1
|
Wan R, Zhou J, Mao R, Zheng Y, Zhou F, Pan L, Hong Y, Jin L, Li S, Zhu C. Methylglyoxal induces endothelial cell apoptosis and coronary microvascular dysfunction through regulating AR-cPLA 2 signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167437. [PMID: 39067539 DOI: 10.1016/j.bbadis.2024.167437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Since diabetic patients with coronary microvascular dysfunction (CMD) exhibit high cardiac mortality and women have higher prevalence of non-obstructive coronary artery disease than men, we tried to expand the limited understanding about the etiology and the sex difference of diabetic CMD. APPROACH AND RESULTS Accumulated methylglyoxal (MGO) due to diabetes promotes vascular damage and it was used for mimicking diabetic status. Flow cytometry analysis and isometric tension measurement were performed to evaluate coronary artery endothelial injury. MGO induced apoptosis of coronary endothelial cells, accompanied by downregulation of androgen receptor (AR). Lentivirus-mediated stable expression of AR in coronary endothelial cells increased anti-apoptotic Bcl-2 expression and attenuated MGO-induced cell apoptosis. cPLA2 activation was the downstream of AR downregulation by MGO treatment. Moreover, MGO also activated cPLA2 rapidly to impair endothelium-dependent vasodilation of coronary arteries from mice. Reactive oxygen species (ROS) overproduction was demonstrated to account for MGO-mediated cPLA2 activation and endothelial dysfunction. Importantly, AR blockade increased endothelial ROS production whereas AR activation protected coronary artery endothelial vasodilatory function from the MGO-induced injury. Although galectin-3 upregulation was confirmed by siRNA knockdown in endothelial cells not to participate in MGO-induced endothelial apoptosis, pharmacological inhibitor of galectin-3 further enhanced MGO-triggered ROS generation and coronary artery endothelial impairment. CONCLUSIONS Our data proposed the AR downregulation-ROS overproduction-cPLA2 activation pathway as one of the mechanisms underlying diabetic CMD and postulated a possible reason for the sex difference of CMD-related angina. Meanwhile, MGO-induced galectin-3 activation played a compensatory role against coronary endothelial dysfunction.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Department of Clinical Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210002, China
| | - Rongchen Mao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yuhan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feier Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lihua Pan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yali Hong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Karti O, Saatci AO. Fenofibrate and diabetic retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2024; 13:35-43. [PMID: 38978827 PMCID: PMC11227662 DOI: 10.51329/mehdiophthal1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/25/2024] [Indexed: 07/10/2024]
Abstract
Background Diabetic retinopathy (DR), a sight-threatening ocular complication of diabetes mellitus, is one of the main causes of blindness in the working-age population. Dyslipidemia is a potential risk factor for the development or worsening of DR, with conflicting evidence in epidemiological studies. Fenofibrate, an antihyperlipidemic agent, has lipid-modifying and pleiotropic (non-lipid) effects that may lessen the incidence of microvascular events. Methods Relevant studies were identified through a PubMed/MEDLINE search spanning the last 20 years, using the broad term "diabetic retinopathy" and specific terms "fenofibrate" and "dyslipidemia". References cited in these studies were further examined to compile this mini-review. These pivotal investigations underwent meticulous scrutiny and synthesis, focusing on methodological approaches and clinical outcomes. Furthermore, we provided the main findings of the seminal studies in a table to enhance comprehension and comparison. Results Growing evidence indicates that fenofibrate treatment slows DR advancement owing to its possible protective effects on the blood-retinal barrier. The protective attributes of fenofibrate against DR progression and development can be broadly classified into two categories: lipid-modifying effects and non-lipid-related (pleiotropic) effects. The lipid-modifying effect is mediated through peroxisome proliferator-activated receptor-α activation, while the pleiotropic effects involve the reduction in serum levels of C-reactive protein, fibrinogen, and pro-inflammatory markers, and improvement in flow-mediated dilatation. In patients with DR, the lipid-modifying effects of fenofibrate primarily involve a reduction in lipoprotein-associated phospholipase A2 levels and the upregulation of apolipoprotein A1 levels. These changes contribute to the anti-inflammatory and anti-angiogenic effects of fenofibrate. Fenofibrate elicits a diverse array of pleiotropic effects, including anti-apoptotic, antioxidant, anti-inflammatory, and anti-angiogenic properties, along with the indirect consequences of these effects. Two randomized controlled trials-the Fenofibrate Intervention and Event Lowering in Diabetes and Action to Control Cardiovascular Risk in Diabetes studies-noted that fenofibrate treatment protected against DR progression, independent of serum lipid levels. Conclusions Fenofibrate, an oral antihyperlipidemic agent that is effective in decreasing DR progression, may reduce the number of patients who develop vision-threatening complications and require invasive treatment. Despite its proven protection against DR progression, fenofibrate treatment has not yet gained wide clinical acceptance in DR management. Ongoing and future clinical trials may clarify the role of fenofibrate treatment in DR management.
Collapse
Affiliation(s)
- Omer Karti
- Department of Ophthalmology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Ali Osman Saatci
- Department of Ophthalmology, Izmir Dokuz Eylul University, Izmir, Turkiye
| |
Collapse
|
3
|
Greco G, Agafonova A, Cosentino A, Cardullo N, Muccilli V, Puglia C, Anfuso CD, Sarpietro MG, Lupo G. Solid Lipid Nanoparticles Encapsulating a Benzoxanthene Derivative in a Model of the Human Blood-Brain Barrier: Modulation of Angiogenic Parameters and Inflammation in Vascular Endothelial Growth Factor-Stimulated Angiogenesis. Molecules 2024; 29:3103. [PMID: 38999055 PMCID: PMC11243179 DOI: 10.3390/molecules29133103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
5
|
Cosentino A, Agafonova A, Modafferi S, Trovato Salinaro A, Scuto M, Maiolino L, Fritsch T, Calabrese EJ, Lupo G, Anfuso CD, Calabrese V. Blood-Labyrinth Barrier in Health and Diseases: Effect of Hormetic Nutrients. Antioxid Redox Signal 2024; 40:542-563. [PMID: 37565276 DOI: 10.1089/ars.2023.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Significance: The stria vascularis, located in the inner ear, consists of three layers, one of which is the blood-labyrinth barrier (BLB). It is formed by endothelial cells, sealed together to prevent the passage of toxic substances from the blood to the inner ear, by pericytes and perivascular-resident macrophage-like melanocyte. Recent Advances: There are various causes that lead to hearing loss, and among these are noise-induced and autoimmune hearing loss, ear disorders related to ototoxic medication, Ménière's disease, and age-related hearing loss. For all of these, major therapeutic interventions include drug-loaded nanoparticles, via intratympanic or intracochlear delivery. Critical Issues: Since many pathologies associated with hearing loss are characterized by a weakening of the BLB, in this review, the molecular mechanisms underlying the response to damage of BLB cellular components have been discussed. In addition, insight into the role of hormetic nutrients against hearing loss pathology is proposed. Future Directions: BLB cellular components of neurovascular cochlear unit play important physiological roles, owing to their impermeable function against all ototoxic substances that can induce damage. Studies are needed to investigate the cross talk occurring between these cellular components to exploit their possible role as novel targets for therapeutic interventions that may unravel future path based on the use of hormetic nutrients. Antioxid. Redox Signal. 40, 542-563.
Collapse
Affiliation(s)
- Alessia Cosentino
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Aleksandra Agafonova
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Sergio Modafferi
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Angela Trovato Salinaro
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Maria Scuto
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | | | - Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Vittorio Calabrese
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| |
Collapse
|
6
|
Agafonova A, Cosentino A, Romano IR, Giurdanella G, D’Angeli F, Giuffrida R, Lo Furno D, Anfuso CD, Mannino G, Lupo G. Molecular Mechanisms and Therapeutic Implications of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells in an In Vitro Model of Diabetic Retinopathy. Int J Mol Sci 2024; 25:1774. [PMID: 38339053 PMCID: PMC10855418 DOI: 10.3390/ijms25031774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-retinal barrier (BRB) is strongly compromised in diabetic retinopathy (DR) due to the detachment of pericytes (PCs) from retinal microvessels, resulting in increased permeability and impairment of the BRB. Western blots, immunofluorescence and ELISA were performed on adipose mesenchymal stem cells (ASCs) and pericyte-like (P)-ASCs by co-cultured human retinal endothelial cells (HRECs) under hyperglycemic conditions (HG), as a model of DR. Our results demonstrated that: (a) platelet-derived growth factor receptor (PDGFR) and its activated form were more highly expressed in monocultured P-ASCs than in ASCs, and this expression increased when co-cultured with HRECs under high glucose conditions (HG); (b) the transcription factor Nrf2 was more expressed in the cytoplasmic fraction of ASCs and in the P-ASC nuclear fraction, under normal glucose and, even more, under HG conditions; (c) cytosolic phospholipase A2 activity and prostaglandin E2 release, stimulated by HG, were significantly reduced in P-ASCs co-cultured with HRECs; (d) HO-1 protein content was significantly higher in HG-P-ASCs/HRECs than P-ASCs/HRECs; and (e) VEGF-A levels in media from HG-co-cultures were reduced in P-ASCs/HRECs with respect to ASCs/HRECs. The data obtained highlighted the potential of autologous differentiated ASCs in future clinical applications based on cell therapy to counteract the damage induced by DR.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | | | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.A.); (A.C.); (I.R.R.); (R.G.); (G.L.)
| |
Collapse
|
7
|
Wang Y, Ni J, Wang A, Zhang R, Wang L. Vascular Endothelial Growth Factor A (VEGFA) Regulates Hepatic Lipid and Glycogen Metabolism in Schizothorax prenanti. Int J Mol Sci 2023; 24:15171. [PMID: 37894852 PMCID: PMC10606705 DOI: 10.3390/ijms242015171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) plays important roles in angiogenesis, inflammatory response as well as energy metabolism in mammals. However, its effect on glycolipid metabolism in fish has not been reported. In this study, we cloned and characterized the vegfa gene of Schizothorax prenanti (S. prenanti). vegfa expression was significantly higher in liver and muscle than that in other tissues. Then, the VEGFA recombinant protein was expressed in Escherichia coli and obtained after purification. VEGFA i.p. injection significantly increased the serum glucose and TG content compared with the control group. Moreover, VEGFA protein aggravated the glycogen and lipid deposition in the liver of S. prenanti. In addition, we found that VEGFA treatment increased hepatocyte glycogen and lipid droplet content and increased the levels of pAMPKα (T172). Furthermore, AMPKα inhibition attenuated the ability of VEGFA to induce TG and glycogen accumulation. These results demonstrate that VEGFA regulates hepatic lipid and glycogen metabolism through AMPKα in S. prenanti, which may contribute to a better understanding of VEGFA functions in the glycolipid metabolism of fish.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.N.); (A.W.); (R.Z.); (L.W.)
| | | | | | | | | |
Collapse
|
8
|
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother 2023; 165:115246. [PMID: 37523983 DOI: 10.1016/j.biopha.2023.115246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-β1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-β1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Hanxue Zhao
- First Clinical Medical College, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, No. 83 Shuangqing Road, Beijing 100085, China.
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
9
|
Chiu CC, Cheng KC, Lin YH, He CX, Bow YD, Li CY, Wu CY, Wang HMD, Sheu SJ. Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:21. [PMID: 37638991 DOI: 10.1007/s00005-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
10
|
Saha B, Roy A, Beltramo E, Sahoo OS. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 2023; 50:4517-4526. [PMID: 36842153 DOI: 10.1007/s11033-023-08337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
Collapse
Affiliation(s)
- Bihan Saha
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Akshita Roy
- Autonomous State Medical College, Fatehpur, 212601, Uttar Pradesh, India
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, 10124, Turin, Italy
| | - Om Saswat Sahoo
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
11
|
Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy. Int J Mol Sci 2023; 24:ijms24020913. [PMID: 36674425 PMCID: PMC9860961 DOI: 10.3390/ijms24020913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1β, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-β1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-β axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.
Collapse
|
12
|
Anfuso CD, Cosentino A, Agafonova A, Zappalà A, Giurdanella G, Trovato Salinaro A, Calabrese V, Lupo G. Pericytes of Stria Vascularis Are Targets of Cisplatin-Induced Ototoxicity: New Insights into the Molecular Mechanisms Involved in Blood-Labyrinth Barrier Breakdown. Int J Mol Sci 2022; 23:ijms232415790. [PMID: 36555432 PMCID: PMC9781621 DOI: 10.3390/ijms232415790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
The stria vascularis (SV) contributes to cochlear homeostasis and consists of three layers, one of which contains the blood-labyrinthic barrier (BLB), with a large number of bovine cochlear pericytes (BCPs). Cisplatin is a chemotherapeutic drug that can damage the SV and cause hearing loss. In this study, cell viability, proliferation rate, cytotoxicity and reactive oxygen species production were evaluated. The protein content of phospho-extracellular signal-regulated kinases (ERK) 1/2, total ERK 1/2, phospho-cytosolic phospholipase A2 (cPLA2), total cPLA2 and cyclooxygenase 2 (COX-2) and the release of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) from BCPs were analyzed. Finally, the protective effect of platelet-derived growth factor (PDGF-BB) on BCPs treated with cisplatin was investigated. Cisplatin reduced viability and proliferation, activated ERK 1/2, cPLA2 and COX-2 expression and increased PGE2 and VEGF release; these effects were reversed by Dexamethasone. The presence of PDGF-BB during the treatment with cisplatin significantly increased the proliferation rate. No studies on cell regeneration in ear tissue evaluated the effect of the PDGF/Dex combination. The aim of this study was to investigate the effects of cisplatin on cochlear pericytes and propose new otoprotective agents aimed at preventing the reduction of their vitality and thus maintaining the BLB structure.
Collapse
Affiliation(s)
- Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | | | - Angela Trovato Salinaro
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Vittorio Calabrese
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
13
|
Romeo A, Bonaccorso A, Carbone C, Lupo G, Daniela Anfuso C, Giurdanella G, Caggia C, Randazzo C, Russo N, Romano GL, Bucolo C, Rizzo M, Tosi G, Thomas Duskey J, Ruozi B, Pignatello R, Musumeci T. Melatonin loaded hybrid nanomedicine: DoE approach, optimization and in vitro study on diabetic retinopathy model. Int J Pharm 2022; 627:122195. [PMID: 36115466 DOI: 10.1016/j.ijpharm.2022.122195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 μM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Gabriella Lupo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Giovanni Giurdanella
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Cinzia Caggia
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Cinzia Randazzo
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Giovanni Luca Romano
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudio Bucolo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Milena Rizzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Giovanni Tosi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Jason Thomas Duskey
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Barbara Ruozi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
14
|
Zhao B, Huang J, Lou X, Yao K, Ye M, Mou Q, Wen Z, Duan Q, Zhang H, Zhao Y. Endothelial CYP2J2 overexpression restores the BRB via METTL3-mediated ANXA1 upregulation. FASEB J 2022; 36:e22619. [PMID: 36269280 DOI: 10.1096/fj.202201061rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
Blood-retinal barrier (BRB) breakdown is responsible for multiple ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusive diseases. Increased vascular permeability contributes to vasogenic edema and tissue damage, with consequent adverse effects on vision. Herein, we found that endothelial CYP2J2 overexpression maintained BRB integrity after ischemia-reperfusion injury and consequently protected against retinal ganglion cell loss. Oxidative stress repressed endothelial ANXA1 expression in vivo and in vitro. CYP2J2 upregulated methyltransferase-like 3 (METTL3) expression and hence promoted ANXA1 translation via ANXA1 m6 A modification in endothelium under oxidative stress. CYP2J2 maintained the distribution of endothelial tight junctions and adherens junctions in an ANXA1-dependent manner. Endothelial ANXA1 plays an indispensable role in vascular homeostasis and stabilization during development. Endothelial ANXA1 deletion disrupted retinal vascular perfusion as well as BRB integrity. CYP2J2 metabolites restored BRB integrity in the presence of ANXA1. Our findings identified the CYP2J2-METTL3-ANXA1 pathway as a potential therapeutic target for relieving BRB impairments.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy. J Clin Med 2022; 11:jcm11195824. [PMID: 36233694 PMCID: PMC9572303 DOI: 10.3390/jcm11195824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Diabetic retinopathy (DR) is a diabetes mellitus (DM) complication where neurodegeneration plays a significant role. The aim of our study was to determine the differences between type 1 DM (T1DM) and 2 DM (T2DM) in the multifocal electroretinogram (mERG).; (2) Methods: A mERG study was performed in two groups, a T1DM group with 72 eyes of 36 patients compared with 72 eyes of 36 patients with T2DM, randomly selected from our DM databases, without DR. We studied how HbA1c and DM duration affects amplitude and implicit time of mERG; (3) Results: the study of DM duration shows patients with T1DM have lower amplitude values compared to T2DM patients, although implicit time increases in patients with T2DM. HbA1c over 7% only affects T1DM patients with an increase of implicit time; (4) Conclusions: the retinas of patients with T1DM seem more sensitive to changes in HbA1c levels than in patients with DMT2, although the duration of diabetes affects both types of DM patients.
Collapse
|
16
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
17
|
Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CBM, Rossi S, Drago F, Anfuso CD, Bucolo C. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol 2022; 13:971164. [PMID: 36091806 PMCID: PMC9458952 DOI: 10.3389/fphar.2022.971164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
The impairment of the blood retinal barrier (BRB) represents one of the main features of diabetic retinopathy, a secondary microvascular complication of diabetes. Hyperglycemia is a triggering factor of vascular cells damage in diabetic retinopathy. The aim of this study was to assess the effects of vitamin D3 on BRB protection, and to investigate its regulatory role on inflammatory pathways. We challenged human retinal endothelial cells with high glucose (HG) levels. We found that vitamin D3 attenuates cell damage elicited by HG, maintaining cell viability and reducing the expression of inflammatory cytokines such as IL-1β and ICAM-1. Furthermore, we showed that vitamin D3 preserved the BRB integrity as demonstrated by trans-endothelial electrical resistance, permeability assay, and cell junction morphology and quantification (ZO-1 and VE-cadherin). In conclusion this in vitro study provided new insights on the retinal protective role of vitamin D3, particularly as regard as the early phase of diabetic retinopathy, characterized by BRB breakdown and inflammation.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Anna Maria Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Faculty of Medicine and Surgery, University of Enna “Kore”, Enna, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
- *Correspondence: Claudio Bucolo,
| |
Collapse
|
18
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin W, Kuang H. Dapagliflozin Reduces Apoptosis of Diabetic Retina and Human Retinal Microvascular Endothelial Cells Through ERK1/2/cPLA2/AA/ROS Pathway Independent of Hypoglycemic. Front Pharmacol 2022; 13:827896. [PMID: 35281932 PMCID: PMC8908030 DOI: 10.3389/fphar.2022.827896] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction: It is known that the metabolic disorder caused by high glucose is one of pathogenesis in diabetic retinopathy (DR), the leading cause of blindness, due to the main pathological change of apoptosis of endothelial cells (ECs). In previous studies, the potential impact of sodium glucose cotransporter-2 (SGLT-2), whose inhibitors slow the progression of DR, has not been elucidated. The purpose of the presented study was to explore the effect of SGLT-2 inhibitors dapagliflozin (DAPA) on apoptosis of diabetic mice retina and human retinal microvascular endothelial cells (HRMECs), examine the effects of dapagliflozin on HRMECs metabolism, and explore the molecular processes that affect DR. Methods and Results: The eyeballs of male streptozotocin (STZ)-induced diabetic C57BL/6N mice were evaluated. C57BL/6N mice were divided into control group (CON), diabetic untreated group (DM), diabetic dapagliflozin treatment group (DM + DAPA) and diabetic insulin treatment group (DM + INS). Hematoxylin-Eosin (HE) staining was performed to observe the pathological structure of the mice retina, and TUNEL staining to detect apoptosis of mice retinal cells. In vitro, DCFH-DA and western blot (WB) were used to evaluate ROS, Bcl-2, BAX, cleaved-caspase 3 in HRMECs and metabolomics detected the effect of dapagliflozin on the metabolism of HRMECs. And then, we performed correlation analysis and verification functions for significantly different metabolites. In vivo, dapagliflozin reduced the apoptosis of diabetic mice retina independently of hypoglycemic. In vitro, SGLT-2 protein was expressed on HRMECs. Dapagliflozin reduced the level of ROS caused by high glucose, decreased the expression of cleaved-caspase3 and the ratio of BAX/Bcl-2. Metabolomics results showed that dapagliflozin did not affect the intracellular glucose level. Compared with the high glucose group, dapagliflozin reduced the production of arachidonic acid (AA) and inhibited the phosphorylation of ERK1/2, therefore, reducing the phosphorylation of cPLA2, which is a key enzyme for arachidonic acid release. Conclusion: Collectively, results unearthed for the first time that dapagliflozin reduced apoptosis of retina induced by DM whether in vivo or in vitro. Dapagliflozin did not affect the glucose uptake while mitigated intracellular arachidonic acid in HRMECs. Dapagliflozin alleviated HRMECs apoptosis induced by high glucose through ERK/1/2/cPLA2/AA/ROS pathway.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyu Meng
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Li B, Li H, Dai L, Liu C, Wang L, Li Q, Gu C. NIK-SIX1 signalling axis regulates high glucose-induced endothelial cell dysfunction and inflammation. Autoimmunity 2022; 55:86-94. [PMID: 34894925 DOI: 10.1080/08916934.2021.2015579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction and inflammation are the main manifestations of diabetes-associated atherosclerosis. This paper studied the roles of NF-κB-inducing kinase (NIK) and sine oculis homeobox homolog 1 (SIX1) in regulating high glucose-induced endothelial dysfunction and inflammation. The expression of NIK and SIX1 in human umbilical vein endothelial cells (HUVECs) was silenced by transfection with the specific shRNAs. HUVECs exposed to high glucose were considered as a cell model of endothelial dysfunction. Expression of NIK and SIX1 following transfection was measured by qRT-PCR and western blotting analysis. The proliferation, migration, and inflammation of HUVECs were evaluated by EdU staining, scratch test, ELISA, and western blotting. High glucose (30 mM) significantly decreased the proliferation and migration of HUVECs. High glucose-induced the expression of adhesion molecules VCAM-1 and ICAM-1. Moreover, high glucose increased the release of IL-1β, IL-6, TNF-α, and MCP-1. Transfection of cells with NIK shRNA significantly reversed the toxic effects of high glucose on HUVECs. Of contrast, SIX1 shRNA accelerated the effects of high glucose on HUVECs. NIK shRNA inhibited the accumulation of RelA, RelB, and p52. Meanwhile, NIK shRNA led to SIX1 downregulation which further induced the activation of the NF-κB pathway. NIK-SIX1 signalling axis was suggested to be critical in the regulation of high glucose-induced endothelial dysfunction and inflammation. SIX1 may function as an immunological gatekeeper to control the excessive inflammation mediated by NIK in diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haiming Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Longsheng Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changcheng Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liangshan Wang
- Department of Cardiac Surgery Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Gaddam RR, Dhuri K, Kim YR, Jacobs JS, Kumar V, Li Q, Irani K, Bahal R, Vikram A. γ Peptide Nucleic Acid-Based miR-122 Inhibition Rescues Vascular Endothelial Dysfunction in Mice Fed a High-Fat Diet. J Med Chem 2022; 65:3332-3342. [PMID: 35133835 PMCID: PMC8883473 DOI: 10.1021/acs.jmedchem.1c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The blood levels
of microRNA-122 (miR-122) is associated with the
severity of cardiovascular disorders, and targeting it with efficient
and safer miR inhibitors could be a promising approach. Here, we report
the generation of a γ-peptide nucleic acid (γPNA)-based
miR-122 inhibitor (γP-122-I) that rescues vascular endothelial
dysfunction in mice fed a high-fat diet. We synthesized diethylene
glycol-containing γP-122-I and found that its systemic administration
counteracted high-fat diet (HFD)-feeding-associated increase in blood
and aortic miR-122 levels, impaired endothelial function, and reduced
glycemic control. A comprehensive safety analysis established that
γP-122-I affects neither the complete blood count nor biochemical
tests of liver and kidney functions during acute exposure. In addition,
long-term exposure to γP-122-I did not change the overall adiposity,
or histology of the kidney, liver, and heart. Thus, γP-122-I
rescues endothelial dysfunction without any evidence of toxicity in vivo and demonstrates the suitability of γPNA technology
in generating efficient and safer miR inhibitors.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Karishma Dhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Young-Rae Kim
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Julia S Jacobs
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Qiuxia Li
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
22
|
Identification of the Relationship between Hub Genes and Immune Cell Infiltration in Vascular Endothelial Cells of Proliferative Diabetic Retinopathy Using Bioinformatics Methods. DISEASE MARKERS 2022; 2022:7231046. [PMID: 35154512 PMCID: PMC8831064 DOI: 10.1155/2022/7231046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
Background Diabetic retinopathy (DR) is a serious ophthalmopathy that causes blindness, especially in the proliferative stage. However, the pathogenesis of its effect on endothelial cells, especially its relationship with immune cell infiltration, remains unclear. Methods The dataset GSE94019 was downloaded from the Gene Expression Omnibus (GEO) database to obtain DEGs. Through aggregate analyses such as Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DEGs. Weighted gene coexpression network analysis (WGCNA) and Cytoscape software including molecular complex detection (MCODE) and cytoHubba plug-ins were used to comprehensively analyze and determine the hub genes. ImmuCellAI analysis was performed to further study the relationship between samples, hub genes, and 24 types of immune cell infiltration. Finally, gene-set enrichment analysis (GSEA) was employed to identify the enrichment of immune cell infiltration and endothelial cell phenotype modifications in GO biological processes (BP) based on the expression level of hub genes. Results 2393 DEGs were identified, of which 800 genes were downregulated, and 1593 genes were upregulated. The results of functional enrichment revealed that 1398 BP terms were significantly enriched in DEGs. Three hub genes, EEF1A1, RPL11, and RPS27A, which were identified by conjoint analysis using WGCNA and Cytoscape software, were positively correlated with the number of CD4 naive T cells and negatively correlated with the numbers of B cells. The number of CD4 naive T cells, T helper 2 (Th2) cells, and effector memory T (Tem) cells were significantly higher while CD8 naive T cells and B cells significantly were lower in the diabetic group than in the nondiabetic group. Conclusions We unearthed the DEGs and Hub genes of endothelial cells related to the pathogenesis of PDR: EEF1A1, RPL11, and RPS27A, which are highly related to each other and participate in the specific biological process of inflammation-related immune cell infiltration and endothelial cell development, chemotaxis, and proliferation, thus providing new perspectives into the diagnosis of and potential “killing two birds with one stone” targeted therapy for PDR.
Collapse
|
23
|
Giurdanella G, Longo A, Distefano A, Olivieri M, Cristaldi M, Cosentino A, Agafonova A, Caporarello N, Lupo G, Anfuso CD. The Anti-Inflammatory Effect of the β1-Adrenergic Receptor Antagonist Metoprolol on High Glucose Treated Human Microvascular Retinal Endothelial Cells. Cells 2021; 11:cells11010051. [PMID: 35011613 PMCID: PMC8750370 DOI: 10.3390/cells11010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced impairment of the blood-retinal barrier represents the main pathological event in diabetic retinopathy that is elicited by a reduced cellular response to an accumulation of reactive oxygen species (ROS) and increased inflammation. The purpose of the study was to evaluate whether the selective β1-adrenoreceptor (β1-AR) antagonist metoprolol could modulate the inflammatory response to hyperglycemic conditions. For this purpose, human retinal endothelial cells (HREC) were treated with normal (5 mM) or high glucose (25 mM, HG) in the presence of metoprolol (10 μM), epinephrine (1 μM), or both compounds. Metoprolol prevented both the HG-induced reduction of cell viability (MTT assays) and the modulation of the angiogenic potential of HREC (tube formation assays) reducing the TNF-α, IL-1β, and VEGF mRNA levels (qRT-PCR). Moreover, metoprolol prevented the increase in phospho-ERK1/2, phospho-cPLA2, COX2, and protein levels (Western blot) as well as counteracting the translocation of ERK1/2 and cPLA2 (high-content screening). Metoprolol reduced ROS accumulation in HG-stimulated HREC by activating the anti-oxidative cellular response mediated by the Keap1/Nrf2/HO-1 pathway. In conclusion, metoprolol exerted a dual effect on HG-stimulated HREC, decreasing the activation of the pro-inflammatory ERK1/2/cPLA2/COX2 axis, and counteracting ROS accumulation by activating the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Anna Longo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Alfio Distefano
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Melania Olivieri
- U.O. Clinical Pathology, Department of Hematology, AUSL Romagna, 47522 Cesena, Italy;
| | | | - Alessia Cosentino
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Aleksandra Agafonova
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Gabriella Lupo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
- Correspondence:
| | - Carmelina Daniela Anfuso
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| |
Collapse
|
24
|
Zhu Z, Duan P, Song H, Zhou R, Chen T. Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis. Bioengineered 2021; 12:12555-12567. [PMID: 34903141 PMCID: PMC8809929 DOI: 10.1080/21655979.2021.2010369] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ferroptosis is a form of programmed cell death that participates in the progression of numerous diseases. Long noncoding RNAs (lncRNAs) are dysregulated in diabetic retinopathy (DR). However, the role of lncRNAs in DR-induced ferroptosis is unclear. Adult retinal pigment epithelial cell line-19 (ARPE19) cells were treated with a high concentration of glucose (high glucose, HG) to mimic DR in vitro. The intracellular contents of glutathione, malondialdehyde, and ferrous ions were analyzed using the corresponding kits. The MTT assay was performed to measure the cell survival rate, and cell death was determined using propidium iodide and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays. Western blotting was conducted to detect the protein levels of GPX4, SLC7A11, and TFR1. The targeting relationships were verified using luciferase reporter and RNA pull-down assays. circ-PSEN1 was upregulated in HG-treated ARPE19 cells and showed high resistance to RNase R and Act D. Inhibition of circ-PSEN1 in ARPE19 cells ameliorated the ferroptosis induced by HG was ameliorated, as evidenced by changes in the ferroptosis-related biomarkers/genes and decreased cell death. Subsequently, circ-PSEN1 acted as a sponge for miR-200b-3p. Inhibition of miR-200b-3p partially reversed the effects of circ-PSEN1 on ferroptosis. Furthermore, cofilin-2 (CFL2) was the target gene of miR-200b-3p, and it abrogated the inhibitory effect of miR-200b-3p on ferroptosis. Taken together, the findings indicate that knockdown of circ-PSEN1 can mitigate ferroptosis of ARPE19 cells induced by HG via the miR-200b-3p/CFL2 axis.
Collapse
Affiliation(s)
- Zhaoliang Zhu
- Ophthalmology Department, Xi'an People's Hospital, Shaanxi Eye Hospital, Xi'an City, China
| | - Peng Duan
- Ophthalmology Department, Xi'an People's Hospital, Shaanxi Eye Hospital, Xi'an City, China
| | - Huping Song
- Ophthalmology Department, Xi'an People's Hospital, Shaanxi Eye Hospital, Xi'an City, China
| | - Rongle Zhou
- Ophthalmology Department, Xi'an People's Hospital, Shaanxi Eye Hospital, Xi'an City, China
| | - Tao Chen
- Ophthalmology Department, Xi'an People's Hospital, Shaanxi Eye Hospital, Xi'an City, China
| |
Collapse
|
25
|
Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating Lysosomal membrane permeabilization-Induced necroptosis. Autophagy 2021; 18:1841-1863. [PMID: 34872436 PMCID: PMC9450981 DOI: 10.1080/15548627.2021.2002109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Necrosis that appears at the ischemic distal end of random-pattern skin flaps increases the pain and economic burden of patients. Necroptosis is thought to contribute to flap necrosis. Lysosomal membrane permeabilization (LMP) plays an indispensable role in the regulation of necroptosis. Nonetheless, the mechanisms by which lysosomal membranes become leaky and the relationship between necroptosis and lysosomes are still unclear in ischemic flaps. Based on Western blotting, immunofluorescence, enzyme-linked immunosorbent assay, and liquid chromatography-mass spectrometry (LC-MS) analysis results, we found that LMP was presented in the ischemic distal portion of random-pattern skin flaps, which leads to disruption of lysosomal function and macroautophagic/autophagic flux, increased necroptosis, and aggravated necrosis of the ischemic flaps. Moreover, bioinformatics analysis of the LC-MS results enabled us to focus on the role of PLA2G4E/cPLA2 (phospholipase A2, group IVE) in LMP of the ischemic flaps. In vivo inhibition of PLA2G4E with an adeno-associated virus vector attenuated LMP and necroptosis, and promoted flap survival. In addition, microRNA-seq helped us determine that Mir504-5p was differentially expressed in ischemic flaps. A string of in vitro and in vivo tests was employed to verify the inhibitory effect of Mir504-5p on PLA2G4E, LMP and necroptosis. Finally, we concluded that the inhibition of PLA2G4E by Mir504-5p reduced LMP-induced necroptosis, thereby promoting the survival of random-pattern skin flaps.
Collapse
|
26
|
Santos DF, Pais M, Santos CN, Silva GA. Polyphenol Metabolite Pyrogallol- O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. Int J Mol Sci 2021; 22:ijms222111402. [PMID: 34768833 PMCID: PMC8583739 DOI: 10.3390/ijms222111402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
(Poly)phenol-derived metabolites are small molecules resulting from (poly)phenol metabolization after ingestion that can be found in circulation. In the last decade, studies on the impact of (poly)phenol properties in health and cellular metabolism accumulated evidence that (poly)phenols are beneficial against human diseases. Diabetic retinopathy (DR) is characterized by inflammation and neovascularization and targeting these is of therapeutic interest. We aimed to study the effect of pyrogallol-O-sulfate (Pyr-s) metabolite in the expression of proteins involved in retinal glial activation, neovascularization, and glucose transport. The expression of PEDF, VEGF, and GLUT-1 were analyzed upon pyrogallol-O-sulfate treatment in RPE cells under high glucose and hypoxia. To test its effect on a diabetic mouse model, Ins2Akita mice were subjected to a single intraocular injection of the metabolite and the expression of PEDF, VEGF, GLUT-1, Iba1, or GFAP measured in the neural retina and/or retinal pigment epithelium (RPE), two weeks after treatment. We observed a significant decrease in the expression of pro-angiogenic VEGF in RPE cells. Moreover, pyrogallol-O-sulfate significantly decreased the expression of microglial marker Iba1 in the diabetic retina at different stages of disease progression. These results highlight the potential pyrogallol-O-sulfate metabolite as a preventive approach towards DR progression, targeting molecules involved in both inflammation and neovascularization.
Collapse
Affiliation(s)
- Daniela F. Santos
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
- ProRegeM PhD Programme—NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Mariana Pais
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
| | - Cláudia N. Santos
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
| | - Gabriela A. Silva
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
27
|
Giurdanella G, Longo A, Salerno L, Romeo G, Intagliata S, Lupo G, Distefano A, Platania CBM, Bucolo C, Li Volti G, Anfuso CD, Pittalà V. Glucose-impaired Corneal Re-epithelialization Is Promoted by a Novel Derivate of Dimethyl Fumarate. Antioxidants (Basel) 2021; 10:antiox10060831. [PMID: 34067436 PMCID: PMC8224583 DOI: 10.3390/antiox10060831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose induces corneal epithelial dysfunctions characterized by delayed wound repair. Nuclear erythroid 2-related factor 2 (Nrf2) mediates cell protection mechanisms even through the Heme oxygenase-1 (HO-1) up-regulation. Here, we synthesized new HO-1 inducers by modifying dimethyl fumarate (DMF) and used docking studies to select VP13/126 as a promising compound with the best binding energy to Kelch-like ECH-associated protein 1 (keap1), which is the the regulator of Nrf2 nuclear translocation. We verified if VP13/126 protects SIRC cells from hyperglycemia compared to DMF. SIRC were cultured in normal (5 mM) or high glucose (25 mM, HG) in presence of DMF (1–25 μM) or VP13/126 (0.1–5 μM) with or without ERK1/2 inhibitor PD98059 (15 μM). VP13/126 was more effective than DMF in the prevention of HG-induced reduction of cell viability and proliferation. Reduction of wound closure induced by HG was similarly counteracted by 1 μM VP13/126 and 10 μM DMF. VP13/126 strongly increased phospho/total ERK1/2 and restored HO-1 protein in HG-treated SIRC; these effects are completely counteracted by PD98059. Moreover, high-content screening analysis showed a higher rate of Nrf2 nuclear translocation induced by VP13/126 than DMF in HG-stimulated SIRC. These data indicate that VP13/126 exerts remarkable pro-survival properties in HG-stimulated SIRC, promoting the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Claudio Bucolo
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.G.); (A.L.); (G.L.); (A.D.); (G.L.V.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
- Correspondence: (C.D.A.); (V.P.); Tel.: +39-095-478-1170 (C.D.A.); +39-095-738-4269 (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (L.S.); (G.R.); (S.I.)
- Correspondence: (C.D.A.); (V.P.); Tel.: +39-095-478-1170 (C.D.A.); +39-095-738-4269 (V.P.)
| |
Collapse
|
28
|
Anitha RE, Janani R, Peethambaran D, Baskaran V. Lactucaxanthin protects retinal pigment epithelium from hyperglycemia-regulated hypoxia/ER stress/VEGF pathway mediated angiogenesis in ARPE-19 cell and rat model. Eur J Pharmacol 2021; 899:174014. [PMID: 33705802 DOI: 10.1016/j.ejphar.2021.174014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Hyperglycemia mediated perturbations in biochemical pathways induce angiogenesis in diabetic retinopathy (DR) pathogenesis. The present study aimed to investigate the protective effects of lactucaxanthin, a predominant lettuce carotenoid, on hyperglycemia-mediated activation of angiogenesis in vitro and in vivo diabetic model. ARPE-19 cells cultured in 30 mM glucose concentration were treated with lactucaxanthin (5 μM and 10 μM) for 48 h. They were assessed for antioxidant enzyme activity, mitochondrial membrane potential, reactive oxygen species, and cell migration. In the animal experiment, streptozotocin-induced diabetic male Wistar rats were gavaged with lactucaxanthin (200 μM) for 8 weeks. Parameters like animal weight gain, feed intake, water intake, urine output, and fasting blood glucose level were monitored. In both models, lutein-treated groups were considered as a positive control. Hyperglycemia-mediated angiogenic marker expressions in ARPE-19 and retina of diabetic rats were quantified through the western blot technique. Expression of hypoxia, endoplasmic reticulum stress markers, and vascular endothelial growth factor were found to be augmented in the hyperglycemia group compared to control (P < 0.05). Hyperglycemia plays a crucial role in increasing cellular migration and reactive oxygen species besides disrupting tight junction protein. Compared to lutein, lactucaxanthin aids retinal pigment epithelium (RPE) function from hyperglycemia-induced stress conditions via downregulating angiogenesis markers expression. Lactucaxanthin potentiality observed in protecting tight junction protein expression via modulating reactive oxygen species found to conserve RPE integrity. Results demonstrate that lactucaxanthin exhibits robust anti-angiogenic activity for the first time and, therefore, would be useful as an alternative therapy to prevent or delay DR progression.
Collapse
Affiliation(s)
- Rani Elavarasan Anitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Rajasekar Janani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Divya Peethambaran
- CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vallikannan Baskaran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
29
|
Effects of High Glucose Concentration on Pericyte-Like Differentiated Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094604. [PMID: 33925714 PMCID: PMC8125146 DOI: 10.3390/ijms22094604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
A pericyte-like differentiation of human adipose-derived mesenchymal stem cells (ASCs) was tested in in vitro experiments for possible therapeutic applications in cases of diabetic retinopathy (DR) to replace irreversibly lost pericytes. For this purpose, pericyte-like ASCs were obtained after their growth in a specific pericyte medium. They were then cultured in high glucose conditions to mimic the altered microenvironment of a diabetic eye. Several parameters were monitored, especially those particularly affected by disease progression: cell proliferation, viability and migration ability; reactive oxygen species (ROS) production; inflammation-related cytokines and angiogenic factors. Overall, encouraging results were obtained. In fact, even after glucose addition, ASCs pre-cultured in the pericyte medium (pmASCs) showed high proliferation rate, viability and migration ability. A considerable increase in mRNA expression levels of the anti-inflammatory cytokines transforming growth factor-β1 (TGF-β1) and interleukin-10 (IL-10) was observed, associated with reduction in ROS production, and mRNA expression of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and angiogenic factors. Finally, a pmASC-induced better organization of tube-like formation by retinal endothelial cells was observed in three-dimensional co-culture. The pericyte-like ASCs obtained in these experiments represent a valuable tool for the treatment of retinal damages occurring in diabetic patients.
Collapse
|
30
|
Zhu X, Shan Y, Yu M, Shi J, Tang L, Cao H, Sheng M. Tetramethylpyrazine Ameliorates Peritoneal Angiogenesis by Regulating VEGF/Hippo/YAP Signaling. Front Pharmacol 2021; 12:649581. [PMID: 33927624 PMCID: PMC8076865 DOI: 10.3389/fphar.2021.649581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis of human peritoneal vascular endothelial cells (HPVECs), linked to vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling, is a complication of peritoneal fibrosis (PF). Hippo/YAP signaling interacts with VEGF/VEGFR2 signaling, but the effect on peritoneal angiogenesis and PF has not been studied. We tested VEGF/Hippo/YAP inhibition by tetramethylpyrazine (TMP) in PF mice and HPVECs. This treatment ameliorated peritoneal dialysis (PD)–induced angiogenesis and PF. In mice, PF was associated with upregulation of VEGF, and TMP ameliorated submesothelial fibrosis, perivascular bleeding, and Collagen I abundance. In HPVECs, angiogenesis occurred due to human peritoneal mesothelial cells (HPMCs)–conditioned medium, and TMP alleviated HPVECs migration, tube formation, and YAP nuclear translocation. YAP knockdown PF mouse and HPVEC models were established to further confirm our finding. YAP deletion attenuated the PD-induced or VEGF-induced increase in angiogenesis and PF. The amount of CYR61 and CTGF was significantly less in the YAP knockdown group. To study the possibility that TMP could benefit angiogenesis, we measured the HPVECs migration and tube formation and found that both were sharply increased in YAP overexpression; TMP treatment partly abolished these increases. As well, the amount of VEGFR localized in the trans-Golgi network was lower by double immunofluorescence; VEGFR and its downstream signaling pathways including p-ERK, p-P38, and p-Akt were more in HPVECs with YAP overexpression. Overall, TMP treatment ameliorated angiogenesis, PF, and peritoneum injury. These changes were accompanied by inhibition of VEGF/Hippo/YAP.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Tang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Cao
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Santi D, Spaggiari G, Greco C, Lazzaretti C, Paradiso E, Casarini L, Potì F, Brigante G, Simoni M. The "Hitchhiker's Guide to the Galaxy" of Endothelial Dysfunction Markers in Human Fertility. Int J Mol Sci 2021; 22:2584. [PMID: 33806677 PMCID: PMC7961823 DOI: 10.3390/ijms22052584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is an early event in the pathogenesis of atherosclerosis and represents the first step in the pathogenesis of cardiovascular diseases. The evaluation of endothelial health is fundamental in clinical practice and several direct and indirect markers have been suggested so far to identify any alterations in endothelial homeostasis. Alongside the known endothelial role on vascular health, several pieces of evidence have demonstrated that proper endothelial functioning plays a key role in human fertility and reproduction. Therefore, this state-of-the-art review updates the endothelial health markers discriminating between those available for clinical practice or for research purposes and their application in human fertility. Moreover, new molecules potentially helpful to clarify the link between endothelial and reproductive health are evaluated herein.
Collapse
Affiliation(s)
- Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Carla Greco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Clara Lazzaretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Elia Paradiso
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, 43121 Parma, Italy;
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
32
|
Mrugacz M, Bryl A, Zorena K. Retinal Vascular Endothelial Cell Dysfunction and Neuroretinal Degeneration in Diabetic Patients. J Clin Med 2021; 10:jcm10030458. [PMID: 33504108 PMCID: PMC7866162 DOI: 10.3390/jcm10030458] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) has become a vital societal problem as epidemiological studies demonstrate the increasing incidence of type 1 and type 2 diabetes. Lesions observed in the retina in the course of diabetes, referred to as diabetic retinopathy (DR), are caused by vascular abnormalities and are ischemic in nature. Vascular lesions in diabetes pertain to small vessels (microangiopathy) and involve precapillary arterioles, capillaries and small veins. Pericyte loss, thickening of the basement membrane, and damage and proliferation of endothelial cells are observed. Endothelial cells (monolayer squamous epithelium) form the smooth internal vascular lining indispensable for normal blood flow. Breaking its continuity initiates blood coagulation at that site. The endothelium controls the process of exchange of chemical substances (nutritional, regulatory, waste products) between blood and the retina, and blood cell passing through the vascular wall. Endothelial cells produce biologically active substances involved in blood coagulation, regulating vascular wall tension and stimulating neoangiogenesis. On the other hand, recent studies have demonstrated that diabetic retinopathy may be not only a microvascular disease, but is a result of neuroretinal degeneration. Neuroretinal degeneration appears structurally, as neural apoptosis of amacrine and Muller cells, reactive gliosis, ganglion cell layer/inner plexiform (GCL) thickness, retinal thickness, and retinal nerve fiber layer thickness, and a reduction of the neuroretinal rim in minimum rim width (MRW) and functionally as an abnormal electroretinogram (ERG), dark adaptation, contrast sensitivity, color vision, and microperimetric test. The findings in early stages of diabetic retinopathy may precede microvascular changes of this disease. Furthermore, the article's objective is to characterize the factors and mechanisms conducive to microvascular changes and neuroretinal apoptosis in diabetic retinopathy. Only when all the measures preventing vascular dysfunction are determined will the risk of complications in the course of diabetes be minimized.
Collapse
Affiliation(s)
- Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 18-211 Gdańsk, Poland
| |
Collapse
|