1
|
Karimian M, Mohammadzadeh FZ. Association of PADI4 Gene Polymorphisms With Susceptibility to Rheumatoid Arthritis: Evidence From 24 Case-Control Studies. Int J Immunogenet 2025; 52:1-23. [PMID: 39520235 DOI: 10.1111/iji.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This study aims to investigate the association of rs11203366, rs11203367, rs874881, rs2240340 and rs1748033 polymorphisms of protein-arginine deiminase type 4 (PADI4) gene with the risk of rheumatoid arthritis (RA) through a meta-analysis that was followed with a bioinformatics approach. The data were collected from reputable articles and underwent quantitative analysis, followed by in silico analysis using some bioinformatics tools. The results showed that rs874881 polymorphism in Latino (G vs. C: OR = 1.35, 95% CI = 1.11-1.65, p = 0.003; GG + CG vs. CC: OR = 2.02, 95% CI = 1.41-2.89, p = 0.0001; CG vs. CC + GG: OR = 1.38, 95% CI = 1.04-1.83, p = 0.027; GG vs. CC: OR = 2.09, 95% CI = 1.35-3.23, p = 0.001; CG vs. CC: OR = 1.98, 95% CI = 1.36-2.87, p = 0.00033) and rs1748033 in Caucasian population (T vs. C: OR = 1.25, 95% CI = 1.07-1.45, p = 0.005; TT vs. CT + CC: OR = 1.34, 95% CI = 1.09-1.64, p = 0.005, TT + CT vs. CC: OR = 1.26, 95% CI = 1.09-1.44, p = 0.001; TT vs. CC: OR = 1.59, 95% CI = 1.13-2.23, p = 0.007; CT vs. CC: OR = 1.20, 95% CI: 1.04-1.39, p = 0.015) are associated with increased risk of RA. Moreover, rs11203366 (G vs. A: OR = 1.46, 95% CI = 1.19-1.78, p = 0.0002, GG vs. AG + AA: OR = 1.42, 95% CI = 1.01-2.01, p = 0.043; GG + AG vs. AA: OR = 2.03, 95% CI = 1.45-2.86, p = 0.00004; GG vs. AA: OR = 2.29, 95% CI = 1.49-3.51, p = 0.0002; AG vs. AA: OR = 1.93, 95% CI = 1.35-2.76, p = 0.0003) and rs11203367 (T vs. C: OR = 1.50, 95% CI = 1.23-1.83, p = 0.00007; TT vs. CT + CC: OR = 1.56, 95% CI = 1.12-2.18, p = 0.009; TT + CT vs. CC: OR = 2.02, 95% CI = 1.43-2.84, p = 0.00007, TT vs. CC: OR = 2.43, 95% CI = 1.59-3.71, p = 0.0004; CT vs. CC: OR = 1.86, 95% CI = 1.30-2.68, p = 0.0007) had an impact in the Latino population. Bioinformatics tools showed the effect of these polymorphisms on gene function. These findings suggest that rs11203366, rs11203367, rs874881 and rs1748033 polymorphisms may be genetic risk factors for RA. Moreover, differences between populations suggest that ethnicity may play an important role in the effect of these polymorphisms on RA risk.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
2
|
Fouda EAA, Mohamed Elmalawany A, Masoud Abd El Gayed E, Mohamed El-Kousy S, Mohamed HS, Zaid AB, Ali Assar MF. Up Regulation of ZNF76 rs10947540 and SCUBE3 rs1888822 Single Nucleotide Polymorphisms as a Genetic Risk Factor in Egyptian Patients with Rheumatoid Arthritis. Immunol Invest 2025; 54:46-67. [PMID: 39697162 DOI: 10.1080/08820139.2024.2418569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The protein SCUBE3 has been observed to exhibit an association with various autoimmune conditions, including psoriasis and rheumatoid arthritis. Genetic experiments have revealed that changes in Zinc finger protein-coding sequences correlate with an increased vulnerability to developing autoimmune diseases, so we aimed to study investigates the involvement of ZNF76 rs10947540 and SCUBE3 rs1888822 gene expression in individuals diagnosed with Rheumatoid Arthritis. METHODS In a case-control study conducted from January 2022 to March 2023, 80 adults with RA from Menoufia University Hospital were compared with 80 age- and gender-matched healthy controls. Single nucleotide polymorphisms (SNPs) ZNF76 rs10947540 and SCUBE3 rs1888822 were analysed using real-time polymerase chain reaction (PCR). RESULTS ZNF76 rs10947540 demonstrated a 7.125-fold increased risk for RA in CC genotype individuals and a 2.958-fold risk associated with the C allele. Those with the TC genotype had a 2.523-fold increased risk. Similarly, SCUBE3 rs1888822 showed a 6.364-fold risk for RA in TT genotype individuals and a 3.065-fold risk for T allele carriers. GT genotype individuals had a 2.765-fold risk. DISCUSSION Our study suggests that ZNF76 rs10947540 and SCUBE3 rs1888822 polymorphisms may be risk factors for RA in Egyptian patients. Understanding the genetic variations associated with higher risk underscores the role of genetics in RA progression.
Collapse
Affiliation(s)
- Eman Abd Allah Fouda
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | | | - Eman Masoud Abd El Gayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | | | | | - Ahmed B Zaid
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Mohamed Farag Ali Assar
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
3
|
Ruscitti P, Nunziato M, Caso F, Scarpa R, Di Maggio F, Giacomelli R, Salvatore F. Prevention of rheumatoid arthritis using a familial predictive medicine approach. Autoimmun Rev 2024; 23:103653. [PMID: 39370029 DOI: 10.1016/j.autrev.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Most of the chronic-degenerative diseases deserve a very early recognition of symptoms and signs for the earliest secondary prevention, which could be also very useful in many cases for the most precocious clinical approach. The periodic monitoring of a subject at risk of a specific disease, because of genomic predisposition by predictive medicine approach, may help to earlier detection of onset and/or the progression of the pathology itself, through intra-individual monitoring. This is particularly the case of rheumatoid arthritis (RA) for which an early diagnosis is undoubtedly the first step to ensure the most proper therapy for the patient. Thus, the earlier identification of individuals at high risk of RA could lead to ultra-preventive strategies to start for the best lifestyle performances and/or for any other effective therapeutic interventions to contrast the onset, and/or the evolution of the putative RA. This will also optimize both costs and medical resources, according to the health care policies of many countries.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy.
| |
Collapse
|
4
|
Foroughi F, Keshavarz Sadegh R, Khalaji M, Lashgari M, Javadi A, Sahmani M, Nonejad S, Keshavarz Shahbaz S. Association between matrix metalloproteinase-9-1562C/T gene polymorphism and MMP-9 serum level in rheumatoid arthritis. J Immunoassay Immunochem 2024; 45:362-381. [PMID: 38863179 DOI: 10.1080/15321819.2024.2365699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease indicated by joint inflammation and cartilage destruction. Matrix metalloproteinase (MMP) enzymes play an influential role in inflammation by affecting the invasion and degradation of anatomical barriers. In this way, the current study investigated the relationship between the MMP-9-1562C/T gene polymorphism and this enzyme's serum level in RA. METHODS The serum levels of MMP-9 in RA patients and healthy controls were measured using the enzyme-linked immunosorbent assay (ELISA). RA was confirmed using rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP), and C-reactive protein (CRP). Then the MMP-9-1562C/T gene polymorphism was analyzed utilizing polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Also, multivariate analysis investigated the connection between this polymorphism and the risk of RA. RESULTS In this study, the increase of MMP-9 in patients due to the development of single nucleotide polymorphism in the promoter region of this gene (-1562 C→T) was confirmed by increasing the frequency of heterozygous genotype (CT). Logistic regression analysis also demonstrated that the chance of development of RA is higher in people with CT/CC genotype than in other alleles. CONCLUSIONS We demonstrated that MMP-9-1562C/T gene polymorphism can play a significant role in the occurrence of RA.
Collapse
Affiliation(s)
- Farshad Foroughi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Roghaye Keshavarz Sadegh
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Khalaji
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Department of Biochemistry & Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahin Lashgari
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Metabolic Disease Research Center, Research Institute for prevention of non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Medical informatics, Department of Community Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Department of Biochemistry & Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shamim Nonejad
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
- Department of Biochemistry & Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| |
Collapse
|
5
|
Erensoy G, Råberg L, von Mentzer U, Menges LD, Bardhi E, Hultgård Ekwall AK, Stubelius A. Dynamic Release from Acetalated Dextran Nanoparticles for Precision Therapy of Inflammation. ACS APPLIED BIO MATERIALS 2024; 7:3810-3820. [PMID: 38795048 PMCID: PMC11191005 DOI: 10.1021/acsabm.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Polymer-based nanoparticles (NPs) that react to altered physiological characteristics have the potential to enhance the delivery of therapeutics to a specific area. These materials can utilize biochemical triggers, such as low pH, which is prone to happen locally in an inflammatory microenvironment due to increased cellular activity. This reduced pH is neutralized when inflammation subsides. For precise delivery of therapeutics to match this dynamic reaction, drug delivery systems (DDS) need to not only release the drug (ON) but also stop the release (OFF) autonomously. In this study, we use a systematic approach to optimize the composition of acetalated dextran (AcDex) NPs to start (ON) and stop (OFF) releasing model cargo, depending on local pH changes. By mixing ratios of AcDex polymers (mixed NPs), we achieved a highly sensitive material that was able to rapidly release cargo when going from pH 7.4 to pH 6.0. At the same time, the mix also offered a stable composition that enabled a rapid ON/OFF/ON/OFF switching within this narrow pH range in only 90 min. These mixed NPs were also sensitive to biological pH changes, with increased release in the presence of inflammatory cells compared to healthy cells. Such precise and controllable characteristics of a DDS position mixed NPs as a potential treatment platform to inhibit disease flare-ups, reducing both systemic and local side effects to offer a superior treatment option for inflammation compared to conventional systems.
Collapse
Affiliation(s)
- Gizem Erensoy
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Loise Råberg
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ula von Mentzer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Luca Dirk Menges
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Endri Bardhi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Anna-Karin Hultgård Ekwall
- The
Rheumatology Clinic, Sahlgrenska University
Hospital, Gothenburg 413 45, Sweden
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
| | - Alexandra Stubelius
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
6
|
Chen H, Fu X, Wu X, Zhao J, Qiu F, Wang Z, Wang Z, Chen X, Xie D, Huang J, Fan J, Yang X, Song Y, Li J, He D, Xiao G, Lu A, Liang C. Gut microbial metabolite targets HDAC3-FOXK1-interferon axis in fibroblast-like synoviocytes to ameliorate rheumatoid arthritis. Bone Res 2024; 12:31. [PMID: 38782893 PMCID: PMC11116389 DOI: 10.1038/s41413-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Junyi Zhao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zhenghong Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yi Song
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510006, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| |
Collapse
|
7
|
Salazar J, Garcia-Planella E, Fernández-Clotet A, Esteve M, Gisbert JP, Busquets D, Lucendo A, Márquez L, Guardiola J, Martín-Arranz MD, Iglesias E, Monfort D, Villoria A, Cañete F, Bell O, Ricart E, Zabana Y, Chaparro M, Domènech E, Gordillo J. Genetic biomarkers of methotrexate response and safety in Crohn's disease: Data from the Spanish ENEIDA registry. Br J Clin Pharmacol 2024; 90:1301-1311. [PMID: 38369687 DOI: 10.1111/bcp.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Methotrexate (MTX) is used to induce and maintain remission in patients with steroid-dependent Crohn's disease (CD). Despite its proven efficacy, its use is limited due to associated adverse events. Polymorphisms involving folate pathway genes might influence MTX efficacy and toxicity. We aimed to assess the impact of certain polymorphisms on the therapeutic outcomes of MTX in CD. METHODS Patients with CD who exclusively followed MTX monotherapy and fulfilled inclusion criteria were identified from the GETECCU ENEIDA registry. Variants of ATIC, DHFR, MTHFR, SLC19A1, ABCB1 and ABCC3 genes were analysed and their association with efficacy and toxicity was assessed. RESULTS A total of 129 patients were included in the analysis. MTX was used at a median weekly dose of 25 mg (interquartile range, 15-25 mg) and a median time of 14 months (interquartile range, 4-52 months). Thirty-seven percent of the patients achieved disease remission with MTX monotherapy, while 34% were nonresponders (MTX failure). MTX-related toxicity occurred in 40 patients (30%), leading to MTX discontinuation in 19%. DHFR rs408626 (odds ratio [OR] 3.12, 95% confidence interval [CI] 1.22-7.69; P = .017) and MTHFR rs1801133 (OR 2.86, 95% CI 1.23-6.68; P = .015) variants, and smoking (OR 2.61, 95% CI 1.12-6.05; P = .026) were associated with a higher risk of MTX failure. Additionally, the MTHFR rs1801131 variant was associated with a higher risk of MTX-related adverse effects (OR 2.78, 95% CI 1.26-6.13, P = .011). CONCLUSION Our study shows that variants of MTHFR and DHFR genes may be associated with MTX efficacy and adverse events in patients with CD.
Collapse
Affiliation(s)
- Juliana Salazar
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau - CERCA Center, Barcelona, Spain
| | | | - Agnès Fernández-Clotet
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Maria Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Universitario de La Princesa. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Busquets
- Gastroenterology Department, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Alfredo Lucendo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital General de Tomelloso, Ciudad Real, Spain
| | - Lucía Márquez
- Gastroenterology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jordi Guardiola
- Gastroenterology Department, Hospital Universitari Bellvitge, IDIBELL, Barcelona, Spain
- Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - María Dolores Martín-Arranz
- Department of Gastroenterology of La Paz University Hospital. School of Medicine, Universidad Autónoma de Madrid. Hospital La Paz Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Eva Iglesias
- Digestive System Service, Universidad de Córdoba/Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - David Monfort
- Gastroenterology Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Albert Villoria
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Parc Taulí Sabadell i Departament de Medicina, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Fiorella Cañete
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Olga Bell
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau - CERCA Center, Barcelona, Spain
| | - Elena Ricart
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Yamile Zabana
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Mútua de Terrassa, Terrassa, Spain
| | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Universitario de La Princesa. Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eugeni Domènech
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jordi Gordillo
- Gastroenterology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
8
|
Mushtaq I, Rashid A, Fakhr A, Majeed A, Rathore A, Baig ZA. Association of single nucleotide polymorphism rs3213119 variant of IL-12B gene in diagnosed Rheumatoid Arthritis patients. Pak J Med Sci 2024; 40:864-869. [PMID: 38827841 PMCID: PMC11140329 DOI: 10.12669/pjms.40.5.7671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 02/08/2024] [Indexed: 06/05/2024] Open
Abstract
Objective To identify the IL12B gene variant (rs3213119) and to find its association in Pakistani clinical population of Rheumatoid Arthritis. Methods It was a population association (unrelated) case control study, performed from January - December 2022 at Laboratory of Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi. Blood samples were collected from all 150 study participants, followed by DNA extraction and Allele-specific polymerase chain reaction performed at Center for Research in Experimental and Applied Medicine (CREAM) Laboratory of Department of Biochemistry and Molecular Biology, Army Medical College Rawalpindi. Statistical analysis was done using 'SPSS' (version-22), followed by gene analysis on 'SNPstat'. Results About 28.0% of RA patients were smokers, 38.7% had history of RA in a first degree relative and 70.7% had positive history of consanguinity. Considering rs3213119 variant of IL12B gene, frequency of major allele C was 100%, minor allele A was 21%, genotype C/C was 79% and C/A was 21%. Applying the log additive model, the odds ratio of the genotype C/C was 1.00 (adjusted by age and gender with 95 % CI) and the odds ratio of the genotype C/A was 0.00, 52.0% of RA patients originated from four predominant ethnic groups, namely Awaans (18.7%), Rajputs (14.7%), Pathans (12.0%) and Araeens (6.7%). Conclusion The study findings suggest the role of minor allele 'A' as risk allele in our clinical population. CA genotype confers susceptibility towards the RA development.
Collapse
Affiliation(s)
- Iffat Mushtaq
- Iffat Mushtaq, MBBS Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Amir Rashid
- Amir Rashid, PhD Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Amer Fakhr
- Amer Fakhr, FCPS Department of Rheumatology, Pak Emirates, Military Hospital, Rawalpindi, Pakistan
| | - Asifa Majeed
- Asifa Majeed, Post Doc Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ali Rathore
- Ali Rathore, FCPS Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| | - Zunaira Ali Baig
- Zunaira Ali Baig, MPhil Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
9
|
Benahmed D, Abbadi M, Zaoui D, Hamoudi HA, Boukouaci W, Bouguerra-Aouichat S, Salah SS. Tumor necrosis factor alpha induced protein 3, interleukin 10, tumor necrosis factor alpha, and interleukin 17 F genes polymorphisms in Algerian patients with rheumatoid arthritis. Mol Biol Rep 2024; 51:545. [PMID: 38642181 DOI: 10.1007/s11033-024-09525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation. Its pathogenesis involves immunological, genetic, and environmental factors. We investigate the association between Tumor Necrosis Factor α Protein 3 (TNFAIP3), Interleukin 10 (IL10), Tumor Necrosis Factor α (TNF α), and Interleukin 17 F (IL17F) polymorphisms with susceptibility to RA. METHODS AND RESULTS 191 patients with RA diagnosed according to the American College of Rheumatology (ACR)/ European League Against Rheumatism (EULAR) classification and 190 healthy subjects were recruited. Rheumatoid factor (RF), anti-citrullinated peptide antibodies (ACPA), and C-reactive protein (CRP) were measured. Genotyping of the polymorphisms was performed by real-time PCR. Analysis of the allelic frequencies of TNFAIP3 showed a positive association OR (95% CI) = 1.46 (1.01-2.09); p = 0.04, but failed to meet the criteria of significance after Bonferroni Correction. The genotypic and allelic distribution of the IL10, IL17F, and TNFα showed no significant difference when comparing the RA group with controls. Furthermore, the genotype codominant model shows a moderate positive association in the presence of ACPA (OR (95% CI) = 2.82 (1.22-6.24); p = 0.01. None of the polymorphisms studied was associated with RF and CRP production. CONCLUSION Our results show that there is a tendency for the AG genotype of IL10-1082 to be associated with the production of ACPA in patients with RA. None of the variants studied were associated with RA susceptibility in Algerians.
Collapse
Affiliation(s)
- D Benahmed
- Team Cellular and Molecular Physiopathology, Laboratory of Biology and physiology of organisms, Faculty of Biological Sciences, Houari Boumediene, USTHB, Algiers, Algeria.
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria.
- Department of Natural and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algeria.
- , Street Mohamed Belouizded n° 2. May 1 square, Algiers, Algeria.
| | - M Abbadi
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Pharmacy, Algiers 1 University, Algiers, Algeria
| | - D Zaoui
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
| | - H Ait Hamoudi
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Medicine, Algiers 1 University, Algiers, Algeria
| | - W Boukouaci
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
| | - S Bouguerra-Aouichat
- Team Cellular and Molecular Physiopathology, Laboratory of Biology and physiology of organisms, Faculty of Biological Sciences, Houari Boumediene, USTHB, Algiers, Algeria
| | - S S Salah
- Immunology Department, Mustapha Bacha Teaching Hospital, Algiers, Algeria
- Faculty of Pharmacy, Algiers 1 University, Algiers, Algeria
| |
Collapse
|
10
|
Liu Y, Jiang P, Qu Y, Liu C, Zhang D, Xu B, Zhang Q. Exosomes and exosomal miRNAs: A new avenue for the future treatment of rheumatoid arthritis. Heliyon 2024; 10:e28127. [PMID: 38533025 PMCID: PMC10963384 DOI: 10.1016/j.heliyon.2024.e28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that involves mainly synovitis and joint injury and is one of the main causes of disability. The pathogenesis of rheumatoid arthritis is complicated, and the treatment cycle is long. The traditional methods of inhibiting inflammation and immunosuppression are no longer sufficient for treatment of the disease, so there is an urgent need to seek new treatments. The exocrine microenvironment is a kind of microvesicle with a lipid bilayer membrane structure that can be secreted by most cells in the body. This structure contains cell-specific proteins, lipids and nucleic acids that can transmit this information from one cell to another. To achieve cell-to-cell communication. Exocrine microRNAs can be contained in exocrine cells and can be selectively transferred to target receptor cells via exocrine signaling, thus regulating the physiological function of target cells. This article focuses on the pathological changes that occur during the development of rheumatoid arthritis and the biological regulation of exocrine and exocrine microRNAs in rheumatoid joints. Research on the roles of exocrine and exocrine microRNAs in regulating the inflammatory response, cell proliferation/apoptosis, autophagy, effects on fibroblast-like synoviocytes and immune regulation in rheumatoid arthritis was reviewed. In addition, the challenges faced by this new treatment are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Ullah F, Markouli M, Orland M, Ogbue O, Dima D, Omar N, Mustafa Ali MK. Large Granular Lymphocytic Leukemia: Clinical Features, Molecular Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2024; 16:1307. [PMID: 38610985 PMCID: PMC11011145 DOI: 10.3390/cancers16071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Large granular lymphocytic (LGL) leukemia is a lymphoproliferative disorder characterized by persistent clonal expansion of mature T- or natural killer cells in the blood via chronic antigenic stimulation. LGL leukemia is associated with specific immunophenotypic and molecular features, particularly STAT3 and STAT5 mutations and activation of the JAK-STAT3, Fas/Fas-L and NF-κB signaling pathways. Disease-related deaths are mainly due to recurrent infections linked to severe neutropenia. The current treatment is based on immunosuppressive therapies, which frequently produce unsatisfactory long-term responses, and for this reason, personalized approaches and targeted therapies are needed. Here, we discuss molecular pathogenesis, clinical presentation, associated autoimmune disorders, and the available treatment options, including emerging therapies.
Collapse
Affiliation(s)
- Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
| | - Mariam Markouli
- Department of Internal Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark Orland
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
| | - Olisaemeka Ogbue
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
| | - Danai Dima
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44915, USA
| | - Najiullah Omar
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
| | - Moaath K. Mustafa Ali
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; (M.O.); (O.O.); (D.D.); (N.O.); (M.K.M.A.)
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44915, USA
| |
Collapse
|
12
|
Bravo-Villagra KM, Muñoz-Valle JF, Baños-Hernández CJ, Cerpa-Cruz S, Navarro-Zarza JE, Parra-Rojas I, Aguilar-Velázquez JA, García-Arellano S, López-Quintero A. STAT4 Gene Variant rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico. Genes (Basel) 2024; 15:241. [PMID: 38397230 PMCID: PMC10887563 DOI: 10.3390/genes15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a multifactorial autoimmune disease. Currently, several genes play an important role in the development of the disease. The objective was to evaluate the association of the STAT4 rs7574865 and rs897200 gene variants with RA susceptibility, DAS28, RF, and anti-CCP in Western and Southern Mexico populations. Genotyping was performed on 476 samples (cases = 240; controls = 236) using the Taqman® system and qPCR probes. Disease activity was assessed using DAS28 and HAQ DI. CRP, ESR, RF, and anti-CCP were determined for clinical assessment. Our study showed there is a statistically significant association with susceptibility to RA for the rs7574865 variant in the Western population for the GT and TT genotypes. The same genotypes also showed a moderate-to-high activity according to DAS28 and positive anti-CCP compared to the control group. This association was not found in the Southern population. This work confirms the association of the rs7574865 variant with RA, as well as a moderate-to-high activity and positive anti-CCP in the Western population but not in the Southern population. No association of the rs897200 variant was found in any of the studied populations.
Collapse
Affiliation(s)
- Karla Mayela Bravo-Villagra
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Sergio Cerpa-Cruz
- Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44200, Mexico;
| | | | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de Bravo 39086, Mexico;
| | - José Alonso Aguilar-Velázquez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Andres López-Quintero
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| |
Collapse
|
13
|
Yu Y, Li J, Li J, Zen X, Fu Q. Evidence from Machine Learning, Diagnostic Hub Genes in Sepsis and Diagnostic Models based on Xgboost Models, Novel Molecular Models for the Diagnosis of Sepsis. Curr Med Chem 2024; 31:6889-6901. [PMID: 37921181 DOI: 10.2174/0109298673273009231017061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Systemic multi-organ dysfunction resulting from dysregulated immune responses in the host triggered by microbial infection or other factors is a major cause of death in sepsis, and secretory pathways play an important role in it. METHODS GSE57065, GSE65682, GSE145227, and GSE54514 from Gene Expression Omnibus (GEO) were derived for this study. Secretory pathways single sample gene set enrichment analysis (ssGSEA) scores in sepsis and normal samples were exposed. Gene modules associated with secretory pathways were selected by weighted gene coexpression network analysis (WGCNA) for Protein-Protein Interaction Networks (PPI) assessment, and crossover genes in both were evaluated by eXtreme Gradient Boosting (XGBoost) model in feature selection to identify hub genes in sepsis. In addition, we explored the immune cells and signaling pathways regulated by hub genes. RESULTS Remarkable dysregulation of secretory pathways was demonstrated in sepsis. The secretory pathways-associated gene modules were intimately involved in cytokine and immune responses in infection. Four crossover genes (CD163, FCER1G, C3AR1, ARG1) were present in WGCNA and PPI, and training in the XGBoost model revealed the best diagnostic performance of these 4 genes, meaning that these genes were the hub genes for sepsis. The 4-hub genes showed a significant negative correlation with T cell activity and a significant positive correlation with inflammatory immune cells. In addition, we found that the 4-hub genes markedly positively regulated INFLAMMATORY RESPONSE, IL6 JAK STAT3 SIGNALING. CONCLUSION Based on WGCNA, PPI, and XGBoost models, we identified hub genes that play an important regulatory role in sepsis. We also developed novel molecular models for the diagnosis of sepsis.
Collapse
Affiliation(s)
- Yangzi Yu
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300000, China
| | - Jing Li
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300000, China
| | - Jiarui Li
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300000, China
| | - Xianming Zen
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300000, China
| | - Qiang Fu
- Department of Critical Medicine, Tianjin Forth Central Hospital, Tianjin, 300000, China
| |
Collapse
|
14
|
Kobak S. VEXAS syndrome: Current clinical, diagnostic and treatment approaches. Intractable Rare Dis Res 2023; 12:170-179. [PMID: 37662628 PMCID: PMC10468411 DOI: 10.5582/irdr.2023.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
VEXAS syndrome, is a hemato-inflammatory chronic disease characterized with predominantly rheumatic and hematologic systemic involvement. It was first described in 2020 by a group of researchers in the United States. VEXAS syndrome is a rare condition that primarily affects adult males and is caused by a mutation in the UBA1 gene located on the X chromosome. Its pathogenesis is related to the somatic mutation affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. Mutant gene lead to decreased ubiquitination and activated innate immune pathways and systemic inflammation occur. The specific mechanism by which the UBA1 mutation leads to the clinical features of VEXAS syndrome is not yet fully understood. VEXAS is a newly define adult-onset inflammatory syndrome manifested with treatment-refractory fevers, arthritis, chondritis, vasculitis, cytopenias, typical vacuoles in hematopetic precursor cells, neutrophilic cutaneous and pulmonary inflammation. Diagnosing VEXAS syndrome can be challenging due to its rarity and the overlap of symptoms with other inflammatory conditions. Genetic testing to identify the UBA1 gene mutation is essential for definitive diagnosis. Currently, there is no known cure for VEXAS syndrome, and treatment mainly focuses on managing the symptoms. This may involve the use of anti-inflammatory medications, immunosuppressive drugs, and supportive therapies tailored to the individual patient's needs. Due to the recent discovery of VEXAS syndrome, ongoing research is being conducted to better understand its pathogenesis, clinical features, and potential treatment options. In this review article, the clinical, diagnostic and treatment approaches of VEXAS syndrome were evaluated in the light of the latest literature data.
Collapse
Affiliation(s)
- Senol Kobak
- Department of Internal Medicine and Rheumatology, Istinye University Faculty of Medicine, Liv Hospital, WASOG Sarcoidosis Clinic, Istanbul,Turkey
| |
Collapse
|
15
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
16
|
LIN SHAOPENG, LIN DAOQIANG, QIU LINAN, WU YUEPING, LIU XIN. Individuals with T-786C and G894T genotypes of eNOS in Chinese Han population have an increased risk of developing rheumatoid arthritis. J Genet 2023. [DOI: 10.1007/s12041-022-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Albert EA, Kondratieva OA, Baranova EE, Sagaydak OV, Belenikin MS, Zobkova GY, Kuznetsova ES, Deviatkin AA, Zhurov AA, Karpulevich EA, Volchkov PY, Vorontsova MV. Transferability of the PRS estimates for height and BMI obtained from the European ethnic groups to the Western Russian populations. Front Genet 2023; 14:1086709. [PMID: 36726807 PMCID: PMC9885218 DOI: 10.3389/fgene.2023.1086709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Genetic data plays an increasingly important role in modern medicine. Decrease in the cost of sequencing with subsequent increase in imputation accuracy, and the accumulation of large amounts of high-quality genetic data enable the creation of polygenic risk scores (PRSs) to perform genotype-phenotype associations. The accuracy of phenotype prediction primarily depends on the overall trait heritability, Genome-wide association studies cohort size, and the similarity of genetic background between the base and the target cohort. Here we utilized 8,664 high coverage genomic samples collected across Russia by "Evogen", a Russian biomedical company, to evaluate the predictive power of PRSs based on summary statistics established on cohorts of European ancestry for basic phenotypic traits, namely height and BMI. We have demonstrated that the PRSs calculated for selected traits in three distinct Russian populations, recapitulate the predictive power from the original studies. This is evidence that GWAS summary statistics calculated on cohorts of European ancestry are transferable onto at least some ethnic groups in Russia.
Collapse
Affiliation(s)
- E. A. Albert
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia,*Correspondence: E. A. Albert,
| | - O. A. Kondratieva
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - A. A. Deviatkin
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - A. A. Zhurov
- National Medical Research Center for Endocrinology, Moscow, Russia
| | - E. A. Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - P. Y. Volchkov
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - M. V. Vorontsova
- National Medical Research Center for Endocrinology, Moscow, Russia
| |
Collapse
|
18
|
Bo L, Jin X, Hu Y, Yang R. Role of Liquid Biopsies in Rheumatoid Arthritis. Methods Mol Biol 2023; 2695:237-246. [PMID: 37450123 DOI: 10.1007/978-1-0716-3346-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by genetic and environmental factors. Early diagnosis is crucial for effective therapy and prognosis of RA, while biomarkers play important roles in early diagnosis. Traditional laboratory tests include rheumatoid factor, anti-cyclic citrullinated peptide antibody, which are inadequate in the ability of early diagnosis. Liquid biopsy technology is a technique using biomarkers found in the blood, urine, and other biological samples from patients, including DNA, RNA, exosome, etc. Evidence indicates that these biomarkers are involved in pathological and physiological conditions of RA. We reviewed the effects of liquid biopsy technology in the early diagnosis of RA and may provide new ideas for effective and precise treatment.
Collapse
Affiliation(s)
- Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojia Jin
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
20
|
Nasef SI, Ellawindy A, Askar AM, Hashem AA, Omar HH. Assessment of Angiopoietin-2 Single Nucleotide Polymorphism in Patients with Rheumatoid Arthritis. Inflammation 2022; 46:853-860. [PMID: 36562898 DOI: 10.1007/s10753-022-01773-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that destroys joint cartilage and causes disability. Synovial inflammation, with angiogenesis, is an early event in the progression of the disease. Angiopoietin 2 (ANGPT2) is a cytokine with both inflammatory and angiogenic effects. Many genes can influence RA susceptibility and disease activity. The aim is to assess the relationship between ANGPT2 gene polymorphism (rs3020221) and RA. The study was a case-control study that included 212 RA patients and 238 age-and gender-matched healthy volunteers. RA disease activity was assessed using the Disease Activity Score 28 index. Erythrocyte sedimentation rate, C-reactive protein, rheumatoid factor, and antibody to cyclic citrullinated peptide were measured. ANGPT2 rs3020221 C > T SNP genotyping was done using real-time polymerase chain reaction (PCR). The TT genotype was more frequently represented in RA patients than in healthy controls (18.9% and 7.1%, respectively, p < 0.001) and increased the chance of developing RA four-fold, as compared to other genotypes (OR = 4.00, 95% CI = 2.09-7.63) (p < 0.001). The CT genotype was associated with elevated levels of the inflammatory markers ESR and CRP in RA patients (p = 0.012 and 0.037, respectively) as well as the DAS28 ESR Score (p < 0.001). The presence of the T allele either under the dominant model (for genotypes CT and TT) or the recessive model (for the genotype TT) predicts RA disease. Assessment of ANGPT2 gene polymorphism is useful to predict the patients with susceptibility to RA. The presence of T allele increased the risk of developing RA disease by two folds.
Collapse
Affiliation(s)
- Samah Ismail Nasef
- Department of Physical Medicine, Rheumatology, and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Alia Ellawindy
- Medical Genetic Unit- Department of Histology & Cell biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Mohamed Askar
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, 4.5 Km Ring Road, P.O: 41111, Ismailia, Egypt
| | - Asmaa AbdelKreem Hashem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hanan Hassan Omar
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, 4.5 Km Ring Road, P.O: 41111, Ismailia, Egypt.
| |
Collapse
|
21
|
Effect of Polymorphisms in the FCN1, FCN2, and FCN3 Genes on the Susceptibility to Develop Rheumatoid Arthritis: A Systematic Review. Int J Rheumatol 2022; 2022:1730996. [PMID: 36569030 PMCID: PMC9780007 DOI: 10.1155/2022/1730996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic association studies in rheumatoid arthritis conducted in various populations have yielded heterogeneous results. The present systematic review was conducted to synthesize the results of the studies in order to establish the impact of polymorphisms in the ficolin-coding genes FCN1, FCN2, and FCN3 on the susceptibility to develop rheumatoid arthritis. A systematic literature review was performed using the following keywords "gene (FCN1/FCN2/FCN3)", "Polymorphism/Genetic Variant", and "rheumatoid arthritis" in different databases until January 2022. Authors assessed articles by title/abstract and then assessed by full text for data extraction. The risk of bias was assessed using the Newcastle-Ottawa scale. Data synthesis was performed qualitatively and quantitatively. A total of 1519 articles were eligible for inclusion in this review, 3 were identified as relevant for the quantitative synthesis with 670 patients and 1019 controls. For the FCN1 gene, an association was found in the dominant and recessive genetic models of the variants rs2989727 (genotype TT = OR: 0.577, 95% CI: 0.430-0.769) and rs1071583 (genotype GG = OR: 1.537, 95% CI: 1.153-2.049, p = 0.0032) with the development of rheumatoid arthritis as a protective or susceptibility factor. FCN2 and FCN3 genes did not show association with disease development. The FCN1 gene variants rs2989727 and rs1071583 are associated with the risk of developing rheumatoid arthritis in populations from Brazil and Belgium, but not in FCN2 and FCN3 gene variants.
Collapse
|
22
|
Podgórska D, Cieśla M, Kolarz B. FCER1G Gene Hypomethylation in Patients with Rheumatoid Arthritis. J Clin Med 2022; 11:4664. [PMID: 36012903 PMCID: PMC9410058 DOI: 10.3390/jcm11164664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that, when improperly treated, leads to disability in patients. Various factors that may cause the development and activity of RA are being considered. Epigenetic factors are also receiving increasing attention. In our study, we analyzed the association between FCER1G gene methylation and RA activity. We conducted our study in 50 RA patients and 24 controls. The patients were divided into two groups in terms of high disease activity and remission. Quantitative real-time methylation-specific PCR was used to analyze the methylation status of the investigated genes. We observed that RA patients have lower levels of methylation of the FCER1G gene compared to controls, but we did not find any difference in the methylation status of this gene between patients with high disease activity and remission. The results of this study suggest that FCER1G gene methylation may be a new potential epigenetic marker of RA that is independent of disease activity.
Collapse
Affiliation(s)
- Dominika Podgórska
- Department of Internal Diseases, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Bogdan Kolarz
- Department of Internal Diseases, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
23
|
Mikhaylenko DS, Kuznetsova EB, Musatova VV, Bure IV, Deryagina TA, Alekseeva EA, Tarasov VV, Zamyatnin AA, Nemtsova MV. Genetic and Clinical Factors Associated with Olokizumab Treatment in Russian Patients with Rheumatoid Arthritis. J Pers Med 2022; 12:jpm12040641. [PMID: 35455757 PMCID: PMC9024465 DOI: 10.3390/jpm12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease and its treatment is an urgent problem of rheumatology. Olokizumab (OKZ) is a new humanized monoclonal antibody targeting IL-6 and is one of the few promising drugs for RA therapy. One-hundred-and-twenty-five DNA samples from Russian patients with RA, treated with olokizumab, were genotyped with an NGS panel containing 60 single nucleotide polymorphisms (SNPs) and the whole coding sequences of IL6, IL6R, TNFRSF1A, CTLA4, IL10, IL23R, and PADI4; and by RT-PCR for HLA-DRB1 and HLA-B. Associations of polymorphic variants with olokizumab efficacy according to the scores ACR20, ACR50, and DAS28-CRP were determined. We analyzed the obtained data by using logistic regression, ROC curves, and multivariate ANOVA. A high predictive value of the response to olokizumab therapy at 24 weeks was found for the combination of HLA-DRB1*04 and HLA-B*27 alleles with SNPs located in non-HLA genes (IL1B, IL17A, PADI4, DHODH, GLCCI1, IL23R, and TNFAIP3), and clinical characteristics (age, RA duration, and intensity) according to ACR20. Thus, the comprehensive assessment of polymorphic variants of HLA and non-HLA genes considering population characteristics in combination with clinical parameters allows for the elaboration of an RA prognostic panel.
Collapse
Affiliation(s)
- Dmitry S. Mikhaylenko
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.V.M.); (T.A.D.)
| | - Ekaterina B. Kuznetsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
| | - Viktoria V. Musatova
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.V.M.); (T.A.D.)
| | - Irina V. Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
| | - Tatiana A. Deryagina
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.V.M.); (T.A.D.)
| | - Ekaterina A. Alekseeva
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.V.M.); (T.A.D.)
| | - Vadim V. Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.M.); (E.B.K.); (I.V.B.); (E.A.A.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.V.M.); (T.A.D.)
| |
Collapse
|
24
|
Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna J. Proinflammatory Cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis-A Literature Review. Int J Mol Sci 2022; 23:ijms23042106. [PMID: 35216226 PMCID: PMC8878005 DOI: 10.3390/ijms23042106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Conducted studies highlight that a mixture of genetic and environmental factors is responsible for rheumatoid arthritis (RA) development. This study aimed to analyze the available literature for the relationship between, on the one hand, single-nucleotide polymorphisms (SNPs) in the proinflammatory cytokines genes interleukin-1 (IL-1), -6, -8, -15, -17, -18, and -23, and tumor necrosis factor-alpha (TNF-α), and on the other hand, RA susceptibility, severity, and patients' response to applied treatment. The PubMed database was searched for sources. Preference was given to articles which were published within the past 20 years. Data indicate that the relationship between selected SNPs in proinflammatory cytokines genes and susceptibility to developing RA is inconclusive, and it depends on the ethnicity of the population. Although the allelic and genotypic frequencies of many SNPs in proinflammatory cytokines genes analyzed did not differ between RA patients and healthy controls, deeper analysis showed that these polymorphisms have a relationship with clinicopathological features of RA. SNPs in proinflammatory cytokines genes also "modify patients' response" to applied treatment. Further studies, on larger cohorts of subjects and in different populations, should be conducted to elucidate the role of SNPs in IL-1, -6, -8, -15, -17, -18, and -23, and TNF-α genes in RA patients.
Collapse
Affiliation(s)
- Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
- Correspondence:
| | - Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland;
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland
| | - Ewa Kowalewska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Białystok, Poland; (K.S.); (E.K.); (J.M.-K.)
| |
Collapse
|
25
|
Epigenome association study for DNA methylation biomarkers in buccal and monocyte cells for female rheumatoid arthritis. Sci Rep 2021; 11:23789. [PMID: 34893669 PMCID: PMC8664902 DOI: 10.1038/s41598-021-03170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Genetics (i.e., mutations) has been assumed to be the major factor in rheumatoid arthritis (RA) etiology, but accounts for a minority of the variance in disease risk for RA. In contrast to genetics, the environment can have dramatic impacts on epigenetics that associate with disease etiology. The current study used buccal cells and purified blood monocytes from two different clinical cohorts involving Caucasian or African American female populations with or without arthritis. The differential DNA methylation regions (DMRs) between the control and RA populations were identified with an epigenome-wide association study. The DMRs (i.e., epimutations) identified in the buccal cells and monocytes were found to be distinct. The DMR associated genes were identified and many have previously been shown to be associated with arthritis. Observations demonstrate DNA methylation epimutation RA biomarkers are cell type specific and similar findings were observed with the two racial background populations. Rheumatoid arthritis susceptibility epigenetic diagnosis appears feasible and may improve the clinical management of RA and allowpreventative medicine considerations.
Collapse
|
26
|
Tsuchiya H, Fujio K. Title Current Status of the Search for Biomarkers for Optimal Therapeutic Drug Selection for Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22179534. [PMID: 34502442 PMCID: PMC8431405 DOI: 10.3390/ijms22179534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive synovitis. It is significantly associated with disability, impaired quality of life, and premature mortality. Recently, the development of biological agents (including tumor necrosis factor-α and interleukin-6 receptor inhibitors) and Janus kinase inhibitors have advanced the treatment of RA; however, it is still difficult to predict which drug will be effective for each patient. To break away from the current therapeutic approaches that could be described as a “lottery,” there is an urgent need to establish biomarkers that stratify patients in terms of expected therapeutic responsiveness. This review deals with recent progress from multi-faceted analyses of the synovial tissue in RA, which is now bringing new insights into diverse features at both the cellular and molecular levels and their potential links with particular clinical phenotypes.
Collapse
|
27
|
Hashimoto T, Yoshida K, Hashiramoto A, Matsui K. Cell-Free DNA in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8941. [PMID: 34445645 PMCID: PMC8396202 DOI: 10.3390/ijms22168941] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous DNA derived from the nuclei or mitochondria is released into the bloodstream following cell damage or death. Extracellular DNA, called cell-free DNA (cfDNA), is associated with various pathological conditions. Recently, multiple aspects of cfDNA have been assessed, including cfDNA levels, integrity, methylation, and mutations. Rheumatoid arthritis (RA) is the most common form of autoimmune arthritis, and treatment of RA has highly varied outcomes. cfDNA in patients with RA is elevated in peripheral blood and synovial fluid and is associated with disease activity. Profiling of cfDNA in patients with RA may then be utilized in various aspects of clinical practice, such as the prediction of prognosis and treatment responses; monitoring disease state; and as a diagnostic marker. In this review, we discuss cfDNA in patients with RA, particularly the sources of cfDNA and the correlation of cfDNA with RA pathogenesis. We also highlight the potential of analyzing cfDNA profiles to guide individualized treatment approaches for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Kiyoshi Matsui
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| |
Collapse
|
28
|
Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, Guevara A, Murray K, Pacifici N, Vargas MV, Voelker T, Hell JW, Ashouri JF. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Front Pharmacol 2021; 12:680043. [PMID: 34122106 PMCID: PMC8194305 DOI: 10.3389/fphar.2021.680043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease with grave physical, emotional and socioeconomic consequences. Despite advances in targeted biologic and pharmacologic interventions that have recently come to market, many patients with RA continue to have inadequate response to therapies, or intolerable side effects, with resultant progression of their disease. In this review, we detail multiple biomolecular pathways involved in RA disease pathogenesis to elucidate and highlight pathways that have been therapeutic targets in managing this systemic autoimmune disease. Here we present an up-to-date accounting of both emerging and approved pharmacological treatments for RA, detailing their discovery, mechanisms of action, efficacy, and limitations. Finally, we turn to the emerging fields of bioengineering and cell therapy to illuminate possible future targeted therapeutic options that combine material and biological sciences for localized therapeutic action with the potential to greatly reduce side effects seen in systemically applied treatment modalities.
Collapse
Affiliation(s)
- Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Joseph M. Martinez
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Juan Flores
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Marina Gabriel
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gustavo Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Guevara
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Noah Pacifici
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Taylor Voelker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim R. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
29
|
Genetic Factors of Predisposition and Clinical Characteristics of Rheumatoid Arthritis in Russian Patients. J Pers Med 2021; 11:jpm11060469. [PMID: 34070522 PMCID: PMC8228085 DOI: 10.3390/jpm11060469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial disease caused by a genetic predisposition and environmental factors. Predisposing alleles of various genes have a relatively small influence on the disease risk when they appear separately, but in combination, they predispose an individual to RA development. We genotyped 125 patients with RA including 60 SNPs and sequenced coding part of six genes by next-generation sequencing (NGS) technology on a target panel (IAD177464_185). According to our data, the alleles HLA-DRB1*04, HLA-DRB1*01, HLA-B*27, PTPN22 (rs2476601), TNF (rs1800629), TPMT (rs2842934), and IL4 (rs2243250), and genotypes HLA-DRB1*04:04, HLA-DRB1*01:16, PTPN22 (rs2476601), TPMT (rs2842934), were significantly associated with the RA development. Associations with clinical criteria (DAS28-CRP, HAQ-DI, and CDAI) and biochemical factors were investigated. We have shown that the PADI4 genotypes (rs11203367, rs2240340, rs11203366, and rs874881) are significantly associated with the baseline levels of DAS28-CRP, HAQ-DI, and CDAI; genotypes IL23R (rs7530511) and TNFRSF1A (rs748004, rs2228144) with the level of anti citrullinated peptide antibodies (ACPA); the genotypes DHODH (rs3213422) and MTHFR (rs180113) with the concentration of C-reactive protein (CRP); and the genotypes IL2RA (rs2104286), IRAK3 (rs11541076), and IL4R (rs1801275) with the level of rheumatoid factor (RF). Application of targeted NGS panel contributes to expanded genotyping to identify risk groups among the RA patients.
Collapse
|
30
|
Basile MS, Ciurleo R, Bramanti A, Petralia MC, Fagone P, Nicoletti F, Cavalli E. Cognitive Decline in Rheumatoid Arthritis: Insight into the Molecular Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:ijms22031185. [PMID: 33530359 PMCID: PMC7865873 DOI: 10.3390/ijms22031185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cognitive decline refers to a deterioration of intellectual and learning abilities and related memory problems, and is often associated with behavioral alterations, which prevents sufferers from carrying out the most common daily activities, such as maintaining normal productive interpersonal relationships, communicating, and leading an autonomous life. Numerous studies have highlighted the association between cognitive decline and autoimmune disorders, including rheumatoid arthritis (RA). RA is a chronic, inflammatory, autoimmune disease that involves systems and organs other than the bones and joints, with varying severity among patients. Here, we review the studies investigating the link between cognitive decline and RA, focusing on the main molecular pathogenetic mechanisms involved. The emerging body of data suggests that clinical, psychological, and biological factors may contribute to the pathogenesis of cognitive decline in RA, including cardiovascular complications, chronic pain, depression, inflammatory factors, changes in hormone levels, drug side effects, and genetics. Further studies are warranted in order to fully clarify the basis underlying the association between cognitive decline and RA and to find new possible diagnostic strategies and therapeutic targets for RA patients.
Collapse
Affiliation(s)
- Maria Sofia Basile
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (M.C.P.)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (M.C.P.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (M.C.P.)
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (M.C.P.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (P.F.); (E.C.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (P.F.); (E.C.)
- Correspondence:
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (P.F.); (E.C.)
| |
Collapse
|
31
|
Lakhanpal A, Smith MH, Donlin LT. Rheumatology in the era of precision medicine: synovial tissue molecular patterns and treatment response in rheumatoid arthritis. Curr Opin Rheumatol 2021; 33:58-63. [PMID: 33229974 DOI: 10.1097/bor.0000000000000767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW A critical unmet need in rheumatoid arthritis (RA) is the identification of biomarkers that predict which of the available medications will be most effective for an individual in order to lower disease activity sooner than is afforded by the current treat-to-target approach. Here we will discuss recent reports examining the potential for synovial tissue molecular, cellular, and spatial profiling in defining objective measures of treatment response and therein developing personalized medicine for RA. RECENT FINDINGS Recent high-dimensional molecular profiling of RA synovium has provided unprecedented resolution of the cell types and pathways in tissues affected by rheumatic diseases. Heightened attention to tissue architecture is also emerging as a means to classify individual disease variation that may allow patients to be further stratified by therapeutic response. Although this wealth of data may have already pinpointed promising biomarkers, additional studies, likely including tissue-based functional drug response assays, will be required to demonstrate how the complex tissue environment responds. SUMMARY Molecular, cellular, and more recently spatial profiling of the RA synovium are uncovering fundamental features of the disease. Current investigations are examining whether this information will provide meaningful biomarkers for individualized medicine in RA.
Collapse
Affiliation(s)
| | | | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery
- Weill Cornell Medical College and Graduate School, New York, New York, USA
| |
Collapse
|
32
|
Zinc and Cadmium in the Aetiology and Pathogenesis of Osteoarthritis and Rheumatoid Arthritis. Nutrients 2020; 13:nu13010053. [PMID: 33375344 PMCID: PMC7824316 DOI: 10.3390/nu13010053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are inflammatory articular conditions with different aetiology, but both result in joint damage. The nutritionally essential metal zinc (Zn2+) and the non-essential metal cadmium (Cd2+) have roles in these arthritic diseases as effectors of the immune system, inflammation, and metabolism. Despite both metal ions being redox-inert in biology, they affect the redox balance. It has been known for decades that zinc decreases in the blood of RA patients. It is largely unknown, however, whether this change is only a manifestation of an acute phase response in inflammation or relates to altered availability of zinc in tissues and consequently requires changes of zinc in the diet. As a cofactor in over 3000 human proteins and as a signaling ion, zinc affects many pathways relevant for arthritic disease. How it affects the diseases is not just a question of zinc status, but also an issue of mutations in the many proteins that maintain cellular zinc homoeostasis, such as zinc transporters of the ZIP (Zrt-/Irt-like protein) and ZnT families and metallothioneins, and the multiple pathways that change the expression of these proteins. Cadmium interferes with zinc's functions and there is increased uptake under zinc deficiency. Remarkably, cadmium exposure through inhalation is now recognized in the activation of macrophages to a pro-inflammatory state and suggested as a trigger of a specific form of nodular RA. Here, we discuss how these metal ions participate in the genetic, metabolic, and environmental factors that lead to joint destruction. We conclude that both metal ions should be monitored routinely in arthritic disease and that there is untapped potential for prognosis and treatment.
Collapse
|
33
|
Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0. Int J Mol Sci 2020; 21:ijms21218125. [PMID: 33143215 PMCID: PMC7663604 DOI: 10.3390/ijms21218125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis has a high prevalence globally and includes over 100 types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. All types of arthritis share common features of disease, including monocyte infiltration, inflammation, synovial swelling, pannus formation, stiffness in the joints and articular cartilage destruction. The exact etiology of arthritis remains unclear, and no cure exists as of yet. Anti-inflammatory drugs (NSAIDs and corticosteroids) are commonly used in the treatment of arthritis. However, these drugs are associated with significant side effects, such as gastric bleeding and an increased risk for heart attack and other cardiovascular problems. It is therefore crucial that we continue to research the pathogenesis of arthritis and seek to discover novel modes of therapy. This editorial summarizes and discusses the themes of the 27 articles published in our Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0”, a continuation of our 2019 Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis”. These Special Issues detail important novel research discoveries that contribute to our current understanding of arthritis.
Collapse
|
34
|
Krishna Priya EK, Srinivas L, Rajesh S, Sasikala K, Banerjee M. Pro-inflammatory cytokine response pre-dominates immuno-genetic pathway in development of rheumatoid arthritis. Mol Biol Rep 2020; 47:8669-8677. [PMID: 33074413 DOI: 10.1007/s11033-020-05909-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/10/2020] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is a crucial inflammatory joint disease characterized by loss of self-tolerance and severe cartilage loss, autoimmune, and subchondral bone erosions. Cytokines are the key regulators of inflammatory responses. Homeostatic imbalances in pro- and anti-inflammatory cytokine activities can result in pathogenic inflammatory reactions. These imbalances could be initiated by environmental factors but the ability to define the threshold of environmental impact relies on the genetic background of the pro- and anti-inflammatory cytokines. To address this a case-control association study was carried out in 429 individuals from Malayalam speaking ethnic population from South India. Functionally relevant SNPs from IL-10, IL-6, IL-1β and IL-1RN were genotyped using PCR -RFLP and sequencing. Meta-analysis was performed for the associated variants of IL-10, IL-1β. Significant association with RA was observed with IL-1β rs1143634, rs1143627, IL-10 rs1800896, IL-6 rs1800796, rs1800797. The associated SNPs are likely to impact transcriptional activity of a gene. Meta-analysis with global populations also provide evidence that IL-10 and IL-1β could be a global marker for RA. The functional significance of associated risk variants of IL-1β and IL-6 indicate increased production of the pro-inflammatory cytokines while IL-10 risk allele suggest reduced production of anti- inflammatory cytokines. The study concludes that increased production of pro-inflammatory cytokines and reduced production of anti- inflammatory cytokines may influence the Th1/Th2 equilibrium resulting in a triggering of Th1 mediated inflammatory responses in development of RA.
Collapse
Affiliation(s)
- E K Krishna Priya
- Human Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Lekshmy Srinivas
- Neurobiology and Genetics Division, Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India
| | - S Rajesh
- Kerala Institute of Medical Science (KIMS) Hospital, Thiruvananthapuram, India
| | - Kesavarao Sasikala
- Human Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Moinak Banerjee
- Neurobiology and Genetics Division, Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India.
| |
Collapse
|