1
|
Plichta J, Majos A, Kuna P, Panek M. Nasal allergen and methacholine provocation tests influence co‑expression patterns of TGF‑β/SMAD and MAPK signaling pathway genes in patients with asthma. Exp Ther Med 2024; 28:445. [PMID: 39386939 PMCID: PMC11462400 DOI: 10.3892/etm.2024.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/16/2024] [Indexed: 10/12/2024] Open
Abstract
Asthma is characterized by chronic bronchial inflammation and is a highly heterogeneous disease strongly influenced by both specific and non-specific exogenous factors. The present study was performed to assess the effect of nasal allergen provocation tests and methacholine provocation tests on the mRNA co-expression patterns of genes (SMAD1/3/6/7, MPK1/3 and TGFB1/3) involved in SMAD and non-SMAD TGF-β signaling pathways in patients with asthma. Reverse transcription-quantitative PCR was performed on blood samples taken pre-provocation and 1 h post-provocation to assess gene expression changes. Of the 59 patients studied, allergen provocations were administered to 27 patients and methacholine provocations to 32 patients. Correlations between expression levels of studied genes were found to be influenced markedly by the challenge administered, challenge test result and time elapsed since challenge. Importantly, increases in expression levels for four gene pairs (MAPK1-SMAD3, MAPK3-SMAD3, SMAD1-SMAD3 and SMAD3-TGFB1) were found to correlate significantly with asthma occurrence in the allergen provocation cohort, but not in the methacholine provocation cohort. The present study allows us to draw the conclusion that both intranasal allergen and bronchial methacholine challenges influence mRNA co-expression patterns of the SMAD1/3/6/7, MPK1/3 and TGFB1/3 genes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Alicja Majos
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
- Department of General and Transplant Surgery, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
2
|
Villamañán E, Laorden D, Granda P, Sobrino C, De Andrés S, Carpio C, Domínguez-Ortega J, Romero D, Mariscal P, De Las Vecillas L, Quirce S, Álvarez-Sala R, On Behalf Of AsmaGrave-Hulp Study. Current Biologic Therapies for Severe Asthma and Real-World Data: Are Expectations Being Met? J Clin Med 2024; 13:7152. [PMID: 39685611 DOI: 10.3390/jcm13237152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Advances in knowledge about clinical features, physiology, and underlying immunology are leading to targeted therapies and a new era of therapies. Biological treatments for severe asthma have changed the way this disease is managed, especially in patients who do not respond adequately to conventional treatments with corticosteroids and bronchodilators. These treatments block the action of different molecules involved in the immune response and in the inflammation of the airways, bronchoconstriction, bronchial hyperresponsiveness, and excessive mucus production. Currently, there are sufficient real-life data to corroborate the good results obtained in clinical trials by these type of drugs for severe asthma patients. Observational studies reveal their efficacy and safety, reducing exacerbations, leading to fewer emergency room visits and hospitalizations, and improving quality of life with better asthma control and better functional status.
Collapse
Affiliation(s)
- Elena Villamañán
- Department of Pharmacy, Hospital La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Daniel Laorden
- Department of Pneumology, Hospital La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Paula Granda
- Department of Pharmacy, Hospital La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Carmen Sobrino
- Department of Pharmacy, Hospital La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Susana De Andrés
- Department of Pharmacy, Hospital La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Carlos Carpio
- Department of Pneumology, Hospital La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Javier Domínguez-Ortega
- Department of Allergy, Hospital La Paz, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - David Romero
- Department of Pneumology, Hospital La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Pablo Mariscal
- Department of Pneumology, Hospital La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Leticia De Las Vecillas
- Department of Allergy, Hospital La Paz, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | - Rodolfo Álvarez-Sala
- Department of Pneumology, Hospital La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBER of Respiratory Diseases, 28046 Madrid, Spain
| | | |
Collapse
|
3
|
Rabe APJ, Loke WJ, Kielar D, Morris T, Shih VH, Olinger L, Musat MG, Lan Z, Harricharan S, Fulton O, Majeed A, Heaney LG. Impact of patient support programmes among patients with severe asthma treated with biological therapies: a systematic literature review and indirect treatment comparison. BMJ Open Respir Res 2024; 11:e001799. [PMID: 38697674 PMCID: PMC11086199 DOI: 10.1136/bmjresp-2023-001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION Effective treatment of severe asthma requires patient adherence to inhaled and biological medications. Previous work has shown that patient support programmes (PSP) can improve adherence in patients with chronic diseases, but the impact of PSPs in patients with severe asthma treated with biologics has not been thoroughly investigated. METHODS We conducted a systematic literature review to understand the impact of PSPs on treatment adherence, asthma control and health-related quality of life (HRQoL) in patients with severe asthma. Embase, MEDLINE and EconLit databases were searched for studies published from 2003 (the year of the first biological approval for severe asthma) to June 2023 that described PSP participation among patients with severe asthma on biological treatment. Direct pooling of outcomes was not possible due to the heterogeneity across studies, so an indirect treatment comparison (ITC) was performed to determine the effect of PSP participation on treatment discontinuation. The ITC used patient-level data from patients treated with benralizumab either enrolled in a PSP (VOICE study, Connect 360 PSP) or not enrolled in a PSP (Benralizumab Patient Access Programme study) in the UK. FINDINGS 25 records of 21 studies were selected. Six studies investigated the impact of PSPs on treatment adherence, asthma control or HRQoL. All six studies reported positive outcomes for patients enrolled in PSPs; the benefits of each PSP were closely linked to the services provided. The ITC showed that patients in the Connect 360 PSP group were less likely to discontinue treatment compared with the non-PSP group (OR 0.26, 95% CI 0.11 to 0.57, p<0.001). CONCLUSIONS PSPs contribute to positive clinical outcomes in patients with severe asthma on biological treatment. Future analyses will benefit from thorough descriptions of PSP services, and study designs that allow direct comparisons of patient outcomes with and without a PSP.
Collapse
Affiliation(s)
- Adrian P J Rabe
- AstraZeneca UK Limited, Cambridge, UK
- Imperial College London, London, London, UK
| | | | | | | | | | - Lynda Olinger
- AstraZeneca UK Limited, Cambridge, UK
- Cytel Inc, Waltham, Massachusetts, USA
| | | | - Zhiyi Lan
- Cytel Inc, Waltham, Massachusetts, USA
| | | | | | | | - Liam G Heaney
- Centre of Infection and Immunity, Queens University Belfast, Belfast, UK
| |
Collapse
|
4
|
Liu YL, Zhang Y. Prediction of Clinical Response to Dupilumab in Patients with Severe Asthma Using Fractional Exhaled Nitric Oxide Combined with Pulmonary Function Testing. Int Arch Allergy Immunol 2024; 185:856-864. [PMID: 38688250 DOI: 10.1159/000538542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION This study aimed to assess the effectiveness of fractional exhaled nitric oxide (FeNO) combined with pulmonary function testing (PFT) for predicting the treatment outcome of patients with severe asthma receiving dupilumab. METHODS A total of 31 patients with severe asthma visiting our hospital from January 2022 to June 2023 were included in this study, with 28 patients completing a 16-week course of dupilumab treatment. Baseline clinical data, including demographic information, blood eosinophil counts, serum IgE levels, FeNO, asthma control test (ACT), asthma control questionnaire (ACQ), and other parameters, were collected. A predictive model using a generalized linear model was established. RESULTS Following the 16-week course of dupilumab treatment, 22 patients showed effective response based on GETE scores, while 6 patients were nonresponders. Notably, significant improvements were observed in clinical parameters such as blood eosinophil counts, serum IgE levels, FeNO, FEV1, FEV1%, ACT, and ACQ in both response groups (p < 0.05). FeNO and pulmonary function tests demonstrated AUC values of 0.530, 0.561, and 0.765, respectively, in predicting the clinical efficacy of dupilumab, which were lower than when FeNO was combined with FEV1%. The combination of FeNO and FEV1% had a sensitivity of 1.000 and specificity of 0.591 in predicting treatment response. CONCLUSION The combined assessment of FeNO and FEV1% provides improved accuracy for predicting the clinical efficacy of dupilumab in managing severe asthma. However, further larger scale clinical studies with comprehensive follow-up data are needed to validate the therapeutic efficacy and applicability across diverse patient populations.
Collapse
Affiliation(s)
- Yi-Liang Liu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Yong Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
5
|
Lin TJ, Huang CC, Lee MC, Lee YP, Huang WC, Chuang HL, Wang IJ. Effects of Lactobacillus salivarius ssp. salicinius SA-03 Supplementation on Reversing Phthalate-Induced Asthma in Mice. Nutrients 2024; 16:1160. [PMID: 38674852 PMCID: PMC11054125 DOI: 10.3390/nu16081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.
Collapse
Affiliation(s)
- Tien-Jen Lin
- Department of Anaesthesiology, Taipei Medical University-Wan Fang Hospital, Taipei City 116081, Taiwan;
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (C.-C.H.); (M.-C.L.)
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333325, Taiwan; (C.-C.H.); (M.-C.L.)
| | - Yen-Peng Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City 402202, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories Research Institute, Taipei 115202, Taiwan;
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242033, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- College of Public Health, China Medical University, Taichung 400439, Taiwan
- National Institutes of Environmental Health Sciences, National Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
6
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
7
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
8
|
Vijayan S, Kandi V, Palacholla PS, Rajendran R, Jarugu C, Ca J, Pravallika M, Reddy SC, Sucharitha AS. Probiotics in Allergy and Immunological Diseases: A Comprehensive Review. Cureus 2024; 16:e55817. [PMID: 38590477 PMCID: PMC10999892 DOI: 10.7759/cureus.55817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Allergy and immunological disorders like autoimmune diseases are vastly prevalent worldwide. These conditions account for a substantial amount of personal and social burden. Such illnesses have lengthy, uncertain, and spotted courses with unpredictable exacerbations. A definite tendency for improving the overall quality of life of individuals suffering from such diseases is crucial to tackling these diseases, especially through diet or lifestyle modification. Further, interventions like microbiome-based therapeutics such as prebiotics or probiotics were explored. Changes in the microbial population were evident during the flare-up of autoimmune and allergic conditions. The realization that the human microbiome is a central player in immunological diseases is a hallmark of its potential usefulness in therapy for such illnesses. This review focuses on the intricate symphony in the orchestra of the human microbiome and the immune system. New therapeutic strategies involving probiotics appear to be the future of personalized medicine. Through this review, we explore the narrative of probiotics and reaffirm their use as therapeutic and preventive agents in immunological disorders.
Collapse
Affiliation(s)
- Swapna Vijayan
- Pediatrics, Sir Chandrasekhara Venkata (CV) Raman General Hospital, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Chandrasagar Jarugu
- General Practice, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Mundla Pravallika
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Shruthi C Reddy
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Atul S Sucharitha
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
9
|
Zhang K, Cao Y, Tang H, Lin D. Possible role of HE4 level elevation in the pathogenesis of TH2-high asthma. J Asthma 2024; 61:160-172. [PMID: 37902273 DOI: 10.1080/02770903.2023.2251056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVES As a heterogeneous disease, asthma is characterized by airway hyperresponsiveness, airway inflammation, and airway mucus hypersecretion. According to the pathological changes, symptoms, preventive and treatment methods, asthma can be divided into TH2-high and TH2-low asthma. We show that the expression of the tumor biomarker human epididymis protein 4 (HE4) was significantly increased in TH2-high asthma group, while there was no marked difference in its expression between TH2-low asthma and healthy control groups. HE4 levels were significantly increased in plasma, induced sputum, and alveolar lavage fluid (BALF) samples and airway epithelial cells from TH2-high asthma group, showing that HE4 has a possible role in the pathogenesis of TH2-high asthma. METHODS Using RT-qPCR, ELISA, Western blot (WB), and immunohistochemistry, we assessed differences in HE4 expression in plasma, induced sputum, BALF, and airway epithelial cells among patients with the TH2-related asthma subtypes and healthy controls. To explore the role of HE4 in TH2-high asthma, we conducted a correlation analysis between HE4 levels in plasma, induced sputum, BALF, and airway epithelial cells and multiple indicators of airway eosinophilic inflammation, airway mucus secretion, and airway remodeling. CONCLUSION We found for the first time that HE4 was differentially expressed in the TH2-related asthma subtypes. In TH2-high asthma, HE4 levels were markedly elevated in airway epithelial cells, plasma, induced sputum, and BALF. HE4 may play an important role in various pathogenic mechanisms of asthma, such as airway eosinophilic inflammation, airway mucus secretion, and airway remodeling. HE4 in plasma may be a clinically biomarker for differentiating TH2-related asthma subtypes.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hexuan Tang
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dang Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
10
|
李 靖. [Recent research on the relationship between pulmonary microbiome and asthma endotypes in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1078-1083. [PMID: 37905767 PMCID: PMC10621051 DOI: 10.7499/j.issn.1008-8830.2304056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 11/02/2023]
Abstract
Bronchial asthma is not considered a singular disease, but rather a collection of syndromes with multiple phenotypes and mechanisms that involve various signaling pathways. It typically emerges during the preschool years, and its etiology is intricate and diverse. In recent years, the advancement of high-throughput sequencing technology has revealed that early alterations in lung microbiota may be associated with asthma incidence and progression. Moreover, significant variations in lung microbiota have been observed among different airway inflammation profiles, known as asthma endotypes. Hence, a comprehensive understanding of the characteristics of lung microbiota in children with asthma can aid in managing disease progression and improving long-term prognosis. Additionally, such insights may spark novel approaches to diagnosing and treating childhood asthma.
Collapse
|
11
|
Bagnasco D, Nicola S, Testino E, Brussino L, Pini L, Caminati M, Piccardo F, Canevari RF, Melissari L, Ioppi A, Guastini L, Lombardi C, Milanese M, Losa F, Robbiano M, De Ferrari L, Riccio AM, Guida G, Bonavia M, Fini D, Balbi F, Caruso C, Paggiaro P, Blasi F, Heffler E, Paoletti G, Canonica GW, Senna G, Passalacqua G. Long-Term Efficacy of Mepolizumab at 3 Years in Patients with Severe Asthma: Comparison with Clinical Trials and Super Responders. Biomedicines 2023; 11:2424. [PMID: 37760865 PMCID: PMC10525371 DOI: 10.3390/biomedicines11092424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
The efficacy mepolizumab in severe asthmatic patients is proven in the literature. Primarily to study the effect of mepolizumab on exacerbations, steroid dependence, and the continuation of efficacy in the long term. Secondarily to evaluate the effect of the drug on nasal polyps. Analyzing data from SANI (Severe Asthma Network Italy) clinics, we observed severe asthmatic patients treated with mepolizumab 100 mg/4 weeks, for a period of 3 years. 157 patients were observed. Exacerbations were reduced from the first year (-84.6%) and progressively to 90 and 95% in the second and third ones. Steroid-dependent patients decreased from 54% to 21% and subsequently to 11% in the second year and 6% in the third year. Patients with concomitant nasal polyps, assessed by SNOT-22, showed a 49% reduction in value from baseline to the third year. The study demonstrated the long-term efficacy of mepolizumab in a real-life setting.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Stefania Nicola
- SCDU Immunologia e Allergologia, AO Ordine Mauriziano di Torino, C.so Re Umberto 109, 10128 Torino, Italy (L.B.)
| | - Elisa Testino
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Luisa Brussino
- SCDU Immunologia e Allergologia, AO Ordine Mauriziano di Torino, C.so Re Umberto 109, 10128 Torino, Italy (L.B.)
| | - Laura Pini
- Respiratory Medicine Unit, ASST—“Spedali Civili” of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Marco Caminati
- Department of Medicine, University of Verona, 37134 Verona, Italy; (M.C.); (G.S.)
| | - Federica Piccardo
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Rikki Frank Canevari
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Laura Melissari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Alessandro Ioppi
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Luca Guastini
- ENT Department, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (R.F.C.); (L.G.)
| | - Carlo Lombardi
- Departmental Unit of Allergology, Immunology & Pulmonary Diseases, Fondazione Poliambulanza, 25124 Brescia, Italy;
| | - Manlio Milanese
- Department of Respiratory Diseases, S. Corona Hospital, ASL2, 17027 Pietra Ligure, Italy;
| | - Francesca Losa
- UO Allergology and Clinical Immunology, ASST Mantova, 46100 Mantova, Italy;
| | - Michela Robbiano
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Guida
- Department of Clinical and Biological Science, University of Torino, 10043 Orbassano, Italy;
| | - Marco Bonavia
- Department of Rehabilitation Pulmonology, Hospital Ge-Arenzano, ASL3, 16149 Genoa, Italy;
| | - Donatella Fini
- Department of Pneumologiy, Hospital Sarzana (SP), 19125 La Spezia, Italy;
| | - Francesco Balbi
- Department of Pneumologiy, Hospital Imperia, 18100 Imperia, Italy;
| | - Cristiano Caruso
- Department of di Medical and Surgical Science, Fondation Universitary Policlinic A. Gemelli IRCCS, University Cattolica Sacro Cuore, 20123 Rome, Italy;
| | - Pierluigi Paggiaro
- Department of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Enrico Heffler
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giorgio Walter Canonica
- Unit of Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Hospital, 20089 Rozzano, Italy; (E.H.); (G.P.); (G.W.C.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (M.C.); (G.S.)
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy (M.R.); (L.D.F.); (G.P.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
12
|
Guida G, Bertolini F, Carriero V, Levra S, Sprio AE, Sciolla M, Orpheu G, Arrigo E, Pizzimenti S, Ciprandi G, Ricciardolo FLM. Reliability of Total Serum IgE Levels to Define Type 2 High and Low Asthma Phenotypes. J Clin Med 2023; 12:5447. [PMID: 37685515 PMCID: PMC10488214 DOI: 10.3390/jcm12175447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Background: High total IgE levels are weak predictors of T2High and have been reported in nonallergic asthma. Therefore, the role of total serum IgE (IgE) in the T2High phenotype is still debated. Objective: This study investigated the reliability of stratifying asthmatics into IgEHigh and IgELow within the T2High and T2Low phenotypes. Methods: This cross-sectional single-center study investigated the association of clinical, functional, and bio-humoral parameters in a large asthmatic population stratified by IgE ≥ 100 kU/L, allergen sensitization, B-EOS ≥ 300/µL, and FENO ≥ 30 ppb. Results: Combining T2 biomarkers and IgE identifies (1) T2Low-IgELow (15.5%); (2) T2Low-IgEHigh (5.1%); (3) T2High-IgELow (33.6%); and T2High-IgEHigh (45.7%). T2Low-IgELow patients have more frequent cardiovascular and metabolic comorbidities, a higher prevalence of emphysema, and higher LAMA use than the two T2High subgroups. Higher exacerbation rates, rhinitis, and anxiety/depression syndrome characterize the T2Low-IgEHigh phenotype vs. the T2Low-IgELow phenotype. Within the T2High, low IgE was associated with female sex, obesity, and anxiety/depression. Conclusions: High IgE in T2Low patients is associated with a peculiar clinical phenotype, similar to T2High in terms of disease severity and nasal comorbidities, while retaining the T2Low features. IgE may represent an additional biomarker for clustering asthma in both T2High and T2Low phenotypes rather than a predictor of T2High asthma "per se".
Collapse
Affiliation(s)
- Giuseppe Guida
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Stefano Levra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Andrea Elio Sprio
- Department of Research, ASOMI College of Sciences, 19112 Marsa, Malta;
| | - Martina Sciolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Giulia Orpheu
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Stefano Pizzimenti
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Section of Palermo, 90146 Palermo, Italy
| |
Collapse
|
13
|
Galván-Morales MÁ. Perspectives of Proteomics in Respiratory Allergic Diseases. Int J Mol Sci 2023; 24:12924. [PMID: 37629105 PMCID: PMC10454482 DOI: 10.3390/ijms241612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomics in respiratory allergic diseases has such a battery of techniques and programs that one would almost think there is nothing impossible to find, invent or mold. All the resources that we document here are involved in solving problems in allergic diseases, both diagnostic and prognostic treatment, and immunotherapy development. The main perspectives, according to this version, are in three strands and/or a lockout immunological system: (1) Blocking the diapedesis of the cells involved, (2) Modifications and blocking of paratopes and epitopes being understood by modifications to antibodies, antagonisms, or blocking them, and (3) Blocking FcεRI high-affinity receptors to prevent specific IgEs from sticking to mast cells and basophils. These tools and targets in the allergic landscape are, in our view, the prospects in the field. However, there are still many allergens to identify, including some homologies between allergens and cross-reactions, through the identification of structures and epitopes. The current vision of using proteomics for this purpose remains a constant; this is also true for the basis of diagnostic and controlled systems for immunotherapy. Ours is an open proposal to use this vision for treatment.
Collapse
Affiliation(s)
- Miguel Ángel Galván-Morales
- Departamento de Atención a la Salud, CBS. Unidad Xochimilco, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico
| |
Collapse
|
14
|
Song YN, Lee JW, Ryu HW, Lee JK, Oh ES, Kim DY, Ro H, Yoon D, Park JY, Hong ST, Kim MO, Lee SU, Lee DY. Black Ginseng Extract Exerts Potentially Anti-Asthmatic Activity by Inhibiting the Protein Kinase Cθ-Mediated IL-4/STAT6 Signaling Pathway. Int J Mol Sci 2023; 24:11970. [PMID: 37569348 PMCID: PMC10418634 DOI: 10.3390/ijms241511970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.
Collapse
Affiliation(s)
- Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Republic of Korea;
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| |
Collapse
|
15
|
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023; 14:1207641. [PMID: 37334374 PMCID: PMC10272527 DOI: 10.3389/fimmu.2023.1207641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic inflammatory diseases of the lung are some of the leading causes of mortality and significant morbidity worldwide. Despite the tremendous burden these conditions put on global healthcare, treatment options for most of these diseases remain scarce. Inhaled corticosteroids and beta-adrenergic agonists, while effective for symptom control and widely available, are linked to severe and progressive side effects, affecting long-term patient compliance. Biologic drugs, in particular peptide inhibitors and monoclonal antibodies show promise as therapeutics for chronic pulmonary diseases. Peptide inhibitor-based treatments have already been proposed for a range of diseases, including infectious disease, cancers and even Alzheimer disease, while monoclonal antibodies have already been implemented as therapeutics for a range of conditions. Several biologic agents are currently being developed for the treatment of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and pulmonary sarcoidosis. This article is a review of the biologics already employed in the treatment of chronic inflammatory pulmonary diseases and recent progress in the development of the most promising of those treatments, with particular focus on randomised clinical trial outcomes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
16
|
Chen J, Wang H, Zhang C, Shi L, Zhang Q, Song X, Wang D, Hu L, Yu H, Sun X. Comparative short-term efficacy of endoscopic sinus surgery and biological therapies in chronic rhinosinusitis with nasal polyps: A network meta-analysis. Clin Transl Allergy 2023; 13:e12269. [PMID: 37357547 PMCID: PMC10234113 DOI: 10.1002/clt2.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND To compare the safety and efficacy between endoscopic sinus surgery and different biologics in treating chronic rhinosinusitis with nasal polyps in adults by reviewing the existing clinical trials. METHODS Data extraction and risk of bias assessment were conducted by 2 independent reviewers according to the PRISMA recommendations and any disagreement was resolved by a third investigator. Outcomes were measured through a random-effects model. We searched Embase, Web of Science, MEDLINE, Cochrane, and other relevant sources from its inception to April 30, 2022. We included randomized controlled trials(RCTs) involving endoscopic sinus surgery (ESS) or biologics in treating adult patients with chronic rhinosinusitis with nasal polyps. Studies involving other miscellaneous diseases, non-RCT design, and insufficient participants or follow-up were excluded. RESULTS In this systematic review, five RCTs and 1748 patients were included. All the biologics, as well as ESS, could significantly improve key nasal outcomes in CRSwNP both at 6 months and 1 year. Dupilumab exhibited better efficacy than ESS in improving SNOT-22 scores at one year. However, ESS showed superiority over three biologics in improving nasal congestion scores (NCS) at two various time points, except for better efficacy of Dupilumab at 1 year. For the loss of smell scores, a greater improvement was observed in the Dupilumab cohort compared with other biologics and even ESS counterparts. Safety analysis showed no significant difference between the ESS cohort and biologic treatment. CONCLUSIONS In summary, ESS showed comparable improvement in quality of life and symptoms to Omalizumab, Mepolizumab, and Benralizumab. Dupilumab seems to be more effective than ESS in selected items, whereas head-to-head trials and real-world studies are urgent to compare their efficacy. Our findings also showed that biologics could be applied as alternative or adjuvant therapy for uncontrolled severe CRSwNP.
Collapse
Affiliation(s)
- Jiani Chen
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Huan Wang
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Chen Zhang
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Le Shi
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Qianqian Zhang
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Xiaole Song
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Dehui Wang
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Li Hu
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Hongmeng Yu
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003)Chinese Academy of Medical SciencesBeijingChina
| | - Xicai Sun
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalFudan UniversityShanghaiChina
- High Altitude Rhinology Research Center of Eye & ENT Hospital of Fudan University and People's Hospital of Shigatse CityShigatseChina
- Department of OtolaryngologyPeople's Hospital of Shigatse CityShigatseChina
| |
Collapse
|
17
|
Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics. Pharmaceutics 2023; 15:pharmaceutics15030910. [PMID: 36986771 PMCID: PMC10053861 DOI: 10.3390/pharmaceutics15030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
Collapse
|
18
|
Venuto S, Coda ARD, González-Pérez R, Laselva O, Tolomeo D, Storlazzi CT, Liso A, Conese M. IGFBP-6 Network in Chronic Inflammatory Airway Diseases and Lung Tumor Progression. Int J Mol Sci 2023; 24:4804. [PMID: 36902237 PMCID: PMC10003725 DOI: 10.3390/ijms24054804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.
Collapse
Affiliation(s)
- Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
19
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
20
|
Matera MG, Calzetta L, Cazzola M, Ora J, Rogliani P. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther 2023; 23:163-173. [PMID: 36527286 DOI: 10.1080/14712598.2022.2160238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complicated chronic inflammatory response that is resistant to corticosteroid therapy. As a result, there is a critical need for effective anti-inflammatory medications to treat people with COPD. Using monoclonal antibodies (mAbs) to inhibit cytokines and chemokines or their receptors could be a potential approach to treating the inflammatory component of COPD. AREAS COVERED The therapeutic potential that some of these mAbs might have in COPD is reviewed. EXPERT OPINION No mAb directed against cytokines or chemokines has shown any therapeutic impact in COPD patients, apart from mAbs targeting the IL-5 pathway that appear to have statistically significant, albeit weak, effect in patients with eosinophilic COPD. This may reflect the complexity of COPD, in which no single cytokine or chemokine has a dominant role. Because the umbrella term COPD encompasses several endotypes with diverse underlying processes, mAbs targeting specific cytokines or chemokines should most likely be evaluated in limited and focused populations.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Zhou Y, Qiu Y, Bao W, Han L, Xue Y, Zhang Y, Tian X, Fu Q, Lv C, Yin D, Zhang M. Evaluating the effects of vitamin D Level on airway obstruction in two asthma endotypes in humans and in two mouse models with different intake of vitamin D during early-life. Front Immunol 2023; 14:1107031. [PMID: 36793727 PMCID: PMC9922677 DOI: 10.3389/fimmu.2023.1107031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Introduction Asthma is primarily divided into two categories: type 2 (T2-high) and non-type 2 (T2-low). A relationship between asthma severity and vitamin D deficiency has been identified, but its impact on each asthma endotype remains unknown. Methods We clinically examined the influence of vitamin D on patients with T2-high (n = 60) or T2-low asthma (n = 36) compared with controls (n = 40). Serum 25(OH)D levels, inflammatory cytokines and spirometry were measured. Mouse models were then used to further analyze the effects of vitamin D on both asthmatic endotypes. BALB/c mice were fed with vitamin D-deficient (LVD), -sufficient (NVD), or -supplemented diets (HVD) throughout lactation and offspring followed the same diet after weaning. Offspring were sensitized/challenged with ovalbumin (OVA) to establish "T2-high" asthma or OVA combined with ozone exposure (OVA + ozone) to induce "T2-low" asthma. Spirometry and serum, bronchoalveolar lavage fluid (BALF), and lung tissues were analyzed. Results Serum 25(OH)D levels were decreased in asthmatic patients compared with controls. Patients with vitamin D deficiency (Lo) had varying degrees of elevation of the pro-inflammatory cytokines IL-5, IL-6, and IL-17A, decreased expression of the anti-inflammatory cytokine IL-10, and altered forced expiratory volume in the first second as a percentage of predicted value (FEV1%pred) in both asthmatic endotypes. Vitamin D status had a stronger correlation with FEV1%pred in T2-low asthma than T2-high asthma, and 25(OH)D level was only positively linked to maximal mid-expiratory flow as a percentage of predicted value (MMEF%pred) in the T2-low group. Inflammation, hyperresponsiveness, and airway resistance (RL) was increased in both asthma models compared with controls while vitamin D deficiency further increased airway inflammation and airway obstruction. These findings were particularly prominent in T2-low asthma. Discussion The potential function and mechanisms of vitamin D and both asthma endotypes should be studied individually, and further analysis of the potential signaling pathways involved with vitamin D on T2-low asthma is warranted.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Qiu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjian Lv
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongning Yin
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China,*Correspondence: Min Zhang,
| |
Collapse
|
22
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Suther C, Devon L, Daddi L, Matson A, Panier H, Yuan H, Saar K, Bokoliya S, Dorsett Y, Sela DA, Beigelman A, Bacharier LB, Moore MD, Zhou Y. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
24
|
Investigational Treatments in Phase I and II Clinical Trials: A Systematic Review in Asthma. Biomedicines 2022; 10:biomedicines10092330. [PMID: 36140430 PMCID: PMC9496184 DOI: 10.3390/biomedicines10092330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inhaled corticosteroids (ICS) remain the mainstay of asthma treatment, along with bronchodilators serving as control agents in combination with ICS or reliever therapy. Although current pharmacological treatments improve symptom control, health status, and the frequency and severity of exacerbations, they do not really change the natural course of asthma, including disease remission. Considering the highly heterogeneous nature of asthma, there is a strong need for innovative medications that selectively target components of the inflammatory cascade. The aim of this review was to systematically assess current investigational agents in Phase I and II randomised controlled trials (RCTs) over the last five years. Sixteen classes of novel therapeutic options were identified from 19 RCTs. Drugs belonging to different classes, such as the anti-interleukin (IL)-4Rα inhibitors, anti-IL-5 monoclonal antibodies (mAbs), anti-IL-17A mAbs, anti-thymic stromal lymphopoietin (TSLP) mAbs, epithelial sodium channel (ENaC) inhibitors, bifunctional M3 receptor muscarinic antagonists/β2-adrenoceptor agonists (MABAs), and anti-Fel d 1 mAbs, were found to be effective in the treatment of asthma, with lung function being the main assessed outcome across the RCTs. Several novel investigational molecules, particularly biologics, seem promising as future disease-modifying agents; nevertheless, further larger studies are required to confirm positive results from Phase I and II RCTs.
Collapse
|
25
|
Drago L, Cioffi L, Giuliano M, Pane M, Ciprandi G. A post hoc analysis on the effects of a probiotic mixture on asthma exacerbation frequency in schoolchildren. ERJ Open Res 2022; 8:00020-2022. [PMID: 35539434 PMCID: PMC9081543 DOI: 10.1183/23120541.00020-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is usually characterised by chronic airway inflammation [1]. Furthermore, respiratory infections frequently precede asthma exacerbations in children, mainly in allergic subjects [2–4]. As a result, dampening inflammation and preventing respiratory infections are essential in the therapeutical strategy. It has been underscored by the pathogenic relevance of dysbiosis, as it has been evidenced that the children with asthma present dysbiosis of the gut and lung microbiome [5]. The dysbiosis affects the immune response and, consequently, induces airways inflammation, and airflow limitation [6]. These events constituted the premise of using probiotics to modulate the immune response to restore the microbiota and immune balance [7]. Probiotics are defined as “live microorganisms which confer a beneficial effect on the host”, according to the World Health Organization [8]. The present randomised, placebo-controlled, double-blind study showed that a probiotic mixture significantly reduced the number of asthma exacerbations in schoolchildrenhttps://bit.ly/382LYKV
Collapse
|
26
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
27
|
Asthma and Allergy: Unravelling a Tangled Relationship with a Focus on New Biomarkers and Treatment. Int J Mol Sci 2022; 23:ijms23073881. [PMID: 35409241 PMCID: PMC8999577 DOI: 10.3390/ijms23073881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Asthma is a major driver of health care costs across ages. Despite widely disseminated asthma-treatment guidelines and a growing variety of effective therapeutic options, most patients still experience symptoms and/or refractoriness to standard of care treatments. As a result, most patients undergo a further intensification of therapy to optimize symptom control with a subsequent increased risk of side effects. Raising awareness about the relevance of evaluating aeroallergen sensitizations in asthmatic patients is a key step in better informing clinical practice while new molecular tools, such as the component resolved diagnosis, may be of help in refining the relationship between sensitization and therapeutic recommendations. In addition, patient care should benefit from reliable, easy-to-measure and clinically accessible biomarkers that are able to predict outcome and disease monitoring. To attain a personalized asthma management and to guide adequate treatment decisions, it is of paramount importance to expand clinicians' knowledge about the tangled relationship between asthma and allergy from a molecular perspective. Our review explores the relevance of allergen testing along the asthma patient's journey, with a special focus on recurrent wheezing children. Here, we also discuss the unresolved issues regarding currently available biomarkers and summarize the evidence supporting the eosinophil-derived neurotoxin as promising biomarker.
Collapse
|
28
|
Potaczek DP, Trąd G, Sanak M, Garn H, Mastalerz L. Local and Systemic Production of Pro-Inflammatory Eicosanoids Is Inversely Related to Sensitization to Aeroallergens in Patients with Aspirin-Exacerbated Respiratory Disease. J Pers Med 2022; 12:447. [PMID: 35330446 PMCID: PMC8955638 DOI: 10.3390/jpm12030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 01/15/2023] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is characterized by overproduction of the pro-inflammatory eicosanoids. Although immunoglobulin E-mediated sensitization to aeroallergens is common among AERD patients, it does not belong to the defining disease characteristics. In this study of 133 AERD patients, we sought to find a relationship between sensitization to aeroallergens and local (leukotriene E4, prostaglandin E2 and prostaglandin D2) and/or systemic (leukotriene E4) production of arachidonic acid metabolites. Interestingly, a negative association between pro-inflammatory eicosanoid levels in induced sputum supernatant or urine and sensitization to aeroallergens was observed. This inverse relationship might suggest the presence of a protective effect of atopic sensitization to aeroallergens against stronger local airway inflammation and higher systemic AERD-related inflammatory activity.
Collapse
Affiliation(s)
- Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, 35043 Marburg, Germany; (D.P.P.); (H.G.)
| | - Gabriela Trąd
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Biochemical Pharmacological Center (BPC), Philipps University of Marburg, 35043 Marburg, Germany; (D.P.P.); (H.G.)
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland; (G.T.); (M.S.)
| |
Collapse
|
29
|
Ando K, Fukuda Y, Tanaka A, Sagara H. Comparative Efficacy and Safety of Tezepelumab and Other Biologics in Patients with Inadequately Controlled Asthma According to Thresholds of Type 2 Inflammatory Biomarkers: A Systematic Review and Network Meta-Analysis. Cells 2022; 11:819. [PMID: 35269440 PMCID: PMC8909778 DOI: 10.3390/cells11050819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
The anti-thymic stromal lymphopoietin antibody (tezepelumab) has therapeutical potential for inadequately controlled asthma. However, evidence comparing tezepelumab with other biologics is scarce. To address this issue, we performed a network meta-analysis to compare and rank the efficacy of five treatments (tezepelumab, dupilumab, benralizumab, mepolizumab, and placebo) in overall participants and in subgroups stratified by the thresholds of type 2 inflammatory biomarkers, including peripheral blood eosinophil count (PBEC) and fractional exhaled nitric oxide (FeNO). The primary endpoints were annualized exacerbation rate (AER) and any adverse events (AAEs). In the ranking assessment using surface under the cumulative ranking curve (SUCRA) of AER, tezepelumab ranked the highest overall and across subgroups (based on PBEC and FeNO level thresholds). A significant difference was observed between tezepelumab and dupilumab in the patient subgroup with PBEC < 150, and between tezepelumab and benralizumab in overall participants and the patient subgroup with PBEC ≥ 300 and ≥150, respectively. There was no significant difference in the incidence of AAEs in the overall participants between each pair of five treatment arms. These results provide a basis for the development of treatment strategies for asthma and may guide basic, clinical, or translational research.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Yosuke Fukuda
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (Y.F.); (A.T.); (H.S.)
| |
Collapse
|
30
|
Wang CJ, Cheng SL, Kuo SH. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life (Basel) 2022; 12:life12020153. [PMID: 35207441 PMCID: PMC8874771 DOI: 10.3390/life12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Management of patients with asthma during the coronavirus disease 2019 (COVID-19) pandemic is a concern, especially since asthma predisposes patients to respiratory problems. Interestingly, asthma characterized by type 2 inflammation, also known as T-helper type 2-high endotype, displays a cellular and molecular profile that may confer protective effects against COVID-19. The results of experimental and clinical studies have established the actions of immunoglobulin E (IgE) in inducing airway hyperreactivity and weakening an interferon-mediated antiviral response following respiratory viral infection. Robust evidence supports the beneficial effect of the anti-IgE biologic treatment omalizumab on reducing respiratory virus-induced asthma exacerbations and reducing the frequency, duration, and severity of respiratory viral illness in patients with asthma. Indeed, accumulating reports of patients with severe asthma treated with omalizumab during the pandemic have reassuringly shown that continuing omalizumab treatment during COVID-19 is safe, and in fact may help prevent the severe course of COVID-19. Accordingly, guidance issued by the Global Initiative for Asthma recommends that all patients with asthma continue taking their prescribed asthma medications, including biologic therapy, during the COVID-19 pandemic. The impact of biologic treatments on patients with asthma and COVID-19 will be better understood as more evidence emerges.
Collapse
Affiliation(s)
- Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Department of Chemical Engineering and Materials Science, Yuab Ze University, Taoyuan City 32003, Taiwan
| | - Sow-Hsong Kuo
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Correspondence:
| |
Collapse
|
31
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
32
|
Zhang J, Wang Z, Zhang D, Pan Y, Liu X, Qiao X, Cui W, Dong L. Integrative Analysis Reveals a miRNA-mRNA Regulatory Network and Potential Causative Agents in the Asthmatic Airway Epithelium. J Asthma Allergy 2021; 14:1307-1321. [PMID: 34744440 PMCID: PMC8566008 DOI: 10.2147/jaa.s331090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background During asthma progression, the intricate molecular networks, including microRNA (miRNA) transcriptional regulation in airway epithelium, remain largely undefined. The abnormal expression of miRNAs in asthmatic airway epithelium is a recent and fast-growing area in developing diagnostic and therapeutic targets for asthma. Material and Methods Analyses were conducted to compare airway epithelial miRNAs and gene expression between patients with asthma and healthy subjects from three datasets (two for miRNAs expression profiles and one for gene expression profile). The interactions network between differentially expressed (DE)-miRNAs and mRNAs was further identified for functional analysis. To verify the involvement and functions of all the identified miRNAs in asthma, we constructed two cellular models of asthma. The most promising causal miRNA candidate, miR-1246, was examined in an in vitro system to explore its targets and roles in asthma pathophysiology. Results Through integrative analysis, we obtained six miRNAs with 31 validated target genes in airway epithelium associated with asthma. Next, we confirmed that these miRNAs were all associated with asthma progression by in vitro functional experiments. They may participate in eosinophilic inflammation (miR-92b-3p, miR-1246, miR-197-3p, and miR-124-5p) or remodeling (miR-197-3p, miR-193a-5p, miR-1246, and miR-92b-3p). Additionally, some other non-screened valuable miRNAs were also examined and identified (miR-21-5p and miR-19b-3p), and some detected in blood correlated with the disease status. Furthermore, we found that miR-1246 could directly target POSTN and influence epithelial-to-mesenchymal transition and fibrosis in airway epithelial cells. Conclusion We constructed a preliminary epithelial regulatory network in asthma based on six identified miRNAs and their valuable target genes. Candidate factors in the biological miRNA-mRNA network in airway epithelium may provide further information on the pathogenesis of asthma. Strikingly, among all screened miRNAs, miR-1246, which could interact with POSTN may have multifunctional effects in the course of asthma and be a promising agent for asthma treatment and molecular subtyping.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zihan Wang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinrui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenjing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People's Republic of China
| |
Collapse
|
33
|
A chalcone derivative suppresses TSLP induction in mice and human keratinocytes through binding to BET family proteins. Biochem Pharmacol 2021; 194:114819. [PMID: 34757034 DOI: 10.1016/j.bcp.2021.114819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Although treatments for allergic diseases have improved, side effects and treatment resistance remain as challenges. New therapeutic drugs for allergic diseases are urgently required. Thymic stromal lymphopoietin (TSLP) is a cytokine target for prevention and treatment of allergic diseases. Since TSLP is produced from epithelial cells in allergic diseases, TSLP inhibitors may be new anti-allergic drugs. We previously identified a new inhibitor of TSLP production, named 16D10. However, its target of action remained unclarified. In this study, we found proteins binding to 16D10 from 24,000 human protein arrays by AlphaScreen-based high-throughput screening and identified bromodomain and extra-terminal (BET) family proteins as targets. We also clarified the detailed mode of interaction between 16D10 and a BET family protein using X-ray crystallography. Furthermore, we confirmed that inhibitors of BET family proteins suppressed TSLP induction and IL-33 and IL-36γ expression in both mouse and human keratinocyte cell lines. Taken together, our findings suggest that BET family proteins are involved in the suppression of TSLP production by 16D10. These proteins can contribute to the pathology of atopic dermatitis via TSLP regulation in keratinocytes and have potential as therapeutic targets in allergic diseases.
Collapse
|
34
|
Maglio A, Vitale C, Pellegrino S, Calabrese C, D’Amato M, Molino A, Pelaia C, Triggiani M, Pelaia G, Stellato C, Vatrella A. Real-Life Effectiveness of Mepolizumab on Forced Expiratory Flow between 25% and 75% of Forced Vital Capacity in Patients with Severe Eosinophilic Asthma. Biomedicines 2021; 9:1550. [PMID: 34829778 PMCID: PMC8615088 DOI: 10.3390/biomedicines9111550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
Severe eosinophilic asthma (SEA) is associated with high peripheral blood and airway eosinophilia, recurrent disease exacerbations and severe airflow limitation. Eosinophilic inflammation is also responsible for small airway disease (SAD) development. SEA patients experience poor disease control and response to standard therapy and are prime candidates for anti-IL5 biologicals, such as mepolizumab, but the effect of treatment on SAD is unclear. We investigated the effect of mepolizumab on lung function in SEA patients, focusing on SAD parameters, and searched for an association between patients' phenotypic characteristics and changes in small airways function. In this real-life study, data from 105 patients with SEA were collected at baseline and after 6, 12 and 18 months of mepolizumab treatment. Along with expected improvements in clinical and lung function parameters brought by Mepolizumab treatment, FEF2525-75% values showed a highly significant, gradual and persistent increase (from 32.7 ± 18.2% at baseline to 48.6 ± 18.4% after 18 months) and correlated with ACT scores at 18 months (r = 0.566; p ≤ 0.0001). A patient subgroup analysis showed that changes in FEF25-75% values were higher in patients with a baseline peripheral blood eosinophil count ≥400 cells/μL and oral corticosteroid use. Mepolizumab significantly improves small airway function. This effect correlates with clinical benefits and may represent an accessible parameter through which to evaluate therapeutic response. This study provides novel insights into the phenotypic characteristics associated with the improved functional outcome provided by mepolizumab treatment.
Collapse
Affiliation(s)
- Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| | - Carolina Vitale
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| | - Simona Pellegrino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| | - Cecilia Calabrese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Maria D’Amato
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80100 Naples, Italy; (M.D.); (A.M.)
| | - Antonio Molino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80100 Naples, Italy; (M.D.); (A.M.)
| | - Corrado Pelaia
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (C.P.); (G.P.)
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| | - Girolamo Pelaia
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (C.P.); (G.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84100 Salerno, Italy; (A.M.); (C.V.); (S.P.); (M.T.); (C.S.)
| |
Collapse
|
35
|
Editorial of Special Issue "Molecular Mechanisms of Allergy and Asthma". Int J Mol Sci 2021; 22:ijms222111580. [PMID: 34769011 PMCID: PMC8584231 DOI: 10.3390/ijms222111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
|