1
|
Su S, Tian L. Association Between Dietary Tryptophan Intake and Bone Health: A Cross-Sectional Study. Calcif Tissue Int 2024; 116:6. [PMID: 39673557 DOI: 10.1007/s00223-024-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
The relationship between dietary tryptophan intake and the risk of low bone mineral density (LBMD) has not been thoroughly evaluated. This study aimed to examine the relationship between dietary tryptophan intake and LBMD. A total of 12,003 participants aged 50 years and older with complete data on bone mineral density (BMD) and tryptophan intake from the National Health and Nutrition Examination Survey (NHANES) 2005 to 2020 were included in this cross-sectional study. The median dietary tryptophan intake among the 12,003 participants was 1822.14 mg/day, with significantly lower levels observed in individuals with LBMD compared to those with normal bone mass (1740.45 mg/day vs. 2041.39 mg/day, p < 0.001). For every 2.7-fold increase in dietary tryptophan intake, the risk of low BMD decreases by 22%. When dietary tryptophan intake was categorized into quartiles, significantly lower risks of LBMD were observed in the third [Odds Ratio (OR) = 0.68, 95% confidence interval (CI): 0.51-0.91] and fourth (OR = 0.65, 95% CI: 0.49-0.87) quartiles compared to the reference group after multivariable adjustment. Moreover, the restricted cubic spline (RCS) results revealed a negative nonlinear relationship between dietary tryptophan intake and LBMD (p for overall < 0.001, p for nonlinear < 0.05), with this correlation remaining consistent across various population subgroups and exhibiting no significant interaction according to stratification variables. Sensitivity analyses further substantiated these findings. Overall, we found that increased dietary tryptophan intake may be associated with a lower risk of LBMD among individuals aged ≥ 50 years, highlighting the importance of optimizing tryptophan nutrition for reducing osteoporosis risk.
Collapse
Affiliation(s)
- Shan Su
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
2
|
Wu L, Li X, Li J, Wang Y, Yang C, Zhao C, Gao L. The role of aryl hydrocarbon receptor in the occurrence and development of periodontitis. Front Immunol 2024; 15:1494570. [PMID: 39575260 PMCID: PMC11580016 DOI: 10.3389/fimmu.2024.1494570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
Periodontitis is a condition characterized by dysbiosis of microbiota and compromised host immunological responses, resulting in the degradation of periodontal tissues. The aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a crucial role in the pathogenesis of periodontitis. AHR serves as a pivotal mediator for the adverse impacts of exogenous pollutants on oral health. Research indicates elevated expression of AHR in individuals with periodontitis compared to those without the condition. However, subsequent to the identification of endogenous AHR ligands, researches have elucidated numerous significant advantageous roles associated with AHR activation in bone, immune, and epithelial cells. This review concentrates on the modulation of the AHR pathway and the intricate functions that AHR plays in periodontitis. It discusses the characteristics of AHR ligands, detailing the established physiological functions in maintaining alveolar bone equilibrium, regulating immunity, facilitating interactions between the oral microbiome and host, and providing protection to epithelial tissues, while also exploring its potential roles in systemic disorders related to periodontitis.
Collapse
Affiliation(s)
- Lingzhi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Canyu Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sharma G, Abdullah KM, Qais FA, Khan P, Cox JL, Sarwar T, Nasser MW, Batra SK, Siddiqui JA. Clofazimine inhibits small-cell lung cancer progression by modulating the kynurenine/aryl hydrocarbon receptor axis. Int J Biol Macromol 2024; 282:136921. [PMID: 39490481 DOI: 10.1016/j.ijbiomac.2024.136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Small cell lung cancer (SCLC) is one of the highly metastatic malignancies that contributes to ~15 % of all lung cancers. Most SCLC patients (50-60 %) develop osteolytic bone metastases, significantly affecting their quality of life. Among several factors, environmental pollutant 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) and kynurenine (Kyn), an endogenous ligand derived from tryptophan (Trp) metabolism, activate the aryl hydrocarbon receptor (AhR) and are responsible for SCLC progression and metastasis. Further, elevated AhR expression in bone cells intensifies bone resorption, making the Kyn/AhR axis a potential target for the bone metastatic propensity of SCLC. We first assessed the expression profile of AhR in human SCLC cell lines and found a significantly increased expression compared to normal lung cells. Additionally, we also evaluated the clinical significance of AhR expression in the patient samples of SCLC along with the relevance of the same in the Rb1fl/fl; Trp53fl/fl; MycLSL/LSL (RPM) mouse model using immunohistochemistry and found the higher AhR expression in the patient samples and RPM mouse tumor tissues. Using computational simulations, we found that clofazimine (CLF) binds at the activator (Kyn) binding site by forming a stable complex with AhR. The CLF binding with AhR was favored by Van der Waals and hydrophobic forces, and the proteins retained their secondary structure. Furthermore, we found that Kyn treatment potentiates the migration and clonogenic ability of SCLC cell lines by activating Erk/Akt oncogenic signaling. Blocking AhR with CLF reduces AhR expression, inhibits Kyn-mediated proliferation of SCLC cells, and induces apoptosis and cell cycle arrest in the G2/M phase; further, our examination indicates that Kyn treatment also promotes osteoblast-mediated osteoclast differentiation through RANKL. The treatment with CLF impedes RANKL expression and osteoclastogenesis, suggesting that CLF has the potential for developing SCLC therapies that have efficacies against bone metastasis.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA
| | - K M Abdullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jesse L Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jawed A Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA.
| |
Collapse
|
4
|
Li S, Tian Q, Zheng L, Zhou Y. Functional Amino Acids in the Regulation of Bone and Its Diseases. Mol Nutr Food Res 2024; 68:e2400094. [PMID: 39233531 DOI: 10.1002/mnfr.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/11/2024] [Indexed: 09/06/2024]
Abstract
Bone as a vigorous tissue is constantly undergoing bone remodeling. The homeostasis of bone remodeling requires combined efforts of multifarious bone cells. Amino acids (AA), known as essential components of life support, are closely related to the regulation of bone homeostasis. In recent years, the concept of functional amino acids (FAAs) has been proposed, which is defined as AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms, to highlight their outstanding contributions in the body. In the hope of exploring new therapeutic strategies, this review focus on summarizing recent progress in the vital role of FAAs in bone homeostasis maintaining and potential implications of FAAs in bone-related diseases, and discussing related mechanisms. The results showed that FAAs are closely related to bone metabolism and therapeutic strategy targeting FAAs metabolism is one of the future trends for bone disorders, while the explorations about possible impact of FAAs-based diets are still limited.
Collapse
Affiliation(s)
- Siying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinglu Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Zhou S, Li J, Ying T, Wang Y, Wang Q, Li X, Zhao F. StemRegenin 1 attenuates the RANKL-induced osteoclastogenesis via inhibiting AhR- c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway. iScience 2024; 27:109682. [PMID: 38660403 PMCID: PMC11039397 DOI: 10.1016/j.isci.2024.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) pathway may play an important role in the regulation of osteoclasts, but there are still conflicting studies on this aspect, and the specific mechanism of action has not been fully elucidated. Therefore, we conducted this study to find a drug to treat osteoporosis that targets AhR. We found that StemRegenin 1 inhibited RANKL-induced osteoclastogenesis in a concentration-dependent and time-dependent manner. Through further experiments, we found that SR1 can inhibit nuclear transcription of AhR and inhibit c-src phosphorylation, and ultimately regulates the activation of the NF-κB and p-ERK/mitogen-activated protein kinase pathways. Therefore, for the first time, we discovered the way in which the AhR-c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway regulates the expression of osteoclast differentiation-associated proteins. Finally, SR1 was shown to successfully reverse bone loss in OVX mice. These studies provide us with ideas for finding new way to treat osteoporosis.
Collapse
Affiliation(s)
- Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| |
Collapse
|
6
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int J Mol Sci 2024; 25:2846. [PMID: 38474093 PMCID: PMC10932255 DOI: 10.3390/ijms25052846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of patients with advanced cancer poses clinical problems due to the complications that arise as the disease progresses. Bone metastases are a common problem that cancer patients may face, and currently, there are no effective drugs to treat these individuals. Prostate, breast, and lung cancers often spread to the bone, causing significant and disabling health conditions. The bone is a highly active and dynamic tissue and is considered a favorable environment for the growth of cancer. The role of osteoblasts and osteoclasts in the process of bone remodeling and the way in which their interactions change during the progression of metastasis is critical to understanding the pathophysiology of this disease. These interactions create a self-perpetuating loop that stimulates the growth of metastatic cells in the bone. The metabolic reprogramming of both cancer cells and cells in the bone microenvironment has serious implications for the development and progression of metastasis. Insight into the process of bone remodeling and the systemic elements that regulate this process, as well as the cellular changes that occur during the progression of bone metastases, is critical to the discovery of a cure for this disease. It is crucial to explore different therapeutic options that focus specifically on malignancy in the bone microenvironment in order to effectively treat this disease. This review will focus on the bone remodeling process and the effects of metabolic disorders as well as systemic factors like hormones and cytokines on the development of bone metastases. We will also examine the various therapeutic alternatives available today and the upcoming advances in novel treatments.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (B.E.); (N.A.)
| |
Collapse
|
8
|
Sultana S, Elengickal A, Bensreti H, de Chantemèle EB, McGee-Lawrence ME, Hamrick MW. The kynurenine pathway in HIV, frailty and inflammaging. Front Immunol 2023; 14:1244622. [PMID: 37744363 PMCID: PMC10514395 DOI: 10.3389/fimmu.2023.1244622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by enzymes including IDO1 that are induced by inflammatory cytokines such as interferon-gamma. Kyn levels in circulation increase with age and Kyn is implicated in several age-related disorders including neurodegeneration, osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive disease in HIV patients, and antiretroviral therapy does not normalize IDO1 activity in these subjects. Kyn is now recognized as an endogenous agonist of the aryl hydrocarbon receptor, and AhR activation itself has been found to induce muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease matrix formation by osteoblasts, and lead to senescence of bone marrow stem cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer therapies. We propose that some of these drugs may be repurposed to improve musculoskeletal health in older adults living with HIV.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Breast and prostate tumors frequently metastasize to the bone, but the underlying mechanisms for osteotropism remain elusive. An emerging feature of metastatic progression is metabolic adaptation of cancer cells to new environments. This review will summarize the recent advances on how cancer cells utilize amino acid metabolism during metastasis, from early dissemination to interactions with the bone microenvironment. RECENT FINDINGS Recent studies have suggested that certain metabolic preferences for amino acids may be associated with bone metastasis. Once in the bone microenvironment, cancer cells encounter a favorable microenvironment, where a changing nutrient composition of the tumor-bone microenvironment may alter metabolic interactions with bone-resident cells to further drive metastatic outgrowth. Enhanced amino acid metabolic programs are associated with bone metastatic disease and may be further augmented by the bone microenvironment. Additional studies are necessary to fully elucidate the role of amino acid metabolism on bone metastasis.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Bensreti H, Yu K, Alhamad DW, Shaver J, Kaiser H, Zhong R, Whichard WC, Parker E, Grater L, Faith H, Johnson M, Cooley MA, Fulzele S, Hill WD, Isales CM, Hamrick MW, McGee-Lawrence ME. Orchiectomy sensitizes cortical bone in male mice to the harmful effects of kynurenine. Bone 2023; 173:116811. [PMID: 37244427 PMCID: PMC10330684 DOI: 10.1016/j.bone.2023.116811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Kynurenine (Kyn) is a tryptophan metabolite that increases with age and promotes musculoskeletal dysfunction. We previously found a sexually dimorphic pattern in how Kyn affects bone, with harmful effects more prevalent in females than males. This raises the possibility that male sex steroids might exert a protective effect that blunts the effects of Kyn in males. To test this, orchiectomy (ORX) or sham surgeries were performed on 6-month-old C57BL/6 mice, after which mice received Kyn (10 mg/kg) or vehicle via intraperitoneal injection, once daily, 5×/week, for four weeks. Bone histomorphometry, DXA, microCT, and serum marker analyses were performed after sacrifice. In vitro studies were performed to specifically test the effect of testosterone on activation of aryl hydrocarbon receptor (AhR)-mediated signaling by Kyn in mesenchymal-lineage cells. Kyn treatment reduced cortical bone mass in ORX- but not sham-operated mice. Trabecular bone was unaffected. Kyn's effects on cortical bone in ORX mice were attributed primarily to enhanced endosteal bone resorption activity. Bone marrow adipose tissue was increased in Kyn-treated ORX animals but was unchanged by Kyn in sham-operated mice. ORX surgery increased mRNA expression of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1a1 in the bone, suggesting a priming and/or amplification of AhR signaling pathways. Mechanistic in vitro studies revealed that testosterone blunted Kyn-stimulated AhR transcriptional activity and Cyp1a1 expression in mesenchymal-linage cells. These data suggest a protective role for male sex steroids in blunting the harmful effects of Kyn in cortical bone. Therefore, testosterone may play an important role in regulating Kyn/AhR signaling in musculoskeletal tissues, suggesting crosstalk between male sex steroids and Kyn signaling may influence age-associated musculoskeletal frailty.
Collapse
Affiliation(s)
- Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Joseph Shaver
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Helen Kaiser
- Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States of America
| | - Roger Zhong
- Department of Neuroscience & Regenerative Medicine, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - William C Whichard
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Lindsey Grater
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Hayden Faith
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Maribeth Johnson
- Department of Neuroscience & Regenerative Medicine, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Marion A Cooley
- Department of Oral Biology & Diagnostic Sciences, Dental Collage of Georgia at Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Carlos M Isales
- Department of Neuroscience & Regenerative Medicine, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of, Georgia at Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
11
|
Ballesteros J, Rivas D, Duque G. The Role of the Kynurenine Pathway in the Pathophysiology of Frailty, Sarcopenia, and Osteoporosis. Nutrients 2023; 15:3132. [PMID: 37513550 PMCID: PMC10383689 DOI: 10.3390/nu15143132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tryptophan is an essential nutrient required to generate vitamin B3 (niacin), which is mainly involved in energy metabolism and DNA production. Alterations in tryptophan metabolism could have significant effects on aging and musculoskeletal health. The kynurenine pathway, essential in tryptophan catabolism, is modulated by inflammatory factors that are increased in older persons, a process known as inflammaging. Osteoporosis, sarcopenia, osteosarcopenia, and frailty have also been linked with chronically increased levels of inflammatory factors. Due to the disruption of the kynurenine pathway by chronic inflammation and/or changes in the gut microbiota, serum levels of toxic metabolites are increased and are associated with the pathophysiology of those conditions. In contrast, anabolic products of this pathway, such as picolinic acid, have demonstrated a positive effect on skeletal muscle and bone. In addition, physical activity can modulate this pathway by promoting the secretion of anabolic kynurenines. According to the evidence collected, kynurenines could have a promising role as biomarkers for osteoporosis sarcopenia, osteosarcopenia, and frailty in older persons. In addition, some of these metabolites could become important targets for developing new pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Juan Ballesteros
- Servicio de Geriatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Rivas
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Iwobi N, Sparks NR. Endocrine Disruptor-Induced Bone Damage Due to Hormone Dysregulation: A Review. Int J Mol Sci 2023; 24:ijms24098263. [PMID: 37175969 PMCID: PMC10179611 DOI: 10.3390/ijms24098263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hormones are indispensable for bone development, growth, and maintenance. While many of the genes associated with osteogenesis are well established, it is the recent findings in endocrinology that are advancing the fields of bone biology and toxicology. Endocrine-disrupting chemicals (EDCs) are defined as chemicals that interfere with the function of the endocrine system. Here, we report recent discoveries describing key hormone pathways involved in osteogenesis and the EDCs that alter these pathways. EDCs can lead to bone morphological changes via altering hormone receptors, signaling pathways, and gene expression. The objective of this review is to highlight the recent discoveries of the harmful effects of environmental toxicants on bone formation and the pathways impacted. Understanding the mechanisms of how EDCs interfere with bone formation contributes to providing a comprehensive toxicological profile of a chemical.
Collapse
Affiliation(s)
- Nneamaka Iwobi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California, Irvine, CA 92697, USA
| | - Nicole R Sparks
- Department of Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
14
|
Jeon C, Jang Y, Lee SH, Weon S, Park H, Lee S, Oh Y, Choi SH, Wang SE, Kim TH, Sung IH, Jo S. Abnormal kynurenine level contributes to the pathological bone features of ankylosing spondylitis. Int Immunopharmacol 2023; 118:110132. [PMID: 37023698 DOI: 10.1016/j.intimp.2023.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) exhibits paradoxical bone features typically characterized by new bone formation and systemic bone loss. Although abnormal kynurenine (Kyn), a tryptophan metabolite, has been closely linked to the disease activity of AS, the distinct role of its pathological bone features remains unknown. METHODS Kynurenine sera level was collected from healthy control (HC; n = 22) and AS (n = 87) patients and measured by ELISA. In the AS group, we analyzed and compared the Kyn level based on the modified stoke ankylosing spondylitis spinal score (mSASSS), MMP13, and OCN. Under osteoblast differentiation, the treatment with Kyn in AS-osteoprogenitors conducted cell proliferation, alkaline phosphatase activity, bone mineralization-related alizarin red s (ARS), von kossa (VON), hydroxyapatite (HA) staining, and mRNA expression markers (ALP, RUNX2, OCN, and OPG) for bone formation. TRAP and F-actin staining was used for osteoclast formation of mouse osteoclast precursors. RESULTS Kyn sera level was significantly elevated in the AS group compared to the HC. In addition, Kyn sera level was correlated with mSASSS (r = 0.03888, p = 0.067), MMP13 (r = 0.0327, p = 0.093), and OCN (r = 0.0436, p = 0.052). During osteoblast differentiation, treatment with Kyn exhibited no difference in cell proliferation and alkaline phosphate (ALP) activity for bone matrix maturation but promoted ARS, VON, and HA staining for bone mineralization. Interestingly, osteoprotegerin (OPG) and OCN expressions of AS-osteoprogenitors were augmented in the Kyn treatment during differentiation. In growth medium, Kyn treatment of AS-osteoprogenitors resulted in induction of OPG mRNA, protein expression, and Kyn-response genes (AhRR, CYP1b1, and TIPARP). Secreted OPG proteins were observed in the supernatant of AS-osteoprogenitors treated with Kyn. Notably, the supernatant of Kyn-treated AS-osteoprogenitors interrupted the RANKL-mediated osteoclastogenesis of mouse osteoclast precursor such as TRAP-positive osteoclast formation, NFATc1 expression, and osteoclast differentiation markers. CONCLUSION Our results revealed that elevated Kyn level increased the bone mineralization of osteoblast differentiation in AS and decreased RANKL-mediated osteoclast differentiation by inducing OPG expression. Out study have implication for potential coupling factors linking osteoclast and osteoblast where abnormal Kyn level could be involved in pathological bone features of AS.
Collapse
Affiliation(s)
- Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yurin Jang
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Subin Weon
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea
| | - Suein Lee
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Younseo Oh
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Department of Bioresearch, Huonslab, Seongnam-si, Gyeonggi-do 13201, Republic of Korea
| | - Sung Hoon Choi
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Republic of Korea
| | - Il-Hoon Sung
- Hanyang University College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
16
|
Zhang D, Du J, Yu M, Suo L. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154205. [PMID: 35716470 DOI: 10.1016/j.phymed.2022.154205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accumulating clinical and experimental evidence shows multiple biological effects of ginsenoside Rb1 (GRb1) in the treatment of aging related diseases such as osteoporosis (OP). Recently, GRb1 has attracted extensive attention as an anti-osteoporosis agent. Here, we sought to identify the mechanism by which GRb1 improves OP. METHODS A dexamethasone (DEX)-induced rat model of OP was constructed and the rats were treated with GRb1 to examine its role in OP. We screened the action targets of GRb1 online and validated by performing functional experiments. The correlation between aryl hydrocarbon receptor (AHR) and proline/arginine-rich end leucine-rich repeat protein (PRELP) was identified through luciferase and chromatin immunoprecipitation assays. In the isolated osteoblasts from DEX-induced OP rats, the expression of osteogenic differentiation-associated genes, and nuclear factor-kappa B (NF-κB) pathway-related genes, mineralization, and number of calcium nodules were assessed. RESULTS GRb1 enhanced the differentiation of osteoblasts, the mechanism of which was related to upregulation of AHR. AHR could promote the transcription of PRELP by binding to the PRELP promoter region and consequently caused its upregulation. Meanwhile, PRELP inhibited the activation of the NF-κB pathway, which underlay the promoting impact of AHR in the osteogenic differentiation. Additionally, GRb1 could ameliorate OP in DEX-induced rats via the AHR/PRELP/NF-κB axis. CONCLUSIONS Our findings demonstrate that GRb1 might function as an effective candidate to prevent the progression of OP via regulation of the AHR/PRELP/NF-κB axis, revealing a new molecular mechanism underpinning the impact of GRb1 in the progression of OP and offering a theoretical contribution to the treatment of OP.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Jian Du
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Linna Suo
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China.
| |
Collapse
|
17
|
Liu Y, Wu K, Cui X, Mao Y. Compressive force regulates GSK-3β in osteoclasts contributing to alveolar bone resorption during orthodontic tooth movement in vivo. Heliyon 2022; 8:e10379. [PMID: 36061014 PMCID: PMC9433691 DOI: 10.1016/j.heliyon.2022.e10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 08/15/2022] [Indexed: 10/27/2022] Open
|
18
|
Almulla AF, Supasitthumrong T, Tunvirachaisakul C, Algon AAA, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2022; 22:615. [PMID: 35840908 PMCID: PMC9284970 DOI: 10.1186/s12879-022-07582-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is accompanied by activated immune-inflammatory pathways and oxidative stress, which both induce indoleamine-2,3-dioxygenase (IDO), a key enzyme of the tryptophan (TRP) catabolite (TRYCAT) pathway. The aim of this study was to systematically review and meta-analyze the status of the TRYCAT pathway, including the levels of TRP and kynurenine (KYN) and the activity of IDO, as measured by the ratio of KYN/TRP. METHODS This systematic review searched PubMed, Google Scholar, and Web of Sciences and included 14 articles that compared TRP and tryptophan catabolites (TRYCATs) in COVID-19 patients versus non-COVID-19 controls, as well as severe/critical versus mild/moderate COVID-19. The analysis was done on a total of 1269 people, including 794 COVID-19 patients and 475 controls. RESULTS The results show a significant (p < 0.0001) increase in the KYN/TRP ratio (standardized mean difference, SMD = 1.099, 95% confidence interval, CI: 0.714; 1.484) and KYN (SMD = 1.123, 95% CI: 0.730; 1.516) and significantly lower TRP (SMD = - 1.002, 95%CI: - 1.738; - 0.266) in COVID-19 versus controls. The KYN/TRP ratio (SMD = 0.945, 95%CI: 0.629; 1.262) and KYN (SMD = 0.806, 95%CI: 0.462; 1.149) were also significantly (p < 0.0001) higher and TRP lower (SMD = - 0.909, 95% CI: - 1.569; - 0.249) in severe/critical versus mild/moderate COVID-19. No significant difference was detected in kynurenic acid (KA) and the KA/KYN ratio between COVID-19 patients and controls. CONCLUSIONS Our results indicate increased activity of the IDO enzyme in COVID-19 and severe/critical patients. The TRYCAT pathway is implicated in the pathophysiology and progression of COVID-19 and may signal a worsening outcome of the disease.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, 31001 Iraq
| | | | | | | | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC Australia
| |
Collapse
|
19
|
Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P, Li J, Huang H, Ding Y, Zou MH. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency in Vascular Smooth Muscle Cells Exacerbates Arterial Calcification. Circulation 2022; 145:1784-1798. [PMID: 35582948 PMCID: PMC9197997 DOI: 10.1161/circulationaha.121.057868] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND IDO1 (indoleamine 2,3-dioxygenase 1) is the rate-limiting enzyme for tryptophan metabolism. IDO1 malfunction is involved in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) with an osteogenic phenotype promote calcification and features of plaque instability. However, it remains unclear whether aberrant IDO1-regulated tryptophan metabolism causes VSMCs osteogenic reprogramming and calcification. METHODS We generated global Apoe (apolipoprotein E) and Ido1 double knockout mice, and Apoe knockout mice with specific deletion of IDO1 in VSMCs or macrophages. Arterial intimal calcification was evaluated by a Western diet-induced atherosclerotic calcification model. RESULTS Global deficiency of IDO1 boosted calcific lesion formation without sex bias in vivo. Conditional IDO1 loss of function in VSMCs rather than macrophages promoted calcific lesion development and the abundance of RUNX2 (runt-related transcription factor 2). In contrast, administration of kynurenine via intraperitoneal injection markedly delayed the progression of intimal calcification in parallel with decreased RUNX2 expression in both Apoe-/- and Apoe-/-Ido1-/- mice. We found that IDO1 deletion restrained RUNX2 from proteasomal degradation, which resulted in enhanced osteogenic reprogramming of VSMCs. Kynurenine administration downregulated RUNX2 in an aryl hydrocarbon receptor-dependent manner. Kynurenine acted as the endogenous ligand of aryl hydrocarbon receptor, controlled resultant interactions between cullin 4B and aryl hydrocarbon receptor to form an E3 ubiquitin ligase that bound with RUNX2, and subsequently promoted ubiquitin-mediated instability of RUNX2 in VSMCs. Serum samples from patients with coronary artery calcification had impaired IDO1 activity and decreased kynurenine catabolites compared with those without calcification. CONCLUSIONS Kynurenine, an IDO1-mediated tryptophan metabolism main product, promotes RUNX2 ubiquitination and subsequently leads to its proteasomal degradation via an aryl hydrocarbon receptor-dependent nongenomic pathway. Insufficient kynurenine exerts the deleterious role of IDO1 ablation in promoting RUNX2-mediated VSMCs osteogenic reprogramming and calcification in vivo.
Collapse
Affiliation(s)
- Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Changjiang Yu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-sen University, Sun Yat-sen University, Dongguan, China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jian Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| |
Collapse
|
20
|
Eryavuz Onmaz D, Tezcan D, Abusoglu S, Sivrikaya A, Kuzu M, Yerlikaya FH, Yilmaz S, Unlu A. Elevated serum levels of kynurenine pathway metabolites in patients with Behçet disease. Amino Acids 2022; 54:877-887. [PMID: 35604497 DOI: 10.1007/s00726-022-03170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
Behçet disease (BD) is an inflammatory, multisystemic vasculitis of unknown etiopathogenesis. However, innate and adaptive immune system involvement and immune-mediated networks play a vital role in the inflammatory cascade. Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states and catalyzes the first and rate-limiting step of tryptophan (TRP) metabolism along the kynurenine pathway (KP). The study aimed to measure KP metabolites levels in patients with BD and investigate the relationship between disease activity and clinical findings with these metabolites. The study included 120 patients with BD and 120 healthy volunteers. Serum TRP, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid (3HAA), 3-hydroxykynurenine (3HK), and quinolinic acid (QUIN) levels were measured with the tandem mass spectrometric method. Demographic data, clinical manifestations, and disease activity score (BDCAF) were recorded. Serum KYN, KYNA, 3HK, 3HAA, QUIN levels, and KYN/TRP ratio were higher (p < 0.05) in patients with BD compared to the control group, while TRP levels were lower (p < 0.05). KYN/TRP ratio and QUIN levels were significantly higher in the presence of neuro-Behçet, while serum KYN levels were significantly higher in the presence of arthritis (p < 0.05). In addition, serum QUIN levels were significantly higher in the presence of thrombosis (p < 0.05). BDCAF score positively correlated with KYN/TRP ratio. Our findings showed that serum KP metabolite levels were elevated in patients with BD, and there is a relationship between these metabolites with disease activity, clinical findings, and inflammatory burden.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey.
| | - Dilek Tezcan
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Sedat Abusoglu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Menekse Kuzu
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, 34020, Istanbul, Turkey
| | | | - Sema Yilmaz
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
21
|
Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel) 2022; 13:genes13050806. [PMID: 35627191 PMCID: PMC9141076 DOI: 10.3390/genes13050806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. However, there are currently no effective interventions to specifically counteract CS-induced osteoporosis, owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive. This review summarizes the latest research findings of important pathways between CS exposure and bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced osteoporosis, as well as providing theoretical directions for further research in the future.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
22
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
23
|
Lu L, Tang M, Li J, Xie Y, Li Y, Xie J, Zhou L, Liu Y, Yu X. Gut Microbiota and Serum Metabolic Signatures of High-Fat-Induced Bone Loss in Mice. Front Cell Infect Microbiol 2022; 11:788576. [PMID: 35004355 PMCID: PMC8727351 DOI: 10.3389/fcimb.2021.788576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background Accumulating evidence indicates that high-fat diet (HFD) is a controllable risk factor for osteoporosis, but the underlying mechanism remains to be elucidated. As a primary biological barrier for nutrient entry into the human body, the composition and function of gut microbiota (GM) can be altered rapidly by HFD, which may trigger abnormal bone metabolism. In the current study, we analyzed the signatures of GM and serum metabolomics in HFD-induced bone loss and explored the potential correlations of GM and serum metabolites on HFD-related bone loss. Methods We conducted a mouse model with HFD-induced bone loss through a 12-week diet intervention. Micro-CT, Osmium-μCT, and histological analyses were used to observe bone microstructure and bone marrow adipose tissue. Quantitative Real-Time PCR was applied to analyze gene expression related to osteogenesis, adipogenesis, and osteoclastogenesis. Enzyme-linked immunosorbent assay was used to measure the biochemical markers of bone turnover. 16s rDNA sequencing was employed to analyze the abundance of GM, and UHPLC-MS/MS was used to identify serum metabolites. Correlation analysis was performed to explore the relationships among bone phenotypes, GM, and the metabolome. Results HFD induced bone loss accompanied by bone marrow adipose tissue expansion and bone formation inhibition. In the HFD group, the relative abundance of Firmicutes was increased significantly, while Bacteroidetes, Actinobacteria, Epsilonbacteraeota, and Patescibacteria were decreased compared with the ND group. Association analysis showed that thirty-two bacterial genera were significantly related to bone volume per tissue volume (BV/TV). One hundred and forty-five serum metabolites were identified as differential metabolites associated with HFD intervention, which were significantly enriched in five pathways, such as purine metabolism, regulation of lipolysis in adipocyte and cGMP-PKG signaling pathway. Sixty-four diffiential metabolites were matched to the MS2 spectra; and ten of them were positively correlated with BV/TV and five were negatively correlated with BV/TV. Conclusions These findings indicated that the alternations of GM and serum metabolites were related to HFD-induced bone loss, which might provide new insights into explain the occurrence and development of HFD-related osteoporosis. The regulatory effects of GM and metabolites associated with HFD on bone homeostasis required further exploration.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Department of Integrated Traditional Chinese and Western Medicine, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjia Tang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujue Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
25
|
Kim SY, Oh Y, Jo S, Ji JD, Kim TH. Inhibition of Human Osteoclast Differentiation by Kynurenine through the Aryl-Hydrocarbon Receptor Pathway. Cells 2021; 10:3498. [PMID: 34944003 PMCID: PMC8700497 DOI: 10.3390/cells10123498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor and regulates differentiation and function of various immune cells such as dendritic cells, Th17, and regulatory T cells. In recent studies, it was reported that AhR is involved in bone remodeling through regulating both osteoblasts and osteoclasts. However, the roles and mechanisms of AhR activation in human osteoclasts remain unknown. Here we show that AhR is involved in human osteoclast differentiation. We found that AhR expressed highly in the early stage of osteoclastogenesis and decreased in mature osteoclasts. Kynurenine (Kyn), formylindolo[3,4-b] carbazole (FICZ), and benzopyrene (BaP), which are AhR agonists, inhibited osteoclast formation and Kyn suppressed osteoclast differentiation at an early stage. Furthermore, blockade of AhR signaling through CH223191, an AhR antagonist, and knockdown of AhR expression reversed Kyn-induced inhibition of osteoclast differentiation. Overall, our study is the first report that AhR negatively regulates human osteoclast differentiation and suggests that AhR could be good therapeutic molecule to prevent bone destruction in chronic inflammatory diseases such as rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- So-Yeon Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Younseo Oh
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
| | - Jong-Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
26
|
Kositsawat J, Duque G, Kirk B. Nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties: Targeting the biological mechanisms of aging to support musculoskeletal health. Exp Gerontol 2021; 154:111521. [PMID: 34428477 DOI: 10.1016/j.exger.2021.111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Old age is associated with declines in bone density and muscle mass and function, which predisposes to mobility disability, falls, and fractures. Poor nutritional status, a risk factor for several age-related pathologies, becomes prevalent in old age and contributes to the structural and functional changes of the musculoskeletal system that increases the risk of osteoporosis, sarcopenia, osteosarcopenia, and physical frailty. The biological mechanisms underpinning these pathologies often overlap and include loss of proteostasis, impaired redox functioning, and chronic low-grade inflammation. Thus, provision of nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties may be an effective strategy to offset these age-related pathologies. We searched PUBMED for pre-clinical and clinical work examining the effects of nutrients with a combined effect on muscle and bone. This review summarizes recent evidence on the mechanisms of action and potential clinical use of nutrients that concomitantly improve muscle and bone health in older persons.
Collapse
Affiliation(s)
- Jatupol Kositsawat
- Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Ben Kirk
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia.
| |
Collapse
|
27
|
Vyavahare S, Kumar S, Cantu N, Kolhe R, Bollag WB, McGee-Lawrence ME, Hill WD, Hamrick MW, Isales CM, Fulzele S. Tryptophan-Kynurenine Pathway in COVID-19-Dependent Musculoskeletal Pathology: A Minireview. Mediators Inflamm 2021; 2021:2911578. [PMID: 34621138 PMCID: PMC8492288 DOI: 10.1155/2021/2911578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Nicholas Cantu
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Wendy B. Bollag
- Department of Physiology, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Meghan E. McGee-Lawrence
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark W. Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M. Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
28
|
Herlin M, Sánchez-Pérez I, Esteban J, Korkalainen M, Barber X, Finnilä MAJ, Hamscher G, Joseph B, Viluksela M, Håkansson H. Bone toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the retinoid system: A causality analysis anchored in osteoblast gene expression and mouse data. Reprod Toxicol 2021; 105:25-43. [PMID: 34363983 DOI: 10.1016/j.reprotox.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dioxin exposures impact on bone quality and osteoblast differentiation, as well as retinoic acid metabolism and signaling. In this study we analyzed associations between increased circulating retinol concentrations and altered bone mineral density in a mouse model following oral exposure to 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD). Additionally, effects of TCDD on differentiation marker genes and genes involved with retinoic acid metabolism were analysed in an osteoblast cell model followed by benchmark dose-response analyses of the gene expression data. Study results show that the increased trabecular and decreased cortical bone mineral density in the mouse model following TCDD exposure are associated with increased circulating retinol concentrations. Also, TCDD disrupted the expression of genes involved in osteoblast differentiation and retinoic acid synthesis, degradation, and nuclear translocation in directions compatible with increasing cellular retinoic acid levels. Further evaluation of the obtained results in relation to previously published data by the use of mode-of-action and weight-of-evidence inspired analytical approaches strengthened the evidence that TCDD-induced bone and retinoid system changes are causally related and compatible with an endocrine disruption mode of action.
Collapse
Affiliation(s)
- Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland.
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche, Alicante, Spain.
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 10 Giessen, Germany.
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Matti Viluksela
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland; School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Dai G, Chen X, He Y. The Gut Microbiota Activates AhR Through the Tryptophan Metabolite Kyn to Mediate Renal Cell Carcinoma Metastasis. Front Nutr 2021; 8:712327. [PMID: 34458309 PMCID: PMC8384964 DOI: 10.3389/fnut.2021.712327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The incidence of renal cell carcinoma (RCC) is increasing year by year. It is difficult to have complete treatment so far. Studies have shown that tryptophan metabolite Kynurenine (Kyn) affects cell proliferation, migration, apoptosis, adhesion, and differentiation. Our aim is to explore whether Kyn activates aromatic hydrocarbon receptor (AhR) to mediate RCC metastasis. Methods: We collected RCC tissues and feces from RCC patients. 16S rRNA technology was performed to analyze the gut microbial composition of RCC patients. LC-MS/MS was used to analyze the gut microbial metabolites. The AhR was inhibited and treated with Kyn. Immunofluorescence was used to measure the degree of AhR activation. The migration and invasion ability of 786-O cells was tested by Transwell assay. Flow cytometry and cell cycle assay were utilized to observe the apoptosis and cycle of 786-O cells. CCK-8 assay was used to detect 786-O cells proliferation. qRT-PCR and Western blot were used to detect AhR and EMT-related genes expression level. Results: AhR expression was up-regulated in RCC tissues. RCC gut microbiota was disordered. The proportion of Kyn was increased in RCC. After being treated with Kyn, the migration, invasion, and proliferation ability of 786-O cells were decreased. Furthermore, the expression of EMT-related protein E-cadherin decreased, and the expression of N-cadherin and Vimentin increased. The proportion of 786-O cells in the S phase increased. The apoptosis rate of 786-O cells was inhibited. Conclusion: The tryptophan metabolite Kyn could activate AhR. Kyn could promote 786-O cells migration and invasion. Gut microbiota could activate AhR through its tryptophan metabolite Kyn to mediate RCC metastasis.
Collapse
Affiliation(s)
- Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|