1
|
Herzberg C, van Meegen EN, van Hasselt JGC. Interplay of virulence factors shapes ecology and treatment outcomes in polymicrobial infections. Math Biosci 2024; 377:109293. [PMID: 39245301 DOI: 10.1016/j.mbs.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Polymicrobial infections, caused by a community of multiple micro-organisms, are often associated with increased infection severity and poorer patient outcomes. The design of improved antimicrobial treatment strategies for PMIs can be supported by an understanding of their ecological and evolutionary dynamics. Bacterial species present in polymicrobial infections can produce virulence factors to inhibit host immune responses, such as neutrophil recruitment and phagocytosis. The presence of virulence factors can indirectly affect other bacterial species acting as a type of host-mediated interspecies interaction. The aim of this study was to assess how bacterial virulence factors targeting neutrophil function influence ecology and treatment outcomes of PMIs. An agent-based model was constructed which describes a dual-species bacterial population in the presence of neutrophils and a bacteriostatic drug. Our analysis has revealed unforeseen dynamics of the interplay of multiple virulence factors acting as interspecies interaction. We found that the distribution of two phagocytosis-inhibiting virulence factors amongst species can impact whether they have a mutually protective effect for both species. The addition of a virulence factor inhibiting neutrophil recruitment was found to reduce the protective effect of phagocytosis-inhibiting virulence factors. Furthermore we demonstrate the importance of virulence strength of a species relative to other virulent species to determine the fate of a species. We conclude that virulence factors are an important driver of population dynamics in polymicrobial infections, and may be a relevant therapeutic target for treatment of polymicrobial infections.
Collapse
Affiliation(s)
- C Herzberg
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - E N van Meegen
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - J G C van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
2
|
Wei Y, Wang B, Wu K, Wang C, Bai X, Wang J, Yang Z. Prevalence, Virulence Genes, Drug Resistance and Genetic Evolution of Trueperella pyogenes in Small Ruminants in Western China. Animals (Basel) 2024; 14:2964. [PMID: 39457894 PMCID: PMC11503795 DOI: 10.3390/ani14202964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Trueperella pyogenes is a significant opportunistic pathogen that causes substantial economic losses in animal agriculture due to its ability to infect various animal tissues and organs. Limited research has been conducted on the prevalence and biological characteristics of T. pyogenes isolated from sheep and goats. This study aimed to isolate T. pyogenes from clinical samples of sheep and goats in western China, examining genetic evolutionary relationships, antibiotic resistance, and virulence genes. Between 2021 and 2023, standard bacteriological methods were used to isolate and identify T. pyogenes from 316 samples (209 from goats and 107 from sheep) collected from 39 farms. Susceptibility to 14 antibiotics was tested using broth microdilution per CLSI guidelines, and PCR detected eight virulence genes. Whole-genome sequencing analyzed genetic relationships and gene carriage status in 39 isolates. The results indicated that 86 strains of T. pyogenes were isolated from 316 samples, yielding an isolation rate of 27.2% (goats n = 47, 22.5%; sheep n = 39, 36.4%). The virulence genes plo, cbpA, nanH, nanP, fimA, fimC, and fimE were present in 100%, 66.7%, 64.1%, 71.8%, 69.2%, 59.0%, and 82.1% of isolates, respectively, with none carrying the fimG gene. The dominant virulence genotype was plo/nanH/nanP/fimA/fimC/fimE. The isolates exhibited resistance to erythromycin (44.2%, 38/86), gentamicin (38.4%, 33/86), sulfamethoxazole/trimethoprim (37.2%, 32/86), tetracycline (32.6%, 28/86), and streptomycin (32.6%, 28/86), and low resistance to chloramphenicol (14.0%, 12/86), ciprofloxacin (7.0%, 6/86), penicillin (5.8%, 5/86), and clindamycin (4.7%, 4/86). All isolates were susceptible to cefotaxime, vancomycin, and linezolid. Among the 86 isolates, 37 (43.0%) displayed multidrug resistance (MDR) characteristics. The whole genome sequencing of 39 isolates identified eight types of resistance genes, including ant(2″)-Ia, ant(3″)-Ia, cmlA1, cmx, erm(X), lnu(A), sul1, and tet(W). Except for tet(W), erm(X), and sul1, the other resistance genes were reported for the first time in T. pyogenes isolated in China. The drug susceptibility test results and resistance gene detection for the isolated strains were consistent for tetracycline, erythromycin, gentamicin, and sulfisoxazole. Similar allelic profiles and genetic evolutionary relationships were found among isolates from different farms. This study highlights the antibiotic resistance status and virulence gene-carrying rate of Trueperella pyogenes, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Yuchen Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ke Wu
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Chenxiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Western Region), Northwest A&F University, Yangling 712100, China
- Engineering Research Center of Novel Animal Efficient Vaccines of the Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Western Region), Northwest A&F University, Yangling 712100, China
- Engineering Research Center of Novel Animal Efficient Vaccines of the Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Brito GS, Dutra RP, Fernandes Pereira AL, Ferreira AGN, Neto MS, Holanda CA, Fidelis QC. Nanoemulsions of essential oils against multi-resistant microorganisms: An integrative review. Microb Pathog 2024; 195:106837. [PMID: 39103128 DOI: 10.1016/j.micpath.2024.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.
Collapse
Affiliation(s)
- Gabriel Sousa Brito
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Richard Pereira Dutra
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Ana Lúcia Fernandes Pereira
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | | | - Marcelino Santos Neto
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Carlos Alexandre Holanda
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Queli Cristina Fidelis
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil.
| |
Collapse
|
4
|
Du M, Xuan W, Hamblin MR, Huang L. Clinical aPDT's effect on Candida albicans: Antifungal susceptibility, virulence gene expression, and correlation with leukocyte and neutrophil counts. Photodiagnosis Photodyn Ther 2024; 49:104327. [PMID: 39233129 DOI: 10.1016/j.pdpdt.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our previous clinical trial demonstrated that antimicrobial photodynamic therapy (aPDT) with methylene blue (MB) and potassium iodide (KI) effectively killed Candida albicans (C. albicans) in adult AIDS patients with oral candidiasis, regardless of biofilm formation or 25S rDNA genotype. This study evaluated changes in antifungal susceptibility and virulence gene expression in C. albicans before and after aPDT, and explored factors related to clinical aPDT efficacy. METHODS Twenty-one adult AIDS patients with C. albicans oral candidiasis were divided into Group a (400 μM MB, N = 11) and Group b (600 μM MB, N = 10). Both groups received two aPDT treatments, where MB was applied for 5 min, followed by 300 mM KI, and illuminated for 30 min (37.29 J/cm²). C. albicans isolates were collected before and after treatment to assess antifungal susceptibility (fluconazole, itraconazole, flucytosine, amphotericin B) and gene expression (CAT1, HWP1). Peripheral blood tests were analyzed for correlations with aPDT efficacy. RESULTS aPDT reduced minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, and flucytosine, with significant reductions primarily after the first treatment. MIC reductions differed between groups, with Group a showing greater decreases in flucytosine and fluconazole MICs, and Group b in amphotericin B MICs. No significant changes in CAT1 or HWP1 expression were observed. Clinical efficacy of aPDT negatively correlated with leukocyte and neutrophil levels. CONCLUSIONS aPDT effectively reduces MICs of antifungal drugs against C. albicans isolated from treated patients, particularly after the first treatment. The concentration of MB required to reduce MICs varies among different antifungal drugs. aPDT does not alter CAT1 or HWP1 expression, and its clinical efficacy in eradicating C. albicans is negatively associated with leukocyte and neutrophil levels.
Collapse
Affiliation(s)
- Meixia Du
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Li J, Huang W, Li Q. New insights into pathogenic performances during peroxydisulfate composting: sources, pathways, and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58093-58108. [PMID: 39306820 DOI: 10.1007/s11356-024-35040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Livestock manure treatment technology and composting and its products have been widely used in agricultural soil. However, little was known about the variations in the fate of pathogens and the factors affecting their pathogenic ability during this process, which posed threats to ecological safety and public health globally. This study used a metagenomic approach to profile the behaviors of pathogens during peroxydisulfate composting. Results showed that Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Burkholderia pseudomallei, and Mycobacterium tuberculosis were the main secretors of virulence factors (VFs) in composting system; their abundance and the virulence factor-related genes they carried were better downregulated under the role of peroxydisulfate. In addition, peroxydisulfate composting ensured the lower moisture, weakening the swimming mobility behavior of pathogens through suppressing the abundance of genes associated with flagellar formation, and impaired the communication between pathogens by regulating quorum sensing (QS)- and quorum quenching (QQ)-related genes. Moreover, reduced abundance of resistomes restricted pathogens disseminating infection. In summary, this study provided useful strategies in managing pathogen pathogenic ability during composting based on pathogenic source (pathogens), pathway (VFs), influencing factors (QS/QQ, physicochemical habitats), and resistomes.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenyu Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Liu Y, Wang Y, Wei F, Chai L, Wang H. Gut microbiota-bile acid crosstalk contributes to intestinal damage after nitrate exposure in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173795. [PMID: 38851338 DOI: 10.1016/j.scitotenv.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. Nitrate (NO3-) is a widespread pollutant in aquatic ecosystems, which can cause rapid changes in microbial community structure and function. However, the effect of gut microbiota reshaped by nitrate‑nitrogen (NO3-N) on BAs profiles remains unclarified. To test this, intestinal targeted BAs metabolomics and fecal metagenomic sequencing were performed on Bufo gargarizans tadpoles treated with different concentrations of NO3-N. NO3-N exposure induced a reduction in the abundance of microbiota with bile acid-inducible enzymes (BAIs) and/or hydroxysteroid dehydrogenases (HSDHs), thus inhibiting the conversion of primary BAs to secondary BAs. Inhibition of BAs biotransformation decreased protective hydrophilic BAs (UDCA) and increased toxic hydrophobic BAs (CA and CDCA), which may contribute to intestinal histopathological damage. Moreover, we found that NO3-N treatment increased microbial virulence factors and decreased Glycoside hydrolases, further highlighting the deleterious risk of NO3-N. Overall, this study shed light on the complex interactions of NO3-N, gut microbiota, and BAs, and emphasized the hazardous effects of NO3-N pollution on the health of amphibians.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
7
|
Mo W, He H, Mo Y, Lin Y, Ye X, Huang L, Li S. Assessment of the Safety and Exopolysaccharide Synthesis Capabilities of Bacillus amyloliquefaciens D189 Based on Complete Genome and Phenotype Analysis. Curr Microbiol 2024; 81:342. [PMID: 39225770 DOI: 10.1007/s00284-024-03777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
Exopolysaccharides (EPS) are natural macromolecular carbohydrates with good functional activity and physiological activities, which can be utilized as an emulsifier, viscosity enhancer, stabilizer, gelling agent, and water retention agent in a wide range of food products. In this study, the whole genome of Bacillus amyloliquefaciens D189, an EPS-producing bacteria, was sequenced. The result showed that D189 contains a single, circular chromosome of 3,963,356 bp with an average GC content of 45.74% and 3996 coding genes. The gene annotation results showed that D189 is a potentially safe strain and confirmed to be safe associated with hemolytic assay, and antibiotic resistance test. Meanwhile, D189 genome possessed 240 genes related to carbohydrate metabolism. More importantly, D189 could transport 9 sugars and contained a complete biosynthetic pathway for 8 nucleotide sugars. Based on the validation experiments, strain D189 could metabolize 8 sugars (glucose, sucrose, trehalose, fructose, cellobiose, maltose, mannitol, and N-acetyl-D-glucosamine) to produce EPS, with the highest yield of 1.212 g/L when sucrose was the carbon source. Therefore, the whole genome sequencing preliminarily elucidated the physiological mechanism of EPS, providing several pathways for engineering D189 to further enhance the yield of EPS.
Collapse
Affiliation(s)
- Wenfeng Mo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yifei Mo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yongyi Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaowen Ye
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Che J, Fang Q, Hu S, Liu B, Wang L, Fang X, Li L, Luo T, Bao B. The Impact of Vp-Porin, an Outer Membrane Protein, on the Biological Characteristics and Virulence of Vibrio Parahaemolyticus. BIOLOGY 2024; 13:485. [PMID: 39056680 PMCID: PMC11273978 DOI: 10.3390/biology13070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Porins are crucial proteins located in the outer membrane that directly influence antimicrobial resistance mechanisms and virulence in bacteria. In this study, a porin gene (Vp-porin) was cloned in V. parahaemolyticus, and the function of Vp-Porin in biological characteristics and virulence was investigated. The results of sequence analysis showed that Vp-Porin is highly conserved in Vibrio spp., and the predicted 3D structure showed it could form a 20-strand transmembrane β-barrel domian. Membrane permeabilization provides evidence that the membrane integrity of ∆Vp-porin was damaged and the sensitivity to tetracycline, polymyxin B, rifampicin and cephalothin of ∆Vp-porin obviously increased. In addition, loss of Vp-porin damaged motility due to downregulated flagellar synthesis. In addition, ∆Vp-porin exhibited attenuated cytotoxicity to Tetrahymena. The relative survival rate of Tetrahymena infection with ∆Vp-porin was 86%, which is much higher than that with WT (49%). Taken together, the results of this study indicate that Vp-Porin in V. parahaemolyticus plays various roles in biological characteristics in membrane integrity, antimicrobial resistance and motility and contributes to virulence.
Collapse
Affiliation(s)
- Jinyuan Che
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.C.); (L.W.)
| | - Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Shaojie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (J.C.); (L.W.)
| | - Xiu Fang
- Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Fuding 355200, China;
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang 332000, China;
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Science, Fuzhou 350003, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Q.F.); (S.H.); (B.L.)
| |
Collapse
|
9
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
10
|
de Melo AG, Morency C, Moineau S. Virulence-associated factors as targets for phage infection. Curr Opin Microbiol 2024; 79:102471. [PMID: 38569419 DOI: 10.1016/j.mib.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Bacterial pathogens can infect a wide range of hosts and pose a threat to public and animal health as well as to agriculture. The emergence of antibiotic-resistant strains has increased this risk by making the treatment of bacterial infections even more challenging. Pathogenic bacteria thrive in various ecological niches, but they can also be specifically targeted and killed by bacteriophages (phages). Lytic phages are now investigated and even used, in some cases, as alternatives or complements to antibiotics for preventing or treating bacterial infections (phage therapy). As such, it is key to identify factors responsible for phage specificity and efficiency. Here, we review recent advances in virulence-associated factors that are targeted by phages. We highlight components of the bacterial cell surface, effector systems, and motility structures exploited by phages and the effects of phages on cell aggregation and communication. We also look at the fitness trade-off of phage resistance.
Collapse
Affiliation(s)
- Alessandra G de Melo
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Carlee Morency
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
11
|
Cox N, De Swaef E, Corteel M, Van Den Broeck W, Bossier P, Nauwynck HJ, Dantas-Lima JJ. Experimental Infection Models and Their Usefulness for White Spot Syndrome Virus (WSSV) Research in Shrimp. Viruses 2024; 16:813. [PMID: 38793694 PMCID: PMC11125927 DOI: 10.3390/v16050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.
Collapse
Affiliation(s)
- Natasja Cox
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Mathias Corteel
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
12
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and fiber-diet-mediated changes in virulence factors in pig colon contents and feces and their driving factors. Front Vet Sci 2024; 11:1351962. [PMID: 38689852 PMCID: PMC11058638 DOI: 10.3389/fvets.2024.1351962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
13
|
Alawam AS, Alwethaynani MS. Construction of an aerolysin-based multi-epitope vaccine against Aeromonas hydrophila: an in silico machine learning and artificial intelligence-supported approach. Front Immunol 2024; 15:1369890. [PMID: 38495891 PMCID: PMC10940347 DOI: 10.3389/fimmu.2024.1369890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Aeromonas hydrophila, a gram-negative coccobacillus bacterium, can cause various infections in humans, including septic arthritis, diarrhea (traveler's diarrhea), gastroenteritis, skin and wound infections, meningitis, fulminating septicemia, enterocolitis, peritonitis, and endocarditis. It frequently occurs in aquatic environments and readily contacts humans, leading to high infection rates. This bacterium has exhibited resistance to numerous commercial antibiotics, and no vaccine has yet been developed. Aiming to combat the alarmingly high infection rate, this study utilizes in silico techniques to design a multi-epitope vaccine (MEV) candidate against this bacterium based on its aerolysin toxin, which is the most toxic and highly conserved virulence factor among the Aeromonas species. After retrieval, aerolysin was processed for B-cell and T-cell epitope mapping. Once filtered for toxicity, antigenicity, allergenicity, and solubility, the chosen epitopes were combined with an adjuvant and specific linkers to create a vaccine construct. These linkers and the adjuvant enhance the MEV's ability to elicit robust immune responses. Analyses of the predicted and improved vaccine structure revealed that 75.5%, 19.8%, and 1.3% of its amino acids occupy the most favored, additional allowed, and generously allowed regions, respectively, while its ERRAT score reached nearly 70%. Docking simulations showed the MEV exhibiting the highest interaction and binding energies (-1,023.4 kcal/mol, -923.2 kcal/mol, and -988.3 kcal/mol) with TLR-4, MHC-I, and MHC-II receptors. Further molecular dynamics simulations demonstrated the docked complexes' remarkable stability and maximum interactions, i.e., uniform RMSD, fluctuated RMSF, and lowest binding net energy. In silico models also predict the vaccine will stimulate a variety of immunological pathways following administration. These analyses suggest the vaccine's efficacy in inducing robust immune responses against A. hydrophila. With high solubility and no predicted allergic responses or toxicity, it appears safe for administration in both healthy and A. hydrophila-infected individuals.
Collapse
Affiliation(s)
- Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S. Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| |
Collapse
|
14
|
Luo Z, Li P, Zhang D, Zhu J, Wang W, Zhao W, Li P, Yuan G. A Novel Antimicrobial Mechanism of Azalomycin F Acting on Lipoteichoic Acid Synthase and Cell Envelope. Molecules 2024; 29:856. [PMID: 38398608 PMCID: PMC10893547 DOI: 10.3390/molecules29040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Lipoteichoic acid (LTA) plays an essential role in bacterial growth and resistance to antibiotics, and LTA synthetase (LtaS) was considered as an attractive target for combating Gram-positive infections. Azalomycin F, a natural guanidyl-containing polyhydroxy macrolide, can target the LTA of Staphylococcus aureus. Using various technologies including enzyme-linked immunosorbent assay, transmission electron microscope, proteomics, and parallel reaction monitoring, here, the experimental results indicated that azalomycin F can accelerate the LTA release and disrupt the cell envelope, which would also lead to the feedback upregulation on the expressions of LtaS and other related enzymes. Simultaneously, the reconstituted enzyme activity evaluations showed that azalomycin F can significantly inhibit the extracellular catalytic domain of LtaS (eLtaS), while this was vague for LtaS embedded in the liposomes. Subsequently, the fluorescence analyses for five incubation systems containing azalomycin F and eLtaS or the LtaS-embedded liposome indicated that azalomcyin F can spontaneously bind to the active center of LtaS. Combining the mass spectroscopy analyses and the molecular dockings, the results further indicated that this interaction involves the binding sites of substrates and the LTA prolongation, especially the residues Lys299, Phe353, Trp354 and His416. All these suggested that azalomycin F has multiple antibacterial mechanisms against S. aureus. It can not only inhibit LTA biosynthesis through the interactions of its guanidyl side chain with the active center of LtaS but also disrupt the cell envelope through the synergistic effect of accelerating the LTA release, damaging the cell membrane, and electrostatically interacting with LTA. Simultaneously, these antibacterial mechanisms exhibit a synergistic inhibition effect on S. aureus cells, which would eventually cause the cellular autolysis.
Collapse
Affiliation(s)
- Zilong Luo
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Pingyi Li
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Duoduo Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Zhu
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wan Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Wenjia Zhao
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peibo Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Jia XM, Wu BX, Chen BD, Li KT, Liu YD, Xu Y, Wang J, Zhang X. Compositional and functional aberrance of the gut microbiota in treatment-naïve patients with primary Sjögren's syndrome. J Autoimmun 2023; 141:103050. [PMID: 37120327 DOI: 10.1016/j.jaut.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
OBJECTIVES To investigate the compositional and functional characteristics of the gut microbiota in primary Sjögren's syndrome (pSS) and compare them with those in systemic lupus erythematosus (SLE). METHODS Stool samples from 78 treatment-naïve pSS patients and 78 matched healthy controls were detected by shotgun metagenomic sequencing and compared with those from 49 treatment-naïve SLE patients. The virulence loads and mimotopes of the gut microbiota were also assessed by sequence alignment. RESULTS The gut microbiota of treatment-naïve pSS patients had lower richness and evenness and showed a different community distribution than that of healthy controls. The microbial species enriched in the pSS-associated gut microbiota included Lactobacillus salivarius, Bacteroides fragilis, Ruminococcus gnavus, Clostridium bartlettii, Clostridium bolteae, Veillonella parvula, and Streptococcus parasanguinis. Lactobacillus salivarius was the most discriminating species in the pSS patients, especially in those with interstitial lung disease (ILD). Among the differentiating microbial pathways, the superpathway of l-phenylalanine biosynthesis was also further enriched in pSS complicated with ILD. There were more virulence genes carried by the gut microbiota in pSS patients, most of which encoded peritrichous flagella, fimbriae, or curli fimbriae, three types of bacterial surface organelles involved in bacterial colonization and invasion. Five microbial peptides with the potential to mimic pSS-related autoepitopes were also enriched in the pSS gut. SLE and pSS shared significant gut microbial traits, including community distribution, altered microbial taxonomy and pathways, and enriched virulence genes. However, Ruminococcus torques was depleted in pSS patients but enriched in SLE patients compared to healthy controls. CONCLUSIONS The gut microbiota in treatment-naïve pSS patients was disturbed and shared significant similarity with that in SLE patients.
Collapse
Affiliation(s)
- Xin-Miao Jia
- Medical Research Center, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing-Xuan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Rheumatology and Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bei-di Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ke-Tian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yu-Dong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
16
|
Dahshan NA, Abu-Dahab R, Khalil EA, Al-Bakri AG. Bactericidal effect of Iberin combined with photodynamic antimicrobial chemotherapy against Pseudomonas aeruginosa biofilm cultured on ex vivo wound model. Photodiagnosis Photodyn Ther 2023; 44:103841. [PMID: 37832710 DOI: 10.1016/j.pdpdt.2023.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Wounds infected by Pseudomonas aeruginosa (P. aeruginosa) biofilms are characterized by poor healing and by being long lasting. Pyocyanin and pyoverdine are exotoxins that contribute to P. aeruginosa pathogenicity in wound infections and are known as virulence factors. Despite the usefulness of antimicrobial photodynamic therapy (PDT) in the management of wound infections, biofilms are hurdle for microbial photoinactivation. Quorum sensing (QS) is a cell density-dependent chemical signaling system P. aeruginosa uses to regulate biofilm formation and virulence factors production. In the current study, QS attenuation was used in combination with PDT against P. aeruginosa biofilm cultured on skin explant. Iberin is a QS inhibitor that attenuates P. aeruginosa virulence and affects biofilm integrity. The antibiofilm and QS inhibitory activities of iberin in combination with either riboflavin or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin tetra p-toluenesulfonate (TMP) mediated PDT were investigated using viable count method and pyocyanin and pyoverdine assays, respectively. No bactericidal activity was reported when iberin was added to a mature biofilm (24 h) followed by PDT. When added to a growing biofilm at multiple time points (0 h, 24 h and 48 h), iberin inhibited P. aeruginosa biofilm QS signaling system. This inhibitory effect resulted in an observable decrease in the levels of the QS-regulated virulence factors, pyocyanin and pyoverdine, without any effect on the growth of the biofilm cultures. These changes in biofilm virulence were associated with a decrease in biofilm resistance to PDT and caused bactericidal effect upon photosensitizers treatment and irradiation. Iberin-treated-riboflavin-mediated PDT resulted in a significant 1.3 log reduction in biofilm population. Similarly, iberin-treated-TMP-mediated PDT caused a significant 1.8 log reduction in biofilm population. The combination of QS inhibitor with PDT is a promising alternative antimicrobial therapy for the management of biofilms.
Collapse
Affiliation(s)
- Nisreen A Dahshan
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Rana Abu-Dahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Enam A Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan.
| |
Collapse
|
17
|
Hu Y, Xie Y, Su Q, Fu J, Chen J, Liu Y. Probiotic and Safety Evaluation of Twelve Lactic Acid Bacteria as Future Probiotics. Foodborne Pathog Dis 2023; 20:521-530. [PMID: 37722019 DOI: 10.1089/fpd.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
The human gut flora is highly diverse. Most lactic acid bacteria (LAB) are widely used as probiotics in human and animal husbandry and have a variety of physiological benefits. This article mainly studied the bacteriostatic ability of LAB against four pathogenic bacteria, gastrointestinal environment tolerance, and adhesion ability to Caco-2 cells. The genome of Lactiplantibacillus plantarum L461 was sequenced and analyzed. The results showed that strains F512, L461, and D469 had the most significant inhibitory effects on Escherichia coli, Salmonella enterica B, Staphylococcus aureus, and Listeria monocytogenes. In addition, strains L461, C502, and P231 showed good tolerance after exposure to simulated gastric fluid for 0-4 h. Strains C502, H781, and L461 showed good tolerance in simulated intestinal fluid. Strains L461 and H781 showed good adhesion to Caco-2 cells. The number of viable bacteria was more than 60. Therefore, we screened L. plantarum L461 from 12 LAB strains through three aspects of evaluation, and conducted whole genome sequencing and analysis. Sequencing results showed that L. plantarum L461 had more defense mechanisms and phage annotation genes than L. plantarum WCFS1. Virulence factor studies showed that L. plantarum L461 has iron absorption system and adhesion-related gene annotation, indicating that L. plantarum L461 has survival advantage in intestinal tract. The predicted results showed that there were eight phages with phage resistance in L. plantarum L461. L. plantarum L461 is sensitive to several antibiotics, notably penicillin and oxacillin. In summary, the results of this study prove that L. plantarum L461 has good prebiotic function and is safe. Therefore, L. plantarum L461 can be safely used as a potential functional probiotic.
Collapse
Affiliation(s)
- Yuheng Hu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Qingtai Su
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Jiahao Fu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Jialu Chen
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Sultan M, Arya R, Chaurasia AK, Kim KK. Sensor histidine kinases kdpD and aauS regulate biofilm and virulence in Pseudomonas aeruginosa PA14. Front Cell Infect Microbiol 2023; 13:1270667. [PMID: 37881370 PMCID: PMC10595159 DOI: 10.3389/fcimb.2023.1270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant opportunistic human pathogen that utilizes two-component systems (TCSs) to sense pathophysiological signals and coordinate virulence. P. aeruginosa contains 64 sensor histidine kinases (HKs) and 72 response regulators (RRs) that play important roles in metabolism, bacterial physiology, and virulence. However, the role of some TCSs in virulence remains uncharacterized. In this study, we evaluated the virulence potential of some uncharacterized sensor HK and RR knockouts in P. aeruginosa using a Galleria mellonella infection model. Furthermore, we demonstrated that KdpD and AauS HKs regulate virulence by affecting P. aeruginosa biofilm formation and motility. Both ΔkdpD and ΔaauS showed reduced biofilm and motility which were confirmed by restored phenotypes upon complementation. Moreover, ΔkdpD and ΔaauS exhibited increased survival of HeLa cells and G. mellonella during in vivo infection. Altered expression of the transcriptional regulators anR and lasR, along with the virulence genes lasA, pelA, cupA, pqsA, pqsB, pqsC, and pqsD in the mutant strains elucidated the mechanism by which ΔkdpD and ΔaauS affect virulence. These findings confirm that kdpD and aauS play important roles in P. aeruginosa pathogenesis by regulating biofilm formation and motility.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
19
|
McGrouther DA. Hand infection: a management approach based on a new understanding of combined bacterial and neutrophil mediated tissue damage. J Hand Surg Eur Vol 2023; 48:838-848. [PMID: 37218740 DOI: 10.1177/17531934231174819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Concepts of tissue damage from sepsis are rooted in the works of Pasteur regarding colonization by microorganisms, and Lister's observation of avoiding suppuration by their exclusion. The reactive inflammation has been considered a beneficial defence mechanism. A more complex biology is now unfolding of pathogenic mechanisms with toxins produced by the organisms now being placed in a broad category of virulence factors. Neutrophils are key cells in providing innate immunity and their trafficking to sites of infection results in entry to the extracellular space where they attack pathogens by release of the contents of neutrophil granules and neutrophil extracellular traps. There is now considerable evidence that much of the tissue damage in infection is due to excessive host innate immunological reaction; a hyperinflammatory response, whether localized or systemic. In addition to traditional surgical methods of drainage and decompression there is now a focus on dilution of inflammatory mediators. This emerging knowledge can potentially alter the way we approach hand infections.
Collapse
|
20
|
Rinaldi E, Drenkhahn C, Gebel B, Saleh K, Tönnies H, von Loewenich FD, Thoma N, Baier C, Boeker M, Hinske LC, Diaz LAP, Behnke M, Ingenerf J, Thun S. Towards interoperability in infection control: a standard data model for microbiology. Sci Data 2023; 10:654. [PMID: 37741862 PMCID: PMC10517923 DOI: 10.1038/s41597-023-02560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.
Collapse
Affiliation(s)
- Eugenia Rinaldi
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany.
| | - Cora Drenkhahn
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Benjamin Gebel
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kutaiba Saleh
- Data Integration Center, Jena University Hospital, Jena, Germany
| | | | | | - Norbert Thoma
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Claas Baier
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | | | | | - Luis Alberto Peña Diaz
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Michael Behnke
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Josef Ingenerf
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Sylvia Thun
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
21
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
22
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
23
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
24
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
25
|
Balasubramanian N, Pounpandi P, Varatharaju G, Shanmugaiah V, Balakrishnan K, Thirunarayan MA. Distribution of virulence genes and biofilm characterization of human isolates of Streptococcus agalactiae: A pilot study. Colloids Surf B Biointerfaces 2023; 223:113151. [PMID: 36738701 DOI: 10.1016/j.colsurfb.2023.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study included 21 newly isolated clinical samples of Streptococcus agalactiae (Group B Streptococcus) screened in patients (six male, fifteen female) from various states of India with different infections (urinary tract infections, blood, pus and eye infections). All isolates were identified as Group B Streptococcus (GBS) using hemolytic properties, serogrouping and MALDI-TOF-MS analysis. Six virulence genes, cfb (100%), cylE (90.4%), lmp (85.7%), bca (71.4%), rib (38%) and bac (4.7%) were detected via polymerase chain reaction (PCR). Distribution studies of these six genes revealed five isolates containing five virulence genes (23.8%), followed by ten isolates containing four virulence genes (47.6%). The twenty GBS isolates selected on the glass surface included non-biofilm producers (n = 6, 30%), weak (n = 11, 55%) and moderate biofilm producers (n = 3, 15%). On the polystyrene surface, weak (n = 4, 20%), moderate (n = 2, 10%) and strong (n = 14, 70%) biofilm producers were detected. Live-dead cell staining revealed that more viable cells accumulated in the S. ag 7420 isolate than in the AH1 isolate. Scanning electron microscope (SEM) biofilm analysis showed S. ag AH1 cells appeared as chain-like structures, whereas the S. ag 7420 isolate biofilm cells appeared as fork-like structures on the glass surface. Biofilm elements were analyzed using Energy Dispersive X-Ray Analysis (EDAX) for both isolates and 13 elements with different orders of composition were found. Thus, virulence gene detection, distribution and biofilm formation by these new clinical isolates suggested the virulent nature of these pathogens, which might cause different levels of disease severity in humans.
Collapse
Affiliation(s)
- N Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India.
| | - P Pounpandi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - G Varatharaju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - V Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - K Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - M A Thirunarayan
- Department of Microbiology, Apollo Hospitals, Greams Road, Chennai 600006, India
| |
Collapse
|
26
|
Lin PY, Chan SY, Stern A, Chen PH, Yang HC. Epidemiological profiles and pathogenicity of Vancomycin-resistant Enterococcus faecium clinical isolates in Taiwan. PeerJ 2023; 11:e14859. [PMID: 36855433 PMCID: PMC9968458 DOI: 10.7717/peerj.14859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
The emerging Vancomycin-resistant Enterococcus faecium (VRE-fm) is an opportunistic pathogen causing nosocomial infections. The identification of VRE-fm is important for successful prevention and control in healthcare settings. VRE-fm clinical isolates obtained from regional hospitals in northern Taiwan were characterized for antimicrobial susceptibility, virulence genes and biofilm production. Most isolates exhibited multi-drug resistance and carried the virulence genes, esp and hyl. While all isolates produce biofilms, those isolates that carried esp exhibited greater biofilm production. Isolates with different virulence gene carriages were examined for pathogenicity by using a nematode model, Caenorhabditis elegans, for determining microbial-host interactions. The survival assay showed that C. elegans was susceptible to Linezolid-resistant VRE-fm isolates with hyl. Combining the molecular epidemiological profiles regarding pathogenesis in C. elegans can serve as a guide for physicians in limiting opportunistic infections caused by VRE-fm.
Collapse
Affiliation(s)
- Pei-Yun Lin
- Department of Laboratory, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Shang-Yih Chan
- Department of Internal Medicine, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan,Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan,Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, USA
| | - Po-Hsiang Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
27
|
Du W, Xu R, He Z, Yang H, Gu Y, Liu Y. Transcriptomics-based investigation of molecular mechanisms underlying synergistic antimicrobial effects of AgNPs and Domiphen on the human fungal pathogen Aspergillus fumigatus. Front Microbiol 2023; 14:1089267. [PMID: 36819018 PMCID: PMC9928863 DOI: 10.3389/fmicb.2023.1089267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Critically ill patients have higher risk of serious fungal infections, such as invasive aspergillosis (IA) which is mainly caused by the human fungal pathogen Aspergillus fumigatus. Triazole drugs are the primary therapeutic agents for the first-line treatment of IA, which could easily cause drug resistance problems. Here, we assess the potential of AgNPs synthesized with Artemisia argyi leaf extract and domiphen as new antifungal agents to produce synergistic antimicrobial effects on Aspergillus fumigatus, and dissect possible molecular mechanisms of action. Plate inoculation assays combined with drug susceptibility test and cytotoxicity test showed that the combination of AgNPs and domiphen has synergistic antimicrobial effects on A. fumigatus with low cytotoxicity. Gene Ontology (GO) enrichment analysis showed that AgNPs and domiphen inhibit the growth of A. fumigatus by suppressing nitrate assimilation, and purine nucleobase metabolic process and amino acid transmembrane transport, respectively. When the two drugs are combined, AgNPs has epistatic effects on domiphen. Moreover, the combination of AgNPs and domiphen primarily influence secondary metabolites biosynthesis, steroid biosynthesis and nucleotide sugar metabolism of A. fumigatus via Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, protein-protein interactions (PPI) analysis combined with validation experiments showed that the combination of AgNPs and domiphen could enhance the expression of copper transporter and inhibit nitrogen source metabolism. In addition, the synergistic antimicrobial effects could be enhanced or eliminated depending on exogenous addition of copper and nitrogen source, respectively. Taken together, the results of this study provide a theoretical basis and a new strategy for the treatment of IA.
Collapse
Affiliation(s)
- Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wenlong Du, ✉
| | - Ruolin Xu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiqiang He
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Yang
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufan Gu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Liu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Yi Liu, ✉
| |
Collapse
|
28
|
Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, Zheng J, Mou X, Li H, Ding X, Yang F. Prevalence and Characterization of Serratia marcescens Isolated from Clinical Bovine Mastitis Cases in Ningxia Hui Autonomous Region of China. Infect Drug Resist 2023; 16:2727-2735. [PMID: 37168514 PMCID: PMC10166088 DOI: 10.2147/idr.s408632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of Serratia marcescens isolates from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Methods S. marcescens was identified by the polymerase-chain reaction of 16S rRNA gene and sequencing. Antimicrobial susceptibility was tested by the disk diffusion method. Genes of resistance and virulence were determined by the PCR. Results Overall, S. marcescens were confirmed from 32 of 2897 (1.1%) mastitis milk samples. These isolates showed high resistance to cefazolin (30/32, 93.8%) and chloramphenicol (28/32, 87.5%). A 12.5% (4/32) of the isolates displayed multidrug resistance (MDR). The most prevalent resistant genes found in S. marcescens were TEM (32/32, 100%) and CTX-M (24/32, 75.0%; CTX-M-15, 14/32, 43.8%; CTX-M-14, 8/32, 25.0%; CTX-M-65, 2/32, 6.3%) for extended-spectrum beta-lactamase, cmlA (28/32, 87.5%) and floR (16/32, 50.0%) for chloramphenicol resistance, SIM-1 (2/32, 6.3%) for carbapenemases, and sdeB (28/32, 87.5%), sdeY (26/32, 81.3%), sdeR (26/32, 81.3%) and sdeD (20/32, 62.5%) for efflux pumps. Moreover, all isolates carried virulence genes flhD, entB, and kpn, and most of them contained mrkD (30/32, 93.8%), ycfM (26/32, 81.3%), bsmB (26/32, 81.3%), pigP (26/32, 81.3%), kfu (24/32, 75.0%) and shlB (24/32, 75.0%). Conclusion To our knowledge, this is the first report of genetic determinants for antimicrobial resistance and virulence in S. marcescens isolated from bovine mastitis cases in China. These findings are useful for developing strategies for prevention and treatment of bovine mastitis caused by S. marcescens in China.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jiahao Shen
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xu Sun
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yayuan Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yanan Lv
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xiaoqing Mou
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Hongsheng Li
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
- Correspondence: Feng Yang; Xuezhi Ding, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, No. 335 Jiangouyan, Qilihe District, Lanzhou, Gansu, 730050, People’s Republic of China, Tel +86-931-2115262, Fax +86-931-2114180, Email ;
| |
Collapse
|
29
|
Thakur Z, Vaid RK, Anand T, Tripathi BN. Comparative Genome Analysis of 19 Trueperella pyogenes Strains Originating from Different Animal Species Reveal a Genetically Diverse Open Pan-Genome. Antibiotics (Basel) 2022; 12:antibiotics12010024. [PMID: 36671226 PMCID: PMC9854608 DOI: 10.3390/antibiotics12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Correspondence:
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Bhupendra Nath Tripathi
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Division of Animal Science, Krishi Bhavan, New Delhi 110001, India
| |
Collapse
|
30
|
Jia XM, Wu BX, Chen BD, Li KT, Liu YD, Xu Y, Wang J, Zhang X. Compositional and functional aberrance of the gut microbiota in treatment naïve patients with primary Sjögren's syndrome. J Autoimmun 2022; 134:102958. [PMID: 36455385 DOI: 10.1016/j.jaut.2022.102958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the compositional and functional characteristics of the gut microbiota in primary Sjögren's syndrome (pSS) and compare them with those in systemic lupus erythematosus (SLE). METHODS Stool samples from 78 treatment naïve pSS patients and 78 matched healthy controls were detected by shotgun metagenomic sequencing and compared with those from 49 treatment naïve SLE patients. The virulence loads and mimotopes of the gut microbiota were also assessed by sequence alignment. RESULTS The gut microbiota of treatment naïve pSS patients had lower richness and evenness and showed a different community distribution than that of healthy controls. The microbial species enriched in the pSS-associated gut microbiota included Lactobacillus salivarius, Bacteroides fragilis, Ruminococcus gnavus, Clostridium bartlettii, Clostridium bolteae, Veillonella parvula, and Streptococcus parasanguinis. Lactobacillus salivarius was the most discriminating species in the pSS patients, especially in those with interstitial lung disease (ILD). Among the differentiating microbial pathways, the superpathway of l-phenylalanine biosynthesis was also further enriched in pSS complicated with ILD. There were more virulence genes carried by the gut microbiota in pSS patients, most of which encoded peritrichous flagella, fimbriae, or curli fimbriae, three types of bacterial surface organelles involved in bacterial colonization and invasion. Five microbial peptides with the potential to mimic pSS-related autoepitopes were also enriched in the pSS gut. SLE and pSS shared significant gut microbial traits, including the community distribution, altered microbial taxonomy and pathways, and enriched virulence genes. However, Ruminococcus torques was depleted in pSS patients but enriched in SLE patients compared to that in healthy controls. CONCLUSIONS The gut microbiota in treatment naïve pSS patients was disturbed and shared significant similarity with that in SLE patients.
Collapse
Affiliation(s)
- Xin-Miao Jia
- Medical Research Center, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing-Xuan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Rheumatology and Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bei-di Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ke-Tian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yu-Dong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
31
|
Mohsin SA, Shaukat S, Nawaz M, Ur-Rehman T, Irshad N, Majid M, Hassan SSU, Bungau S, Fatima H. Appraisal of selected ethnomedicinal plants as alternative therapies against onychomycosis: Evaluation of synergy and time-kill kinetics. Front Pharmacol 2022; 13:1067697. [PMID: 36506532 PMCID: PMC9729263 DOI: 10.3389/fphar.2022.1067697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 μg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.
Collapse
Affiliation(s)
- Syeda Aroosa Mohsin
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shaukat
- Department of Pathology, Shifa College of Medicine, Islamabad, Pakistan
| | - Marya Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| |
Collapse
|
32
|
Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. Processes (Basel) 2022. [DOI: 10.3390/pr10112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The purpose of this work was to evaluate the recovery of bioactive extracts from Acacia dealbata leaves and twigs and to characterize their chemical composition and functional properties. Fresh and air-dried samples were extracted by maceration at room temperature and by hot extraction at 60 °C using aqueous solutions of acetone, ethanol, and methanol. The highest extraction yields (14.8 and 12.0% for dried leaves and twigs, respectively) were obtained with 70% acetone, for both extraction procedures. Extracts were characterized for total phenolics content (TPC), total flavonoid content (TFC) and total proanthocyanidin content (TPrAC). Bioactive extracts with high TPC (526.4 mg GAE/g extract), TFC (198.4 mg CatE/g extract), and TPrAC (631.3 mg PycE/g extract) were obtained using maceration, a technically simple and low-energy process. The non-polar fraction of selected extracts was characterized using gas chromatography and time of flight mass spectrometry (GC-TOFMS). The main components detected were phytol, squalene, a-tocopherol, lupenone, and lupeol. The antioxidant activity of the extracts was characterized through DPPH and FRAP assays. Antimicrobial activity of the extracts against different bacteria was also determined. The highest DPPH and FRAP activities were obtained from dried twigs from Alcobaça (1068.3 mg TE/g extract and 9194.6 mmol Fe2+/g extract, respectively). Extracts from both leaves and twigs showed antimicrobial properties against Staphylococcus aureus, Staphylococcus epidermidis, methicillin resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Bacillus cereus, Streptococcus mutans, and Streptococcus mitis. The results obtained demonstrate the feasibility of recovering valuable components from these biomass fractions that may be further valorized for energy production in a biorefinery concept.
Collapse
|
33
|
Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res Int 2022; 162:112202. [DOI: 10.1016/j.foodres.2022.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
34
|
Kempf F, La Ragione R, Chirullo B, Schouler C, Velge P. Super Shedding in Enteric Pathogens: A Review. Microorganisms 2022; 10:2101. [PMID: 36363692 PMCID: PMC9692634 DOI: 10.3390/microorganisms10112101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/24/2024] Open
Abstract
Super shedding occurs when a small number of individuals from a given host population shed high levels of a pathogen. Beyond this general definition, various interpretations of the shedding patterns have been proposed to identify super shedders, leading to the description of the super shedding phenomenon in a wide range of pathogens, in particular enteric pathogens, which are of considerable interest. Several underlying mechanisms may explain this observation, including factors related to the environment, the gut microbiota, the pathogen itself (i.e., genetic polymorphism), and the host (including immune factors). Moreover, data suggest that the interplay of these parameters, in particular at the host-pathogen-gut microbiota interface, is of crucial importance for the determination of the super shedding phenotype in enteric pathogens. As a phenomenon playing an important role in the epidemics of enteric diseases, the evidence of super shedding has highlighted the need to develop various control strategies.
Collapse
Affiliation(s)
- Florent Kempf
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Barbara Chirullo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 000161 Rome, Italy
| | | | - Philippe Velge
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| |
Collapse
|
35
|
Muhammad N, Nguyen TTH, Lee YJ, Ko J, Avila F, Kim SG. Vibrio ostreae sp. nov., a novel gut bacterium isolated from a Yellow Sea oyster. Int J Syst Evol Microbiol 2022; 72. [PMID: 36269578 DOI: 10.1099/ijsem.0.005586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic motile bacterium, designated strain OG9-811T, was isolated from the gut of an oyster collected in the Yellow Sea, Republic of Korea. The strain grew at 10-37 °C, pH 6.0-9.0 and with 0.5-10% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain OG9-811T affiliated with the genus Vibrio, with the highest sequence similarity of 98.2% to Vibrio coralliilyticus ATCC BAA-450T followed by Vibrio variabilis R-40492T (98.0 %), Vibrio hepatarius LMG 20362T (97.7 %) and Vibrio neptunius LMG 20536T (97.6 %); other relatives were Vibrio tritonius JCM 16456T (97.4 %), Vibrio fluvialis NBRC 103150T (97.0 %) and Vibrio furnissii CIP 102972T (97.0 %). The complete genome of strain OG9-811T comprised two chromosomes of a total 4 807 684 bp and the G+C content was 50.2 %. Results of analysis based on the whole genome sequence showed the distinctiveness of strain OG9-811T. The average nucleotide identity (ANI) values between strain OG9-811T and the closest strains V. coralliilyticus ATCC BAA-450T, V. variabilis R-40492T, V. hepatarius LMG 20362T, V. neptunius KCTC 12702T , V. tritonius JCM 16456T, V. fluvialis ATCC 33809T and V. furnissi CIP 102972T were 73.0, 72.6, 73.3, 73.0, 72.7, 78.5 and 77.8 %, respectively, while the digital DNA-DNA hybridization values between strain OG9-811T and the above closely related strains were 20.8, 21.2, 20.8, 21.7, 20.7, 23.2 and 22.4 %, respectively. The major fatty acids of strain OG9-811T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain OG9-811T contained Q-8 as a quinone. On the basis of polyphasic taxonomic characteristics, strain OG9-811T is considered to represent a novel species, for which the name Vibrio ostreae sp. nov. is proposed. The type strain is OG9-811T (=KCTC 72623T=GDMCC 1.2610T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Jae Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
| | - Jaeho Ko
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
36
|
Shi X, Gao B, Srivastava A, Izzi Z, Abdalla Y, Shen W, Raj D. Alterations of gut microbial pathways and virulence factors in hemodialysis patients. Front Cell Infect Microbiol 2022; 12:904284. [PMID: 36093194 PMCID: PMC9461950 DOI: 10.3389/fcimb.2022.904284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alterations in gut microbiota might contribute to uremic toxicity and immune dysregulation in patients with end-stage renal disease. Hemodialysis patients are prone to infection and higher mortality following sepsis. The virulence factors in the gut metagenome have not been well studied in hemodialysis patients, which could be employed by microorganisms to successfully thrive and flourish in their hosts. In this study, we performed shotgun metagenomics sequencing on fecal DNA collected from 16 control subjects and 24 hemodialysis patients. Our analysis shows that a number of microbial species, metabolic pathways, antibiotic resistance, and virulence factors were significantly altered in hemodialysis patients compared with controls. In particular, erythromycin resistance methylase, pyridoxamine 5-phosphate oxidase, and streptothricin-acetyl-transferase were significantly increased in hemodialysis patients. The findings in our study laid a valuable foundation to further elucidate the causative role of virulence factors in predisposing HD patients to infection and to develop treatment strategies to reduce the genetic capacities of antibiotic resistance and virulence factors in HD patients.
Collapse
Affiliation(s)
- Xiaochun Shi
- Department of Environmental Ecological Engineering, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Anvesha Srivastava
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, United States
| | - Zahra Izzi
- Langley High School, McLean, VA, United States
| | - Yoosif Abdalla
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, United States
| | - Weishou Shen
- Department of Environmental Ecological Engineering, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative In-novation Center of Atmospheric Environment and Equipment Technology, Nanjing, China
- *Correspondence: Weishou Shen,
| | - Dominic Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
37
|
Conteville LC, Vicente ACP. A plasmid network from the gut microbiome of semi-isolated human groups reveals unique and shared metabolic and virulence traits. Sci Rep 2022; 12:12102. [PMID: 35840779 PMCID: PMC9287393 DOI: 10.1038/s41598-022-16392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The plasmids in gut microbiomes have the potential to contribute to the microbiome community, as well as human health and physiology. Nevertheless, this niche remains poorly explored. In general, most microbiome studies focus on urban-industrialized groups, but here, we studied semi-isolated groups from South America and Africa, which would represent a link between ancestral and modern human groups. Based on open metagenomic data, we characterized the set of plasmids, including their genes and functions, from the gut microbiome of the Hadza, Matses, Tunapuco, and Yanomami, semi-isolated groups with a hunter, gather or subsistence lifestyle. Unique plasmid clusters and gene functions for each human group were identified. Moreover, a dozen plasmid clusters circulating in other niches worldwide are shared by these distinct groups. In addition, novel and unique plasmids harboring resistance (encompassing six antibiotic classes and multiple metals) and virulence (as type VI secretion systems) genes were identified. Functional analysis revealed pathways commonly associated with urban-industrialized groups, such as lipopolysaccharide biosynthesis that was characterized in the Hadza gut plasmids. These results demonstrate the richness of plasmids in semi-isolated human groups’ gut microbiome, which represents an important source of information with biotechnological/pharmaceutical potential, but also on the spread of resistance/virulence genes to semi-isolated groups.
Collapse
Affiliation(s)
- Liliane Costa Conteville
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Ana Carolina Paulo Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Do Triclosan Sutures Modify the Microbial Diversity of Surgical Site Infections? A Systematic Review and Meta-Analysis. Microorganisms 2022; 10:microorganisms10050927. [PMID: 35630370 PMCID: PMC9146332 DOI: 10.3390/microorganisms10050927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Randomised controlled clinical trials (RCTs) report a lower incidence rate of surgical site infections (SSIs) with triclosan sutures (TSs) compared with non-triclosan sutures (NTSs). Do triclosan sutures modify the microbial diversity of culture-confirmed SSIs (ccSSIs)? If so, this would support the association between TS antimicrobial activity and the SSI incidence rate. This prospective systematic literature review (PROSPERO CRD42019125099) was conducted according to PRISMA. RCTs that compared the incidence of SSIs with TSs and NTSs and reported microbial counts from SSI cultures per suture group were eligible. The microbial species were grouped by genus, and the association between genera and sutures was tested. The pooled relative risk (RR) of ccSSIs was also calculated. Twelve RCTs were eligible. No publication bias was identified. The microorganism count was 180 in 124 SSIs with TSs versus 246 in 199 SSIs with NTSs. No significant difference in microbial diversity was found, but statistical power was low for test results to support or challenge the association between the antimicrobial activity of TSs and the reduced rate of SSIs. The RR of the ccSSIs was significant and consistent with comprehensive meta-analyses. The certainty of the pooled RR was moderate.
Collapse
|
39
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
40
|
Law SKK, Tan HS. The Role of Quorum Sensing, Biofilm Formation, and Iron Acquisition as Key Virulence Mechanisms in Acinetobacter baumannii and the Corresponding Anti-virulence Strategies. Microbiol Res 2022; 260:127032. [DOI: 10.1016/j.micres.2022.127032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
41
|
Choi YJ, Kim S, Bae S, Kim Y, Chang HH, Kim J. Antibacterial Effects of Recombinant Endolysins in Disinfecting Medical Equipment: A Pilot Study. Front Microbiol 2022; 12:773640. [PMID: 35310392 PMCID: PMC8924034 DOI: 10.3389/fmicb.2021.773640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Nosocomial infections caused by multidrug-resistant (MDR) bacteria are severe life-threatening factors. Endolysins (lysins) degrade the bacterial cell wall peptidoglycan and may help control pathogens, especially MDR bacteria prevalent in hospital settings. This study was conducted to verify the potential of lysin as disinfectant to kill bacteria contaminating medical devices that cause hospital infections. Eight catheters removed from hospitalized patients were collected and tested for their ability to kill bacteria contaminating the catheters using two lysins, LysSS and CHAP-161. Catheter-contaminating bacterial species were isolated and identified by 16s rRNA sequencing. From the eight catheters, bacteria were cultured from seven catheters, and five bacterial species (Bacillus megaterium, Bacillus muralis, Corynebacterium striatum, Enterococcus faecium, and Staphylococcus epidermidis) were identified. LysSS could inhibit catheter-contaminating bacteria, including C. striatum and S. epidermidis, compared with untreated controls but could not inhibit the growth of E. faecium. CHAP-161 showed more bactericidal effects than LysSS, but could not inhibit the growth of S. epidermidis. This study showed the potential of lysin as an alternative disinfectant for hazardous chemical disinfectants used in hospitals.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sohyun Bae
- Department of Allergy and Infectious Diseases, Kyungpook National University Hospital, Daegu, South Korea
| | - Yoonjung Kim
- Department of Allergy and Infectious Diseases, Kyungpook National University Hospital, Daegu, South Korea
| | - Hyun-Ha Chang
- Department of Allergy and Infectious Diseases, Kyungpook National University Hospital, Daegu, South Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
42
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
43
|
Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118634. [PMID: 34875269 DOI: 10.1016/j.envpol.2021.118634] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Collapse
Affiliation(s)
- Heesoo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
44
|
Tan L, Zhang C, Liu F, Chen P, Wei X, Li H, Yi G, Xu Y, Zheng X. Three-compartment septic tanks as sustainable on-site treatment facilities? Watch out for the potential dissemination of human-associated pathogens and antibiotic resistance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113709. [PMID: 34547574 DOI: 10.1016/j.jenvman.2021.113709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Improved sanitation is critical important to reduce the spread of human deposited pathogens and antibiotic resistance genes (ARGs). In the China's rural "Toilet Revolution", three-compartment septic tanks (SPTs) are widely used as household domestic sewage treatment facilities. The effluents of SPTs are encouraged to be used as fertilizer in agriculture. However, whether SPT could eliminate fecal pathogens and ARGs is still unrevealed which is crucial in risk assessment of SPT effluent utilization. Herein, we employed metagenomic sequencing to investigate the pathogens and ARGs in rural household SPTs from Tianjin, China. We found that rural household SPT effluents conserved pathogens comparable to that of the influents. A total of 441 ARGs conferring resistance to 26 antibiotic classes were observed in rural household SPTs, with the relative abundance ranging from 709 to 1800 ppm. Results of metagenomic assembly indicated that some ARG-MGE-carrying contigs were carried by pathogens, which may pose risk to human and animal health after being introduced to the environment. This study raises the question of SPTs as sustainable on-site treatment facilities for rural domestic sewage and underscores the need for more attention to the propagation and dissemination of antibiotic-resistant pathogens from SPT to the environments, animals, and humans.
Collapse
Affiliation(s)
- Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fang Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Gao Yi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
45
|
Sultan M, Arya R, Kim KK. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int J Mol Sci 2021; 22:12152. [PMID: 34830033 PMCID: PMC8623646 DOI: 10.3390/ijms222212152] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.
Collapse
Affiliation(s)
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| |
Collapse
|
46
|
Comparative Genomic Analyses of Flavobacterium psychrophilum Isolates Reveals New Putative Genetic Determinants of Virulence Traits. Microorganisms 2021; 9:microorganisms9081658. [PMID: 34442736 PMCID: PMC8400371 DOI: 10.3390/microorganisms9081658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The fish pathogen Flavobacterium psychrophilum is currently one of the main pathogenic bacteria hampering the productivity of salmonid farming worldwide. Although putative virulence determinants have been identified, the genetic basis for variation in virulence of F. psychrophilum is not fully understood. In this study, we analyzed whole-genome sequences of a collection of 25 F. psychrophilum isolates from Baltic Sea countries and compared genomic information with a previous determination of their virulence in juvenile rainbow trout. The results revealed a conserved population of F. psychrophilum that were consistently present across the Baltic Sea countries, with no clear association between genomic repertoire, phylogenomic, or gene distribution and virulence traits. However, analysis of the entire genome of four F. psychrophilum isolates by hybrid assembly provided an unprecedented resolution for discriminating even highly related isolates. The results showed that isolates with different virulence phenotypes harbored genetic variances on a number of consecutive leucine-rich repeat (LRR) proteins, repetitive motifs in gliding motility-associated protein, and the insertion of transposable elements into intergenic and genic regions. Thus, these findings provide novel insights into the genetic variation of these elements and their putative role in the modulation of F. psychrophilum virulence.
Collapse
|
47
|
Krzyżek P, Migdał P, Paluch E, Karwańska M, Wieliczko A, Gościniak G. Myricetin as an Antivirulence Compound Interfering with a Morphological Transformation into Coccoid Forms and Potentiating Activity of Antibiotics against Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22052695. [PMID: 33800082 PMCID: PMC7962197 DOI: 10.3390/ijms22052695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori, a gastric pathogen associated with a broad range of stomach diseases, has a high tendency to become resistant to antibiotics. One of the most important factors related to therapeutic failures is its ability to change from a spiral to a coccoid form. Therefore, the main aim of our original article was to determine the influence of myricetin, a natural compound with an antivirulence action, on the morphological transformation of H. pylori and check the potential of myricetin to increase the activity of antibiotics against this pathogen. We observed that sub-minimal inhibitory concentrations (sub-MICs) of this compound have the ability to slow down the process of transformation into coccoid forms and reduce biofilm formation of this bacterium. Using checkerboard assays, we noticed that the exposure of H. pylori to sub-MICs of myricetin enabled a 4–16-fold reduction in MICs of all classically used antibiotics (amoxicillin, clarithromycin, tetracycline, metronidazole, and levofloxacin). Additionally, RT-qPCR studies of genes related to the H. pylori morphogenesis showed a decrease in their expression during exposure to myricetin. This inhibitory effect was more strongly seen for genes involved in the muropeptide monomers shortening (csd3, csd6, csd4, and amiA), suggesting their significant participation in the spiral-to-coccoid transition. To our knowledge, this is the first research showing the ability of any compound to synergistically interact with all five antibiotics against H. pylori and the first one showing the capacity of a natural substance to interfere with the morphological transition of H. pylori from spiral to coccoid forms.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
- Correspondence:
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| | - Magdalena Karwańska
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| |
Collapse
|