - Mutsumi Yamagami
- Institute for Environmental Sciences, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
12
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Saddhe AA, Mishra AK, Kumar K. Molecular insights into the role of plant transporters in salt stress response. PHYSIOLOGIA PLANTARUM 2021; 173:1481-1494. [PMID: 33963568 DOI: 10.1111/ppl.13453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs the cellular osmotic and ionic balance, which then creates a negative impact on plant growth and development. The Na+ and Cl- ions can enter into plant cells through various membrane transporters, including specific and non-specific Na+ , K+ , and Ca2+ transporters. Therefore, it is important to understand Na+ and K+ transport mechanisms in plants along with the isolation of genes, their characterization, the structural features, and their post-translation regulation under salt stress. This review summarizes the molecular insights of plant ion transporters, including non-selective cation transporters, cyclic nucleotide-gated cation transporters, glutamate-like receptors, membrane intrinsic proteins, cation proton antiporters, and sodium proton antiporter families. Further, we discussed the K+ transporter families such as high-affinity K+ transporters, HAK/KUP/KT transporters, shaker type K+ transporters, and K+ efflux antiporters. Besides the ion transport process, we have shed light on available literature on epigenetic regulation of transport processes under salt stress. Recent advancements of salt stress sensing mechanisms and various salt sensors within signaling transduction pathways are discussed. Further, we have compiled salt-stress signaling pathways, and their crosstalk with phytohormones.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| |
Collapse
|
14
|
Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:727118. [PMID: 34531888 PMCID: PMC8438413 DOI: 10.3389/fpls.2021.727118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Britta Förster
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Loraine M. Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - G. Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Benedict M. Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
16
|
Zerveas S, Mente MS, Tsakiri D, Kotzabasis K. Microalgal photosynthesis induces alkalization of aquatic environment as a result of H + uptake independently from CO 2 concentration - New perspectives for environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112546. [PMID: 33839608 DOI: 10.1016/j.jenvman.2021.112546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The photosynthetic process in microalgae and the extracellular proton environment interact with each other. The photosynthetic process in microalgae induces a pH increase in the aquatic environment as a result of cellular protons uptake rather than as an effect of CO2 consumption. The photosynthetic water photolysis and the reduction/oxidation cycle of the plastoquinone pool provide lumen with protons. Weak bases act as "permeant buffers" in lumen during the photosynthetic procedure, converting the ΔpH to Δψ. This is possibly the main reason for continuous light-driven proton uptake from the aquatic environment through cytosol and stroma, into the lumen. The proton uptake rate and, therefore, the microalgal growth is proportional to the light intensity, cell concentration, and extracellular proton concentration. The low pH in microalgae cultures, without limitation factors related to light and nutrients, strongly induces photosynthesis (and proton uptake) and, consequently, growth. In contrast, the mitochondrial respiratory process, in the absence of photosynthetic activity, does not substantially alter the culture pH. Only after intensification of the respiratory process, using exogenous glucose supply leads to significantly reduced pH values in the culture medium, almost exclusively through proton output. Enhanced dissolution of atmospheric CO2 in water causes the phenomenon of ocean acidification, which prevents the process of calcification, a significant process for numerous phytoplankton and zooplankton organisms, as well for corals. The proposed interaction between microalgal photosynthetic activity and proton concentration in the aquatic environment, independently from the CO2 concentration, paves the way for new innovative management strategies for reversing the ocean acidification.
Collapse
Affiliation(s)
- Sotirios Zerveas
- Department of Biology, University of Crete, Voutes University Campus, GR-70013, Heraklion, Crete, Greece
| | - Melpomeni Sofia Mente
- Department of Biology, University of Crete, Voutes University Campus, GR-70013, Heraklion, Crete, Greece
| | - Dimitra Tsakiri
- Department of Biology, University of Crete, Voutes University Campus, GR-70013, Heraklion, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013, Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Tailoring Next Generation Plant Growth Promoting Microorganisms as Versatile Tools beyond Soil Desalinization: A Road Map towards Field Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13084422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been the target of intensive research studies toward their efficient use in the field as biofertilizers, biocontrol, and bioremediation agents among numerous other applications. Recent trends in the field of PGPB research led to the development of versatile multifaceted PGPB that can be used in different field conditions such as biocontrol of plant pathogens in metal contaminated soils. Unfortunately, all these research efforts lead to the development of PGPB that failed to perform in salty environments. Therefore, it is urgently needed to address this drawback of these PGPB toward their efficient performance in salinity context. In this paper we provide a review of state-of-the-art research in the field of PGPB and propose a road map for the development of next generation versatile and multifaceted PGPB that can perform in salinity. Beyond soil desalinization, our study paves the way towards the development of PGPB able to provide services in diverse salty environments such as heavy metal contaminated, or pathogen threatened. Smart development of salinity adapted next generation biofertilizers will inevitably allow for mitigation and alleviation of biotic and abiotic threats to plant productivity in salty environments.
Collapse
|
18
|
Wahhab BHA, Samsulrizal NH, Edbeib MF, Wahab RA, Al-Nimer MSM, Hamid AAA, Oyewusi HA, Kaya Y, Notarte KIR, Shariff AHM, Huyop F. Genomic analysis of a functional haloacid-degrading gene of Bacillus megaterium strain BHS1 isolated from Blue Lake (Mavi Gölü, Turkey). ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01625-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Bacillus megaterium strain BHS1, isolated from an alkaline water sample taken from Mavi Gölü (Blue Lake, Turkey), can grow on minimal medium containing 2,2-dichloropropionic acid. We characterized this bacterium at the genomic level.
Methods
The HiSeq platform was used to carry out genome sequencing, de novo assembly, and scaffolding with strain BHS1. Next, genome data were analyzed to demarcate DNA regions containing protein-coding genes and determine the function of certain BHS1 genes. Finally, results from a colorimetric chloride ion–release assay demonstrated that strain BHS1 produces dehalogenase.
Results
De novo assembly of the BHS1 genomic sequence revealed a genome size of ~ 5.37 Mb with an average G+C content of 38%. The predicted nuclear genome harbors 5509 protein-coding genes, 1353 tRNA genes, 67 rRNA genes, and 6 non-coding (mRNA) genes. Genomic mapping of strain BHS1 revealed its amenability to synthesize two families of dehalogenases (Cof-type haloacid dehalogenase IIB family hydrolase and haloacid dehalogenase type II), suggesting that these enzymes can participate in the catabolism of halogenated organic acids. The mapping identified seven Na+/H+ antiporter subunits that are vital for adaptation of the bacterium to an alkaline environment. Apart from a pairwise analysis to the well-established L-2-haloacid dehalogenases, whole-cell analysis strongly suggested that the haloacid dehalogenase type II might act stereospecifically on L-2-chloropropionic acid, D,L-2-chloropropionic acid, and 2,2-dichloropropionic acid. Whole-cell studies confirmed the utilization of these three substrates and the gene’s role in dehalogenation.
Conclusions
To our knowledge, this is the first report of the full genome sequence for strain BHS1, which enabled the characterization of selected genes having specific metabolic activities and their roles in the biodegradation of halogenated compounds.
Collapse
|
19
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|