1
|
Maxime M, Marie VE, Charles N, Thomas D, Léa L, Amandine C, Christine D, Isabelle S, Christine D, Muhammad S. Decreased Expression of Aquaporins as a Feature of Tubular Damage in Lupus Nephritis. Cells 2025; 14:380. [PMID: 40072108 PMCID: PMC11899336 DOI: 10.3390/cells14050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Background: Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, AQP2 and AQP3, which could provide a better understanding of tubulointerstitial stress during lupus nephritis. Methods: This retrospective monocentric study was conducted at Erasme-HUB Hospital. We included 37 lupus nephritis samples and 9 healthy samples collected between 2000 and 2020, obtained from the pathology department. Immunohistochemistry was performed to target AQP1, AQP2 and AQP3 and followed by digital analysis. Results: No difference in AQP1, AQP2 and AQP3 staining location was found between healthy and lupus nephritis samples. However, we observed significant differences between these two groups, with a decrease in AQP1 expression in the renal cortex and in AQP3 expression in the cortex and medulla. In the subgroup of proliferative glomerulonephritis (class III/IV), this decrease in AQPs expression was more pronounced, particularly for AQP3. In addition, within this subgroup, we detected lower AQP2 expression in patients with higher interstitial inflammation score and lower AQP3 expression when higher interstitial fibrosis and tubular atrophy were present. Conclusions: We identified significant differences in the expression of aquaporins 1, 2, and 3 in patients with lupus nephritis. These findings strongly suggest that decreased AQP expression could serve as an indicator of tubular injury. Further research is warranted to evaluate AQP1, AQP2, and AQP3 as prognostic markers in both urinary and histological assessments of lupus nephritis.
Collapse
Affiliation(s)
- Melchior Maxime
- Departement of Rheumatology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Van Eycken Marie
- Department of Pathology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium; (V.E.M.); (S.I.)
| | - Nicaise Charles
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (N.C.); (D.T.); (L.L.)
| | - Duquesne Thomas
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (N.C.); (D.T.); (L.L.)
| | - Longueville Léa
- URPhyM, NARILIS, Université de Namur, 5000 Namur, Belgium; (N.C.); (D.T.); (L.L.)
| | - Collin Amandine
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (C.A.); (D.C.)
| | - Decaestecker Christine
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (C.A.); (D.C.)
- Laboratory of Image Synthesis and Analysis, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Salmon Isabelle
- Department of Pathology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium; (V.E.M.); (S.I.)
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (C.A.); (D.C.)
- Centre Universitaire Inter Régional D’expertise en Anatomie Pathologique Hospitalière, 6040 Jumet, Belgium
| | - Delporte Christine
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Soyfoo Muhammad
- Departement of Rheumatology, Erasme-HUB Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
2
|
Han L, Lin G, Lv X, Han B, Xu X, Li Y, Li S, Chen D, Huang Z, Gu G, Lv X. Exploring the Shared Diagnostic Genes in IBD and Psoriasis through Bioinformatics and Experimental Assays. Int J Med Sci 2025; 22:1680-1697. [PMID: 40093802 PMCID: PMC11905276 DOI: 10.7150/ijms.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a persistent, non-specific inflammation affecting the intestines. Psoriasis is a long-lasting inflammatory disorder of the skin. There is a comorbidity correlation between IBD and psoriasis, but the specific pathogenesis of the comorbidity is unclear. Materials and methods: In this study, we analyzed datasets sourced from the Gene Expression Omnibus (GEO) database, and identified shared genes of IBD and psoriasis through differential expression analysis and weighted gene co-expression network analysis (WGCNA). Then three machine learning algorithms were applied to identify shared diagnostic genes. Next, the validation of shared diagnostic genes was evaluated with ROC curves, with the AUC determined. Subsequently, single sample gene set enrichment analysis (ssGSEA) and immune infiltration analysis were conducted. Furthermore, we obtained potential drugs such as securinine in the Drug Signature Database (DsigDB) and 7 traditional Chinese medicines in the Coremine database, which might have therapeutic effects on the comorbidity of IBD and psoriasis. Finally, we confirmed the expression of the shared diagnostic gene in colitis and psoriasis mice tissues through RT-PCR, Western blot and immunohistochemistry (IHC) methods. Results: The results showed that AQP9 had the highest diagnostic value for two diseases. AQP9 had AUC values of 93.681% for UC, 89.629% for CD,and 78.689% for psoriasis in the internal validation datasets. In the external validation datasets, AQP9 had AUC values of 90.394% for UC, 93.909% for CD,and 82.906% for psoriasis. Immune infiltration analysis and ssGSEA revealed that AQP9 might impact the disease process of IBD and psoriasis by participating in the NF-kappaB signaling pathway, and modulating immune cell differentiation. Furthermore, the expression levels of AQP9 were consistently validated, showing upregulation in IBD and downregulation in psoriasis, compared to the control group. Conclusions: This study revealed the shared diagnostic genes and potential mechanisms of the comorbidity of IBD and psoriasis, providing new directions for future research on exploring the comorbidity mechanisms and treatment targets.
Collapse
Affiliation(s)
- Lichun Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Deyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangli Gu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Pimpão C, da Silva IV, Soveral G. The Expanding Role of Aquaporin-1, Aquaporin-3 and Aquaporin-5 as Transceptors: Involvement in Cancer Development and Potential Druggability. Int J Mol Sci 2025; 26:1330. [PMID: 39941100 PMCID: PMC11818598 DOI: 10.3390/ijms26031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins that facilitate the transport of water and small solutes, including glycerol, hydrogen peroxide and ions, across cell membranes. Beyond their established physiological roles in water regulation and metabolic processes, AQPs also exhibit receptor-like signaling activities in cancer-associated signaling pathways, integrating the dual roles of transporters and receptors, hence functioning as transceptors. This dual functionality underpins their critical involvement in cancer biology, where AQPs play key roles in promoting cell proliferation, migration, and invasion, contributing significantly to carcinogenesis. Among the AQPs, AQP1, AQP3 and AQP5 have been consistently identified as being aberrantly expressed in various tumor types. Their overexpression is strongly associated with tumor progression, metastasis, and poor patient prognosis. This review explores the pivotal roles of AQP1, AQP3 and AQP5 as transceptors in cancer biology, underscoring their importance as pharmacological targets. It highlights the urgent need for the development of effective modulators to target these AQPs, offering a promising avenue to enhance current therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
5
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
6
|
Fan X, Zhang W, Zheng R, Zhang Y, Lai X, Han J, Fang Z, Han B, Huang W, Ye B, Dai S. GSDMD Mediates Ang II-Induced Hypertensive Nephropathy by Regulating the GATA2/AQP4 Signaling Pathway. J Inflamm Res 2024; 17:8241-8259. [PMID: 39525316 PMCID: PMC11549917 DOI: 10.2147/jir.s488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Aim Hypertensive nephropathy is a common complication of hypertension. However, no effective measures are currently available to prevent the progression of renal insufficiency. Gasdermin D (GSDMD) is a crucial mediator of pyroptosis that induces an excessive inflammatory response. In the present study, we aimed to determine the effect of GSDMD on the pathogenesis of hypertensive nephropathy, which may provide new insights into the treatment of hypertensive nephropathy. Methods C57BL/6 (wild-type, WT) and Gsdmd knockout (Gsdmd-/-) mice were subcutaneously infused with angiotensin II (Ang II) via osmotic mini-pumps to establish a hypertensive renal injury model. Recombinant adeno-associated virus serotype 9 (AAV9) carrying GSDMD cDNA was used to overexpress GSDMD. Renal function biomarkers, histopathological changes, and inflammation and fibrosis indices were assessed. Transcriptome sequencing (RNA-seq) and cleavage under targets and mentation (CUT & Tag) experiments were performed to identify the downstream pathogenic mechanisms of GSDMD in hypertensive nephropathy. Results GSDMD was activated in the kidneys of mice induced by Ang II (P < 0.001). This activation was primarily observed in the renal tubular epithelial cells (P < 0.0001). GSDMD deficiency attenuated renal injury and fibrosis induced by Ang II (P < 0.0001), whereas Gsdmd overexpression promoted renal injury and fibrosis (P < 0.01). Mechanistically, GSDMD increased Ang II-induced GATA binding protein 2 (GATA2) transcription factor expression (P < 0.01). GATA2 also bound to the aquaporin 4 (Aqp4) promoter sequence and facilitated Aqp4 transcription (P < 0.001), leading to renal injury and fibrosis. Moreover, treatment with GI-Y1, an inhibitor of GSDMD, alleviated Ang II-induced renal injury and fibrosis (P < 0.01). Conclusion GSDMD plays an important role in the development of hypertensive nephropathy. Targeting GSDMD may be a therapeutic strategy for the treatment of hypertensive nephropathy.
Collapse
Affiliation(s)
- Xiaoxi Fan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenli Zhang
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ruihan Zheng
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yucong Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People’s Hospital of Zhejiang Province, Taizhou, People’s Republic of China
| | - Jibo Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Zimin Fang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bingjiang Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bozhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shanshan Dai
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Rump K, Adamzik M. Aquaporins in sepsis- an update. Front Immunol 2024; 15:1495206. [PMID: 39544938 PMCID: PMC11560437 DOI: 10.3389/fimmu.2024.1495206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Aquaporins (AQPs), a family of membrane proteins that facilitate the transport of water and small solutes, have garnered increasing attention for their role in sepsis, not only in fluid balance but also in immune modulation and metabolic regulation. Sepsis, characterized by an excessive and dysregulated immune response to infection, leads to widespread organ dysfunction and significant mortality. This review focuses on the emerging roles of aquaporins in immune metabolism and their potential as therapeutic targets in sepsis, with particular attention to the modulation of inflammatory responses and organ protection. Additionally, it explores the diverse roles of aquaporins across various organ systems, highlighting their contributions to renal function, pulmonary gas exchange, cardiac protection, and gastrointestinal barrier integrity in the context of sepsis. Recent studies suggest that AQPs, particularly aquaglyceroporins like AQP3, AQP7, AQP9, and AQP10, play pivotal roles in immune cell metabolism and offer new therapeutic avenues for sepsis treatment. In the context of sepsis, immune cells undergo metabolic shifts to meet the heightened energy demands of the inflammatory response. A key adaptation is the shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, where pyruvate is converted to lactate, enabling faster ATP production. AQPs, particularly aquaglyceroporins, may facilitate this process by transporting glycerol, a substrate that fuels glycolysis. AQP3, for example, enhances glucose metabolism by transporting glycerol and complementing glucose uptake via GLUT1, while also regulating O-GlcNAcylation, a post-translational modification that boosts glycolytic flux. AQP7 could further contributes to immune cell energy production by influencing lipid metabolism and promoting glycolysis through p38 signaling. These mechanisms could be crucial for maintaining the energy supply needed for an effective immune response during sepsis. Beyond metabolism, AQPs also regulate key immune functions. AQP9, highly expressed in septic patients, is essential for neutrophil migration and activation, both of which are critical for controlling infection. AQP3, on the other hand, modulates inflammation through the Toll-like receptor 4 (TLR4) pathway, while AQP1 plays a role in immune responses by activating the PI3K pathway, promoting macrophage polarization, and protecting against lipopolysaccharide (LPS)-induced acute kidney injury (AKI). These insights into the immunoregulatory roles of AQPs suggest their potential as therapeutic targets to modulate inflammation in sepsis. Therapeutically, AQPs present promising targets for reducing organ damage and improving survival in sepsis. For instance, inhibition of AQP9 with compounds like HTS13286 or RG100204 has been shown to reduce inflammation and improve survival by modulating NF-κB signaling and decreasing oxidative stress in animal models. AQP5 inhibition with methazolamide and furosemide has demonstrated efficacy in reducing immune cell migration and lung injury, suggesting its potential in treating acute lung injury (ALI) in sepsis. Additionally, the regulation of AQP1 through non-coding RNAs (lncRNAs and miRNAs) may offer new strategies to mitigate organ damage and inflammatory responses. Moreover, AQPs have emerged as potential biomarkers for sepsis progression and outcomes. Altered expression of AQPs, such as AQP1, AQP3, and AQP5, correlates with sepsis severity, and polymorphisms in AQP5 have been linked to better survival rates and improved outcomes in sepsis-related acute respiratory distress syndrome (ARDS). This suggests that AQP expression could be used to stratify patients and tailor treatments based on individual AQP profiles. In conclusion, AQPs play a multifaceted role in the pathophysiology of sepsis, extending beyond fluid balance to crucial involvement in immune metabolism and inflammation. Targeting AQPs offers novel therapeutic strategies to mitigate sepsis-induced organ damage and improve patient survival. Continued research into the metabolic and immune functions of AQPs will be essential for developing targeted therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie Intensivmedizin und Schmerztherapie Universitätsklinikum Knappschaftskrankenhaus Bochum, University Clinic of Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
8
|
Karimi N, Ahmadi V. Aquaporin Channels in Skin Physiology and Aging Pathophysiology: Investigating Their Role in Skin Function and the Hallmarks of Aging. BIOLOGY 2024; 13:862. [PMID: 39596817 PMCID: PMC11592281 DOI: 10.3390/biology13110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
This study examines the critical role of aquaporins (AQPs) in skin physiology and aging pathophysiology. The skin plays a vital role in maintaining homeostasis by acting as a protective barrier against external pathogens and excessive water loss, while also contributing to the appearance and self-esteem of individuals. Key physiological features, such as elasticity and repair capability, are essential for its proper function. However, with aging, these characteristics deteriorate, reducing the skin's ability to tolerate environmental stressors which contribute to external aging as well as internal aging processes, which negatively affect barrier function, immune response, and overall well-being. AQPs, primarily known for facilitating water transport, are significant for normal skin functions, including hydration and the movement of molecules like glycerol and hydrogen peroxide, which influence various cellular processes and functions. In this context, we categorized aquaporin dysfunction into several hallmarks of aging, including mitochondrial dysfunction, cellular senescence, stem cell depletion, impaired macroautophagy, dysbiosis, and inflamm-aging. Eight aquaporins (AQP1, 3, 5, 7, 8, 9, 10, and 11) are expressed in various skin cells, regulating essential processes such as cell migration, proliferation, differentiation, and also immune response. Dysregulation or altered expression of these proteins can enhance skin aging and related pathologies by activating these hallmarks. This study provides valuable insights into the potential of targeting aquaporins to mitigate skin aging and improve skin physiologic functions.
Collapse
Affiliation(s)
- Nazli Karimi
- Physiology Department, Medical Faculty, Hacettepe University, Ankara 06800, Turkey
| | - Vahid Ahmadi
- Dermatology Department, Beytepe Murat Erdi Eker State Hospital, Ankara 06800, Turkey
| |
Collapse
|
9
|
Li J, Yang D, Lin L, Yu L, Chen L, Lu K, Lan J, Zeng Y, Xu Y. Important functions and molecular mechanisms of aquaporins family on respiratory diseases: potential translational values. J Cancer 2024; 15:6073-6085. [PMID: 39440058 PMCID: PMC11493008 DOI: 10.7150/jca.98829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaporins (AQPs) are a subgroup of small transmembrane transporters that are distributed in various types of tissues, including the lung, kidney, heart and central nervous system. It is evident that respiratory diseases represent a significant global health concern, with a considerable number of deaths occurring worldwide. Recent researches have demonstrated that AQPs play a pivotal role in respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, acute respiratory distress syndrome (ARDS), and particularly non-small cell lung cancer (NSCLC). In the context of NSCLC, the overexpression of AQP1, AQP3, AQP4, and AQP5 has been demonstrated to facilitate tumor angiogenesis, as well as the proliferation, migration, and invasiveness of tumor cells. This review concisely explores the role of AQP family on respiratory diseases, to assess their clinical and translational significance for understanding molecular pathogenesis. However, the potential translation of AQPs biomarkers into clinical applications is promising and the understanding of the precise mechanisms influencing respiratory diseases is still ongoing. Addressing the challenges and outlining the future perspectives in AQPs development is essential for clinical progress in a concise manner.
Collapse
Affiliation(s)
- Jinshan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Kaiqiang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Jieli Lan
- Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| |
Collapse
|
10
|
Fu L, Zhao Z, Zhao S, Zhang M, Teng X, Wang L, Yang T. The involvement of aquaporin 5 in the inflammatory response of primary Sjogren's syndrome dry eye: potential therapeutic targets exploration. Front Med (Lausanne) 2024; 11:1439888. [PMID: 39376655 PMCID: PMC11456562 DOI: 10.3389/fmed.2024.1439888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease. Mainly due to the infiltration of lymphoplasmic cells into the exocrine glands, especially the salivary glands and lacrimal glands, resulting in reduced tear and saliva secretion. Reduced tear flow can trigger Sjogren's syndrome dry eye (SSDE). Although the pathophysiology of SSDE xerosis remains incompletely understood, recent advances have identified aquaporin-5 (AQP5) as a critical factor in dysregulation of the exocrine gland and epithelium, influencing the clinical presentation of SSDE through modulation of inflammatory microenvironment and tear secretion processes. This review aims to explore AQP5 regulatory mechanisms in SSDE and analyze its potential as a therapeutic target, providing new directions for SSDE treatment.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Zhao
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhao
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiying Zhang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoming Teng
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyuan Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tiansong Yang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
Lin G, Lin L, Chen X, Chen L, Yang J, Chen Y, Qian D, Zeng Y, Xu Y. PPAR-γ/NF-kB/AQP3 axis in M2 macrophage orchestrates lung adenocarcinoma progression by upregulating IL-6. Cell Death Dis 2024; 15:532. [PMID: 39060229 PMCID: PMC11282095 DOI: 10.1038/s41419-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Aquaporin 3 (AQP3), which is mostly expressed in pulmonary epithelial cells, was linked to lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of AQP3 in the tumor microenvironment (TME) of LUAD have not been elucidated. Single-cell RNA sequencing (scRNA-seq) was used to study the composition, lineage, and functional states of TME-infiltrating immune cells and discover AQP3-expressing subpopulations in five LUAD patients. Then the identifications of its function on TME were examined in vitro and in vivo. AQP3 was associated with TNM stages and lymph node metastasis of LUAD patients. We classified inter- and intra-tumor diversity of LUAD into twelve subpopulations using scRNA-seq analyses. The analysis showed AQP3 was mainly enriched in subpopulations of M2 macrophages. Importantly, mechanistic investigations indicated that AQP3 promoted M2 macrophage polarization by the PPAR-γ/NF-κB axis, which affected tumor growth and migration via modulating IL-6 production. Mixed subcutaneous transplanted tumor mice and Aqp3 knockout mice models were further utilized, and revealed that AQP3 played a critical role in mediating M2 macrophage polarization, modulating glucose metabolism in tumors, and regulating both upstream and downstream pathways. Overall, our study demonstrated that AQP3 could regulate the proliferation, migration, and glycometabolism of tumor cells by modulating M2 macrophages polarization through the PPAR-γ/NF-κB axis and IL-6/IL-6R signaling pathway, providing new insight into the early detection and potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Yanling Chen
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
13
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
14
|
Amro Z, Collins-Praino L, Yool A. Protective roles of peroxiporins AQP0 and AQP11 in human astrocyte and neuronal cell lines in response to oxidative and inflammatory stressors. Biosci Rep 2024; 44:BSR20231725. [PMID: 38451099 PMCID: PMC10965398 DOI: 10.1042/bsr20231725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024] Open
Abstract
In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.
Collapse
Affiliation(s)
- Zein Amro
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Huang TL, Chang YC, Tsai BCK, Chen TS, Kao SW, Tsai YY, Lin SZ, Yao CH, Lin KH, Kuo WW, Huang CY. Anethole mitigates H 2 O 2 -induced inflammation in HIG-82 synoviocytes by suppressing the aquaporin 1 expression and activating the protein kinase A pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:965-978. [PMID: 37987213 DOI: 10.1002/tox.24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.
Collapse
Affiliation(s)
- Tai-Lung Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedics, Chung-Kang Branch, Cheng Ching General Hospital, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Wen Kao
- Department of Orthopaedic Surgery, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Yun Tsai
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
16
|
Dabiri H, Habibi-Anbouhi M, Ziaei V, Moghadasi Z, Sadeghizadeh M, Hajizadeh-Saffar E. Candidate Biomarkers for Targeting in Type 1 Diabetes; A Bioinformatic Analysis of Pancreatic Cell Surface Antigens. CELL JOURNAL 2024; 26:51-61. [PMID: 38351729 PMCID: PMC10864774 DOI: 10.22074/cellj.2023.1996297.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Type 1 diabetes (T1Ds) is an autoimmune disease in which the immune system invades and destroys insulin-producing cells. Nevertheless, at the time of diagnosis, about 30-40% of pancreatic beta cells are healthy and capable of producing insulin. Bi-specific antibodies, chimeric antigen receptor regulatory T cells (CAR-Treg cells), and labeled antibodies could be a new emerging option for the treatment or diagnosis of type I diabetic patients. The aim of the study is to choose appropriate cell surface antigens in the pancreas tissue for generating an antibody for type I diabetic patients. MATERIALS AND METHODS In this bioinformatics study, we extracted pancreas-specific proteins from two large databases; the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) Portal. Pancreatic-enriched genes were chosen and narrowed down by Protter software for the investigation of accessible extracellular domains. The immunohistochemistry (IHC) data of the protein atlas database were used to evaluate the protein expression of selected antigens. We explored the function of candidate antigens by using the GeneCards database to evaluate the potential dysfunction or activation/hyperactivation of antigens after antibody binding. RESULTS The results showed 429 genes are highly expressed in the pancreas tissue. Also, eighteen genes encoded plasma membrane proteins that have high expression in the microarray (GEO) dataset. Our results introduced four structural proteins, including NPHS1, KIRREL2, GP2, and CUZD1, among all seventeen candidate proteins. CONCLUSION The presented antigens can potentially be used to produce specific pancreatic antibodies that guide CARTreg, bi-specific, or labeling molecules to the pancreas for treatment, detection, or other molecular targeted therapy scopes for type I diabetes.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Moghadasi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Thon P, Rahmel T, Ziehe D, Palmowski L, Marko B, Nowak H, Wolf A, Witowski A, Orlowski J, Ellger B, Wappler F, Schwier E, Henzler D, Köhler T, Zarbock A, Ehrentraut SF, Putensen C, Frey UH, Anft M, Babel N, Sitek B, Adamzik M, Bergmann L, Unterberg M, Koos B, Rump K. AQP3 and AQP9-Contrary Players in Sepsis? Int J Mol Sci 2024; 25:1209. [PMID: 38279209 PMCID: PMC10816878 DOI: 10.3390/ijms25021209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.
Collapse
Affiliation(s)
- Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Jennifer Orlowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Frank Wappler
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Alexander Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Ulrich Hermann Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, 44625 Herne, Germany;
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| |
Collapse
|
18
|
Mu K, Kitts DD. Intestinal polyphenol antioxidant activity involves redox signaling mechanisms facilitated by aquaporin activity. Redox Biol 2023; 68:102948. [PMID: 37922763 PMCID: PMC10643476 DOI: 10.1016/j.redox.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Ascertaining whether dietary polyphenols evoke an antioxidant or prooxidant activity, which translates to a functional role required to maintain intestinal cell homeostasis continues to be an active and controversial area of research for food chemists and biochemists alike. We have proposed that the paradoxical function of polyphenols to autoxidize to generate H2O2 is a required first step in the capacity of some plant phenolics to function as intracellular antioxidants. This is based on the fact that cell redox homeostasis is achieved by a balance between H2O2 formation and subsequent outcomes of antioxidant systems function. Maintaining optimal extracellular and intracellular H2O2 concentrations is required for cell survival, since low levels are important to upregulate endogenous antioxidant capacity; whereas, concentrations that go beyond homeostatic control typically result in an inflammatory response, growth arrest, or eventual cell death. Aquaporins (AQPs) are a family of water channel membrane proteins that facilitate cellular transportation of water and other small molecule-derived solutes, such as H2O2, in all organisms. In the intestine, AQPs act as gatekeepers to regulate intracellular uptake of H2O2, generated from extracellular polyphenol autoxidation, thus enabling an intracellular cell signaling responses to mitigate onset of oxidative stress and intestinal inflammation. In this review, we highlight the potential role of AQPs to control important underlying mechanisms that define downstream regulation of intestinal redox homeostasis, specifically. It has been established that polyphenols that undergo oxidation to the quinone form, resulting in subsequent adduction to a thiol group on Keap1-Nrf2 complex, trigger Nrf2 activation and a cascade of indirect intracellular antioxidant effects. Here, we propose a similar mechanism that involves H2O2 generated from specific dietary polyphenols with a predisposition to undergo autoxidation. The ultimate bioactivity is regulated and expressed by AQP membrane function and thus, by extension, represents expression of an intracellular antioxidant chemoprotection mechanism.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - David D Kitts
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food System, The University of British Columbia, 2205 East Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
19
|
Meenakshi M, Kannan A, Jothimani M, Selvi T, Karthikeyan M, Prahalathan C, Srinivasan K. Evaluation of dual potentiality of 2,4,5-trisubstituted oxazole derivatives as aquaporin-4 inhibitors and anti-inflammatory agents in lung cells. RSC Adv 2023; 13:26111-26120. [PMID: 37664213 PMCID: PMC10472800 DOI: 10.1039/d3ra03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Inflammation is a multifaceted "second-line" adaptive defense mechanism triggered by exo/endogenous threating stimuli and inter-communicated by various inflammatory key players. Unresolved or dysregulated inflammation in lungs results in manifestation of diseases and leads to irreparable damage. Aquaporins (AQPs) are a ubiquitously expressed superfamily of intrinsic transmembrane water channel proteins that modulate the fluid homeostasis. In addition to their conventional functions, AQPs have clinical relevance to inflammation prevailing under the infectious conditions of various lung diseases and this proclaims them as appropriate biomarkers to be targeted. Hence an endeavor was undertaken to identify potential ligands to target AQP4 for the treatment of lung diseases. Oxazole being a versatile bio-potent core, a series of 2,4,5-trisubstituted oxazoles 3a-j were synthesized by a Lewis acid mediated reaction of aroylmethylidene malonates with nitriles. In silico studies conducted using the protein data bank (PDB) structure 3gd8 for AQP4 revealed that compound 3a would serve as a suitable candidate to inhibit AQP4 in human lung cells (NCI-H460). Further, in vitro studies demonstrated that compound 3a could effectively inhibit AQP4 and inflammatory cytokines in lung cells and hence it may be considered as a viable drug candidate for the treatment of various lung diseases.
Collapse
Affiliation(s)
- Maniarasu Meenakshi
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | - Arun Kannan
- Department of Biochemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | | | - Thangavel Selvi
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | | | - Chidambaram Prahalathan
- Department of Biochemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| |
Collapse
|
20
|
Alam MA, Caocci M, Ren M, Chen Z, Liu F, Khatun MS, Kolls JK, Qin X, Burdo TH. Deficiency of Caspase-1 Attenuates HIV-1-Associated Atherogenesis in Mice. Int J Mol Sci 2023; 24:12871. [PMID: 37629052 PMCID: PMC10454548 DOI: 10.3390/ijms241612871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maurizio Caocci
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mi Ren
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zheng Chen
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tricia H. Burdo
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
21
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
22
|
Morley SC. T cells go with the flow: aquaporin 4 is required for full T-cell activation. J Leukoc Biol 2023; 113:541-543. [PMID: 37042742 PMCID: PMC10510064 DOI: 10.1093/jleuko/qiad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Proximal T-cell receptor signaling and subsequent T cell activation was reduced downstream of anti-CD3/CD28 ligation through small molecule inhibition of the water channel aquaporin 4.
Collapse
Affiliation(s)
- Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases and Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis School of Medicine, Campus Box 8208, 660 S. Euclid Ave, St. Louis, MO 63116, United States
| |
Collapse
|
23
|
Bhend ME, Kempuraj D, Sinha NR, Gupta S, Mohan RR. Role of aquaporins in corneal healing post chemical injury. Exp Eye Res 2023; 228:109390. [PMID: 36696947 PMCID: PMC9975064 DOI: 10.1016/j.exer.2023.109390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Aquaporins (AQPs) are transmembrane water channel proteins that regulate the movement of water through the plasma membrane in various tissues including cornea. The cornea is avascular and has specialized microcirculatory mechanisms for homeostasis. AQPs regulate corneal hydration and transparency for normal vision. Currently, there are 13 known isoforms of AQPs that can be subclassified as orthodox AQPs, aquaglyceroporins (AQGPs), or supraquaporins (SAQPs)/unorthodox AQPs. AQPs are implicated in keratocyte function, inflammation, edema, angiogenesis, microvessel proliferation, and the wound-healing process in the cornea. AQPs play an important role in wound healing by facilitating the movement of corneal stromal keratocytes by squeezing through tight stromal matrix and narrow extracellular spaces to the wound site. Deficiency of AQPs can cause reduced concentration of hepatocyte growth factor (HGF) leading to reduced epithelial proliferation, reduced/impaired keratocyte migration, reduced number of keratocytes in the injury site, delayed and abnormal wound healing process. Dysregulated AQPs cause dysfunction in osmolar homeostasis as well as wound healing mechanisms. The cornea is a transparent avascular tissue that constitutes the anterior aspect of the outer covering of the eye and aids in two-thirds of visual light refraction. Being the outermost layer of the eye, the cornea is prone to injury. Of the 13 AQP isoforms, AQP1 is expressed in the stromal keratocytes and endothelial cells, and AQP3 and AQP5 are expressed in epithelial cells in the human cornea. AQPs can facilitate wound healing through aid in cellular migration, proliferation, migration, extracellular matrix (ECM) remodeling and autophagy mechanism. Corneal wound healing post-chemical injury requires an integrative and coordinated activity of the epithelium, stromal keratocytes, endothelium, ECM, and a battery of cytokines and growth factors to restore corneal transparency. If the chemical injury is mild, the cornea will heal with normal clarity, but severe injuries can lead to partial and/or permanent loss of corneal functions. Currently, the role of AQPs in corneal wound healing is poorly understood in the context of chemical injury. This review discusses the current literature and the role of AQPs in corneal homeostasis, wound repair, and potential therapeutic target for acute and chronic corneal injuries.
Collapse
Affiliation(s)
- Madeline E Bhend
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; School of Medicine, University of South Carolina, Columbia, SC, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Nishant R Sinha
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Suneel Gupta
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Rajiv R Mohan
- Department of Ophthalmology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
24
|
Guse AH. NAADP-Evoked Ca 2+ Signaling: The DUOX2-HN1L/JPT2-Ryanodine Receptor 1 Axis. Handb Exp Pharmacol 2023; 278:57-70. [PMID: 36443544 DOI: 10.1007/164_2022_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger known to date. Major steps elucidating metabolism and Ca2+ mobilizing activity of NAADP are reviewed, with emphasis on a novel redox cycle between the inactive reduced form, NAADPH, and the active oxidized form, NAADP. Oxidation from NAADPH to NAADP is catalyzed in cell free system by (dual) NADPH oxidases NOX5, DUOX1, and DUOX2, whereas reduction from NAADP to NAADPH is catalyzed by glucose 6-phosphate dehydrogenase. Using different knockout models for NOX and DUOX isozymes, DUOX2 was identified as NAADP forming enzyme in early T-cell activation.Recently, receptors or binding proteins for NAADP were identified: hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule associated homolog 2 (JPT2) and Lsm12 are small cytosolic proteins that bind NAADP. In addition, they interact with NAADP-sensitive Ca2+ channels, such as ryanodine receptor type 1 (RYR1) or two-pore channels (TPC).Due to its role as Ca2+ mobilizing second messenger in T cells, NAADP's involvement in inflammation is also reviewed. In the central nervous system (CNS), NAADP regulates autoimmunity because NAADP antagonism affects a couple of T-cell migration and re-activation events, e.g. secretion of the pro-inflammatory cytokine interleukin-17. Further, the role of NAADP in transdifferentiation of IL-17-producing Th17 cells into T regulatory type 1 cells in vitro and in vivo is discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
25
|
Abstract
Recent studies have shown that at least six aquaporins (AQPs), including AQP1, AQP3, AQP4, AQP5, AQP7, and AQP9, are expressed in immune system. These AQPs distribute in lymphocytes, macrophages, dendritic cells, and neutrophils, and mediate water and glycerol transportation in these cells, which play important roles in innate and adaptive immune functions. Immune system plays important roles in body physiological functions and health. Therefore, understanding the association between AQPs and immune system may provide approaches to prevent and treat related diseases. Here we will discuss the expression and physiological functions of AQPs in immune system and summarize recent researches on AQPs in immune diseases.
Collapse
Affiliation(s)
- Yazhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
26
|
Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals (Basel) 2022; 13:ani13010098. [PMID: 36611707 PMCID: PMC9817902 DOI: 10.3390/ani13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Aquaporins (AQPs) are proteins with various functions related to proper cell function and early development in mammals. The aim of this study was to evaluate the presence of AQPs and determine their mRNA levels in the cumulus oocyte complex (COC) of four bovine breeds and in blastocysts of five bovine crosses. Grade I, II and III COCs were collected by ovum pick up from non-lactating heifers of the Brahaman, Holstein, Gir and Romosinuano breeds. Embryos were produced in vitro up to the blastocyst stage of the bovine ♀Gir × ♂Holstein, ♀Holstein × ♂Gir, ♀Brahman × ♂Holstein, ♀Holstein × ♂Brahman, and ♀Romosinuano × ♂Holstein crosses. mRNA expression of AQP1-AQP12b was estimated in COC and embryos by real-time-PCR. The presence of the twelve AQPs in the COCs and bovine embryos was established. Additionally, significant differences were determined in the expression of AQP6 and AQP12b in COCs, as well as in transcripts levels of AQP4, AQP8 and AQP9 from bovine embryos. Gene expression of AQPs in COCs and bovine embryos is consistent with the previously described biological functions. This is the first report of AQPs in COC of Gir, Brahman, Holstein and Romosinuano and embryos of five crossbreeds between Bos indicus and B. taurus.
Collapse
|
27
|
Chuang YC, Wu SY, Huang YC, Peng CK, Tang SE, Huang KL. Cell volume restriction by mercury chloride reduces M1-like inflammatory response of bone marrow-derived macrophages. Front Pharmacol 2022; 13:1074986. [PMID: 36582541 PMCID: PMC9792784 DOI: 10.3389/fphar.2022.1074986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of macrophages in the pro-inflammatory (M1) and anti-inflammatory (M2) sub-phenotypes is a crucial element in several inflammation-related diseases and injuries. We investigated the role of aquaporin (AQP) in macrophage polarization using AQP pan-inhibitor mercury chloride (HgCl2). Lipopolysaccharides (LPSs) induced the expression of AQP-1 and AQP-9 which increased the cell size of bone marrow-derived macrophages. The inhibition of AQPs by HgCl2 abolished cell size changes and significantly suppressed M1 polarization. HgCl2 significantly reduced the activation of the nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways and inhibited the production of IL-1β. HgCl2 attenuated LPS-induced activation of mitochondria and reactive oxygen species production and autophagy was promoted by HgCl2. The increase in the light chain three II/light chain three I ratio and the reduction in PTEN-induced kinase one expression suggests the recycling of damaged mitochondria and the restoration of mitochondrial activity by HgCl2. In summary, the present study demonstrates a possible mechanism of the AQP inhibitor HgCl2 in macrophage M1 polarization through the restriction of cell volume change, suppression of the p38 MAPK/NFκB pathway, and promotion of autophagy.
Collapse
Affiliation(s)
- Yen-Chieh Chuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan,Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Kun-Lun Huang,
| |
Collapse
|
28
|
Sisto M, Ribatti D, Lisi S. Molecular Mechanisms Linking Inflammation to Autoimmunity in Sjögren's Syndrome: Identification of New Targets. Int J Mol Sci 2022; 23:13229. [PMID: 36362017 PMCID: PMC9658723 DOI: 10.3390/ijms232113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune rheumatic disorder characterized by the lymphocytic infiltration of exocrine glands and the production of autoantibodies to self-antigens. The involvement of the exocrine glands drives the pathognomonic manifestations of dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia) that define sicca syndrome. To date, the molecular mechanisms mediating pathological salivary gland dysfunction in SS remain to be elucidated, despite extensive studies investigating the underlying cause of this disease, hampering the development of novel therapeutic strategies. Many researchers have identified a multifactorial pathogenesis of SS, including environmental, genetic, neuroendocrine, and immune factors. In this review, we explore the latest developments in understanding the molecular mechanisms involved in the pathogenesis of SS, which have attracted increasing interest in recent years.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | | | | |
Collapse
|
29
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
30
|
Mohammad S, O’Riordan CE, Verra C, Aimaretti E, Alves GF, Dreisch K, Evenäs J, Gena P, Tesse A, Rützler M, Collino M, Calamita G, Thiemermann C. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front Immunol 2022; 13:900906. [PMID: 35774785 PMCID: PMC9238327 DOI: 10.3389/fimmu.2022.900906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| | - Caroline E. O’Riordan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Verra
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Johan Evenäs
- Red Glead Discovery Akiebolag (AB), Lund, Sweden
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Tesse
- Nantes Université, Instite National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Rescherche Scientifique (CNRS), l’institut du Thorax, Nantes, France
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Apoglyx Akiebolag (AB), Lund, Sweden
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| |
Collapse
|
31
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
32
|
Silva PM, da Silva IV, Sarmento MJ, Silva ÍC, Carvalho FA, Soveral G, Santos NC. Aquaporin-3 and Aquaporin-5 Facilitate Migration and Cell-Cell Adhesion in Pancreatic Cancer by Modulating Cell Biomechanical Properties. Cells 2022; 11:1308. [PMID: 35455986 PMCID: PMC9030499 DOI: 10.3390/cells11081308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aquaporins are membrane channels responsible for the bidirectional transfer of water and small non-charged solutes across cell membranes. AQP3 and AQP5 are overexpressed in pancreatic ductal adenocarcinoma, playing key roles in cell migration, proliferation, and invasion. Here, we evaluated AQP3 and AQP5 involvement in cell biomechanical properties, cell-cell adhesion, and cell migration, following a loss-of-function strategy on BxPC-3 cells. RESULTS Silencing of AQP3 and AQP5 was functionally validated by reduced membrane permeability and had implications on cell migration, slowing wound recovery. Moreover, silenced AQP5 and AQP3/5 cells showed higher membrane fluidity. Biomechanical and morphological changes were assessed by atomic force microscopy (AFM), revealing AQP5 and AQP3/5 silenced cells with a lower stiffness than their control. Through cell-cell adhesion measurements, the work (energy) necessary to detach two cells was found to be lower for AQP-silenced cells than control, showing that these AQPs have implications on cell-cell adhesion. CONCLUSION These findings highlight AQP3 and AQP5 involvement in the biophysical properties of cell membranes, whole cell biomechanical properties, and cell-cell adhesion, thus having potential implication in the settings of tumor development.
Collapse
Affiliation(s)
- Patrícia M. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.M.S.); (M.J.S.); (Í.C.S.); (F.A.C.)
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria J. Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.M.S.); (M.J.S.); (Í.C.S.); (F.A.C.)
| | - Ítala C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.M.S.); (M.J.S.); (Í.C.S.); (F.A.C.)
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.M.S.); (M.J.S.); (Í.C.S.); (F.A.C.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.M.S.); (M.J.S.); (Í.C.S.); (F.A.C.)
| |
Collapse
|
33
|
Markou A, Unger L, Abir-Awan M, Saadallah A, Halsey A, Balklava Z, Conner M, Törnroth-Horsefield S, Greenhill SD, Conner A, Bill RM, Salman MM, Kitchen P. Molecular mechanisms governing aquaporin relocalisation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183853. [PMID: 34973181 PMCID: PMC8825993 DOI: 10.1016/j.bbamem.2021.183853] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.
Collapse
Affiliation(s)
- Andrea Markou
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mohammed Abir-Awan
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Saadallah
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrea Halsey
- MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zita Balklava
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Matthew Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | - Stuart D Greenhill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mootaz M Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
34
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
35
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
36
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
37
|
Gu F, Krüger A, Roggenkamp HG, Alpers R, Lodygin D, Jaquet V, Möckl F, Hernandez C LC, Winterberg K, Bauche A, Rosche A, Grasberger H, Kao JY, Schetelig D, Werner R, Schröder K, Carty M, Bowie AG, Huber S, Meier C, Mittrücker HW, Heeren J, Krause KH, Flügel A, Diercks BP, Guse AH. Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca 2+ signaling during T cell activation. Sci Signal 2021; 14:eabe3800. [PMID: 34784249 DOI: 10.1126/scisignal.abe3800] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of Ca2+ microdomains during T cell activation is initiated by the production of nicotinic acid adenine dinucleotide phosphate (NAADP) from its reduced form NAADPH. The reverse reaction—NAADP to NAADPH—is catalyzed by glucose 6-phosphate dehydrogenase (G6PD). Here, we identified NADPH oxidases NOX and DUOX as NAADP-forming enzymes that convert NAADPH to NAADP under physiological conditions in vitro. T cells express NOX1, NOX2, and, to a minor extent, DUOX1 and DUOX2. Local and global Ca2+ signaling were decreased in mouse T cells with double knockout of Duoxa1 and Duoxa2 but not with knockout of Nox1 or Nox2. Ca2+ microdomains in the first 15 s upon T cell activation were significantly decreased in Duox2−/− but not in Duox1−/− T cells, whereas both DUOX1 and DUOX2 were required for global Ca2+ signaling between 4 and 12 min after stimulation. Our findings suggest that a DUOX2- and G6PD-catalyzed redox cycle rapidly produces and degrades NAADP through NAADPH as an inactive intermediate.
Collapse
Affiliation(s)
- Feng Gu
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aileen Krüger
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hannes G Roggenkamp
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rick Alpers
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Franziska Möckl
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lola C Hernandez C
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Winterberg
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas Bauche
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anette Rosche
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-Universität, 60590 Frankfurt, Germany
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Samuel Huber
- Department of Gastroenterology with Sections Infectiology and Tropical Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Joerg Heeren
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Björn-Philipp Diercks
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H Guse
- Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
38
|
Redondo N, Navarro D, Aguado JM, Fernández-Ruiz M. Human genetic polymorphisms and risk of viral infection after solid organ transplantation. Transplant Rev (Orlando) 2021; 36:100669. [PMID: 34688126 DOI: 10.1016/j.trre.2021.100669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
The immune system plays a key role in the host defense against viral pathogens. A signaling cascade is activated upon infection involving a variety of molecules such as pattern-recognition receptors (PRRs), interleukins or antiviral interferons. Long-term immunosuppression after solid organ transplantation (SOT) mainly abrogates adaptive T-cell-mediated responses, thus highlighting the relative contribution of innate immunity. Single-nucleotide polymorphisms (SNPs) within genes coding for PRRs or soluble mediators have been associated with differential susceptibility to viral infections among SOT recipients. A protective effect against cytomegalovirus (CMV) infection or disease has been attributed to certain SNPs in TLR9 or IFNL3 genes, whereas the opposite effect has been attributed to genetic polymorphisms in TLR2, MBL2, DC-SIGN, IL10 or IFNG. The presence of SNPs in other molecules not directly involved in innate or adaptive immune responses such as aquaporins or pregnane X appear to modulate the risk of CMV or BK polyomavirus infection, respectively. Little information is available on the genetic determinants of the post-transplant susceptibility to herpesviruses causing clinical infection (herpes simplex virus or varicella zoster virus) or the replication kinetics of components of the human blood virome used as immune surrogates (Torque teno virus). The present review critically summarizes the current knowledge on how SNP genotyping would be useful to stratify SOT recipients according to the individual risk of viral infection and proposes next research steps. Genetic susceptibility testing may improve personalized medicine and contribute to minimize the risk of viral infection after SOT.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.
| | - David Navarro
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain; Department of Microbiology, School of Medicine, Universidad de Valencia, Valencia, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
39
|
Pimpão C, Wragg D, Bonsignore R, Aikman B, Pedersen PA, Leoni S, Soveral G, Casini A. Mechanisms of irreversible aquaporin-10 inhibition by organogold compounds studied by combined biophysical methods and atomistic simulations. Metallomics 2021; 13:6360981. [PMID: 34468767 DOI: 10.1093/mtomcs/mfab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022]
Abstract
The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C-S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes. The obtained computational results by metadynamics show that the local arylation of Cys209 in hAQP10 by one of the gold inhibitors is mapped into a global change of the overall free energy of glycerol translocation across the channel. Our study further pinpoints the need to understand the mechanism of glycerol and small molecule permeation as a combination of local structural motifs and global pore conformational changes, which are taking place on the scale of the translocation process and whose study, therefore, require sophisticated molecular dynamics strategies.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| | - Riccardo Bonsignore
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| | - Brech Aikman
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | - Stefano Leoni
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| |
Collapse
|
40
|
Wang Z, Cheng Y, Su W, Zhang H, Li C, Routledge MN, Gong Y, Qiao B. Organ Specific Differences in Alteration of Aquaporin Expression in Rats Treated with Sennoside A, Senna Anthraquinones and Rhubarb Anthraquinones. Int J Mol Sci 2021; 22:ijms22158026. [PMID: 34360801 PMCID: PMC8347161 DOI: 10.3390/ijms22158026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Senna and rhubarb are often used as routine laxatives, but there are differences in mechanism of action and potential side effects. Here, we studied metabolites of senna anthraquinones (SAQ), rhubarb anthraquinones (RAQ) and their chemical marker, sennoside A (SA), in a rat diarrhea model. In in vitro biotransformation experiments, SAQ, RAQ and SA were incubated with rat fecal flora solution and the metabolites produced were analyzed using HPLC. In in vivo studies, the same compounds were investigated for purgation induction, with measurement of histopathology and Aqps gene expression in six organs. The results indicated that SAQ and RAQ had similar principal constituents but could be degraded into different metabolites. A similar profile of Aqps down-regulation for all compounds was seen in the colon, suggesting a similar mechanism of action for purgation. However, in the kidneys and livers of the diarrhea-rats, down-regulation of Aqps was found in the RAQ-rats whereas up-regulation of Aqps was seen in the SAQ-rats. Furthermore, the RAQ-rats showed lower Aqp2 protein expression in the kidneys, whilst the SA-rats and SAQ-rats had higher Aqp2 protein expression in the kidneys. This may have implications for side effects of SAQ or RAQ in patients with chronic kidney or liver diseases.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Ying Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Wenting Su
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Hongxia Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Chu Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
| | - Michael N. Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (M.N.R.); (B.Q.)
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi’an 710069, China; (Z.W.); (Y.C.); (W.S.); (H.Z.); (C.L.)
- Correspondence: (M.N.R.); (B.Q.)
| |
Collapse
|
41
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|