1
|
Keçeci M, Karaoluk N. Effect of curcumin on methotrexate-induced ovarian damage and follicle reserve in rats: the role of PARP-1 and P53. Ann Med 2025; 57:2446688. [PMID: 39729361 DOI: 10.1080/07853890.2024.2446688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage. MATERIALS AND METHODS Thirty-two young adult female Wistar albino rats were divided into four groups: (1) Control (n = 8): only vehicle group, (2) Cur (n = 8): Cur-only group (200 mg/kg/day), (3) MTX (n = 8): MTX-only group (0.35 mg/kg/day), (4) MTX+Cur (n = 8): The group was given MTX (0.35 mg/kg/day) and Cur (200 mg/kg/day) for 28 days. Then, SOD, CAT, MDA, AMH levels were measured using ELISA kits. Follicle count was performed on H&E stained slides. In addition, the expressions of P53 and PARP-1 were analysed by immunohistochemistry. RESULTS MDA levels were seen to be higher in the MTX group than in the MTX+Cur group (p < 0.05). Cur treatment lowered MDA levels and increased SOD and CAT levels (p < 0.05 for all). In the MTX+Cur group, atretic follicle count decreased (p < 0,05), however, primordial follicle count increased (p < 0,01). Secondary follicle count and AMH levels were higher in MTX-treated groups (p < 0,05 and p < 0,01, respectively). Expressions of p53 and Poly [ADP-ribose] polymerase 1 (PARP-1) increased significantly in the MTX group compared to the other groups (p < 0,05). CONCLUSION Cur pretreatment prior to MTX administration may be an effective option in preserving the ovarian follicle pool by regulating P53 and PARP-1 expressions with its antioxidant effect.
Collapse
Affiliation(s)
- Mete Keçeci
- Department of Histology and Embryology, Bülent Ecevit University, Zonguldak, Turkey
| | - Nesibe Karaoluk
- Department of Histology and Embryology, Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
2
|
Ban G, Chen Y, Liang Y, Wang X, Ding D, Liu R, Jia J, Zhao R, Wang C, Li N. Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management. Drug Deliv 2025; 32:2445257. [PMID: 39803920 PMCID: PMC11730774 DOI: 10.1080/10717544.2024.2445257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment. Contemporary scholarly examinations have underscored the substantial antioxidative efficacy of platinum nanoparticles (PtNPs), postulating their utility as an adjunct therapeutic modality in silicosis management. The physicochemical interaction between PtNPs and silica demonstrates a propensity for adsorption, thereby facilitating the amelioration and subsequent pulmonary clearance of silica aggregates. In addition to their detoxifying attributes, PtNPs exhibit pronounced anti-inflammatory and antioxidative activities, which can neutralize ROS and inhibit macrophage-mediated inflammatory processes. Such attributes are instrumental in attenuating inflammatory responses and forestalling subsequent lung tissue damage. This discourse delineates the interplay between ROS and PtNPs, the pathogenesis of silicosis and its progression to pulmonary fibrosis, and critically evaluates the potential adjunct role of PtNPs in the therapeutic landscape of silicosis, alongside a contemplation of the inherent limitations associated with PtNPs application in this context.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yuanjie Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
- Clinical School, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori, Japan
| | - Xiaona Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dan Ding
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Rui Liu
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Ran Zhao
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chenxia Wang
- Department of Respiratory Medicine, People’s Hospital of Huojia County, Xinxiang, China
| | - Na Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Peng P, Ding S, Liang M, Zheng W, Kang Y, Liu W, Shi H, Gao C. A self-sacrificing anti-inflammatory coating promotes simultaneous cardiovascular repair and reendothelialization of implanted devices. Bioact Mater 2025; 47:502-512. [PMID: 40026826 PMCID: PMC11872464 DOI: 10.1016/j.bioactmat.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
During interventional surgeries of implantable cardiovascular devices in addressing cardiovascular diseases (CVD), the inevitable tissue damage will trigger host inflammation and vascular lumen injury, leading to delayed re-endothelization and intimal hyperplasia. Endowing cardiovascular implants with anti-inflammatory and endothelialization functions is conducive to the target site, offering significant tissue repair and regeneration benefits. Herein, inspired by the snake's molting process, a ShedWise device was developed by using the poly(propylene fumarate) polyurethane (PPFU) as the foundational material, which was clicked with hyperbranched polylysine (HBPL) and followed by conjugation with pro-endothelial functional Arg-Glu-Asp-Val peptide (REDV), and finally coated with a "self-sacrificing" layer having reactive oxygen species (ROS)-scavenging ability and degradability. During the acute inflammation in the initial stage of implantation, the ROS-responsive hyperbranched poly(acrylate-capped thioketone-containing ethylene glycol (HBPAK) coating effectively modulated the level of environmental inflammation and resisted initial protein adsorption, showcasing robust tissue protection. As the coating gradually "sacrificed", the exposed hyperbranched HBPL-REDV layer recruited specifically endothelial cells and promoted surface endothelialization. In a rat vascular injury model, the ShedWise demonstrated remarkable efficiency in reducing vascular restenosis, protecting the injured tissue, and fostering re-endothelization of the target site. This innovative design will introduce a novel strategy for surface engineering of cardiovascular implants and other medical devices.
Collapse
Affiliation(s)
- Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shili Ding
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Shi
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
4
|
Cagnetta GE, Martínez SR, Ibarra LE, Wendel A, Palacios RE, Chesta CA, Gómez ML. Photoactive broad-spectrum dressings with antimicrobial and antitumoral properties. BIOMATERIALS ADVANCES 2025; 169:214158. [PMID: 39709689 DOI: 10.1016/j.bioadv.2024.214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS). This approach led to the synthesis of N-vinyl-2-pyrrolidone (NVP) hydrogels co-polymerized with [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC). NVP and METAC were selected to impart a good biocompatibility with eukaryotic cell lines and antimicrobial properties, respectively. The combination of METAC with an efficient photogeneration of ROS by doped CPN resulted in a material with outstanding antimicrobial features. These dressings are capable of producing an aseptic environment upon irradiation and demonstrates a bacteriostatic profile in dark conditions. Additionally, the dressings fulfill critical requirements for topical applications, providing protection and acting as a barrier, with appropriate mechanical and swelling properties; as well as adequate water vapor transmission rates. The synthesized PAD have been shown to be biocompatible and non-toxic to erythrocytes and HaCaT cell line. PAD demonstrated efficacy in eliminating microbes such as fungi and bacteria. The underlying light-induced killing mechanism involved protein photooxidation, which amplified the effects of METAC mechanism that disrupt cellular membranes. Furthermore, in vitro studies using carcinoma cell lines displayed a complete cell eradication using a relatively low light dose (36 J/cm2 at 395 nm). These promising results reveal also the potential of PAD in the treatment of skin cancer.
Collapse
Affiliation(s)
- Gonzalo E Cagnetta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Ana Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - María Lorena Gómez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| |
Collapse
|
5
|
Herath HMUL, Park M, Piao MJ, Kang KA, Fernando PDSM, Senavirathna HMMM, Kim HS, Chae S, Kim YR, Hyun JW. The protective impact of myricetin against PM 2.5-induced cellular apoptosis by inhibiting endoplasmic reticulum stress. Toxicol In Vitro 2025; 104:106002. [PMID: 39719177 DOI: 10.1016/j.tiv.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Particulate matter 2.5 (PM2.5) exposure is responsible for skin inflammation, aging, and disruption of skin homeostasis. The objective of this investigation was to assess the potential of myricetin in protecting against skin damage caused by PM2.5. Human keratinocytes (HaCaT) were pretreated with myricetin and subsequently exposed to PM2.5. Cell viability, reactive oxygen species (ROS) generation, oxidized cellular components, mitochondrial damage, cellular apoptosis, and endoplasmic reticulum (ER) stress were assessed. A mitogen-activated protein kinase (MAPK) signaling network was constructed, and the action site of myricetin was explored through docking analysis. PM2.5 induced oxidative stress, resulting in DNA damage, lipid peroxidation, protein carbonylation, and cellular apoptosis. Myricetin counteracted these effects by reducing the PM2.5-induced ROS levels. Additionally, myricetin mitigated the PM2.5-induced cytochrome c release into the cytoplasm and caspase activation, thereby ameliorating cellular apoptosis. Myricetin reduced PM2.5-induced cytosolic Ca2+ level and ER-related signaling molecules. Furthermore, myricetin inhibited cellular cytotoxicity by downregulating the MAPK signaling pathway. Docking and network analyses identified 12 major MAPK proteins targeted by myricetin, and these proteins primarily affected the classical MAPK pathway. These findings suggest that myricetin mitigates skin impairments caused by PM2.5 exposure by reducing ROS, mitochondrial damage, ER stress, and apoptosis via downregulating the MAPK signaling pathway.
Collapse
Affiliation(s)
| | - Musun Park
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Sungwook Chae
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea.
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
6
|
Jain G, Chaurasia R, Kaur BP, Chowdhury OP, Roy H, Gupta RR, Biswas B, Chakrabarti S, Mukherjee M. Unleashing the antibacterial potential of ZIFs and their derivatives: mechanistic insights. J Mater Chem B 2025; 13:3270-3291. [PMID: 39935286 DOI: 10.1039/d4tb02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Antibiotic resistance presents an alarming threat to global health, with bacterial infections now ranking among the leading causes of mortality. To address this escalating challenge, strategies such as antibiotic stewardship, development of antimicrobial therapies, and exploration of alternative treatment modalities are imperative. Metal-organic frameworks (MOFs), acclaimed for their outstanding biocompatibility and in vivo biodegradability, are promising avenues for the synthesis of novel antibiotic agents under mild conditions. Among these, zeolitic imidazolate frameworks (ZIFs), a remarkable subclass of MOFs, have emerged as potent antibacterial materials; the efficacy of which stems from their porous structure, metal ion content, and tunable functionalized groups. This could be further enhanced by incorporating or encapsulating metal ions, such as Cu, Fe, Ti, Ag, and others. This perspective aims to underscore the potential of ZIFs as antibacterial agents and their underlying mechanisms including the release of metal ions, generation of reactive oxygen species (ROS), disruption of bacterial cell walls, and synergistic interactions with other antibacterial agents. These attributes position ZIFs as promising candidates for advanced applications in combating bacterial infections. Furthermore, we propose a novel approach for synthesizing ZIFs and their derivatives, demonstrating exceptional antibacterial efficacy against Escherichia coli and Staphylococcus aureus. By highlighting the benefits of ZIFs and their derivatives as antibacterial agents, this perspective emphasizes their potential to address the critical challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Geetika Jain
- Amity Institute of Nanotechnology, Amity University, Noida, UP 201313, India
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Radhika Chaurasia
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bani Preet Kaur
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | | | - Hiranmay Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Richa Rani Gupta
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Sandip Chakrabarti
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Monalisa Mukherjee
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| |
Collapse
|
7
|
Kaur R, Singh P. Catalase-like activity of perylene diimide based radical anion: Chromogenic substrate for achieving glucose sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125438. [PMID: 39612535 DOI: 10.1016/j.saa.2024.125438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
In this work, perylene diimide based radical anion (PH2-) is synthesized and characterized using optical, NOBF4 methods; cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The PH2- is stable for 120 min (2 h) in oxygenated environment and 273 min (4.5 h) in hypoxic conditions. The PH2- showed catalase-like activity to reduce H2O2 to H2O with turn-over number (TON) = 20 and turn-over frequency (TOF) = 40 h-1. The catalase-like activity can be measured using optical and electrochemical methods by monitoring the changes at 726 nm (absorbance); 585 nm (emission) and at 0.27 V. We were able to quantitatively monitor the ultra low-level concentrations of the H2O2 as low as 320 fM (absorbance) and 200 fM (emission). Moreover, PH2- could be used as a chromogenic and fluorogenic substrate for monitoring the low-level concentrations of the glucose using GOx based biochemical assay. We have demonstrated the development and validation of the glucose assay kit for the detection of glucose as low as 3.6/2.8 nM in aqueous medium and 6.2/5.6 nM in blood serum.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India.
| |
Collapse
|
8
|
Afrasiabi S, Saghatchi F, Dehpour AR, Goudarzi R, Karimi MR, Partoazar A. Biocompatibility and photoinactivation evaluation of zinc hydroxide chloride nanosheets against Streptococcus mutans. BMC Microbiol 2025; 25:116. [PMID: 40038584 DOI: 10.1186/s12866-025-03822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Considering the efficacy of antimicrobial photodynamic therapy (PDT) in inactivating bacteria, this study reports that zinc hydroxide chloride nanosheets (ZHC-NSs) are useful for this purpose. MATERIALS & METHODS The characterization of ZHC-NSs was performed using microscopic and spectroscopic techniques. The irritation test, acute toxicity test, and genotoxicity test of ZHC-NSs were evaluated and their effects on human pulp fibroblast cells (HPFC) viability, intracellular reactive oxygen species (ROS) levels, and antibacterial activity of ZHC-NSs (1-8 mg ml-1) alone or in light conditions were investigated. RESULTS The ZHC-NSs structure showed a crystalline form and their sheets' thickness had an average size of 129.6 ± 19.50 nm. ZHC-NSs did not severely damage internal organs and were not genotoxic. The cytotoxic effect of ZHC-NSs on HPFC was concentration-dependent so that ZHC-NSs at higher concentrations (4 and 8 mg ml-1) killed half of the HPFC cells. When ZHC-NSs were used in combination with a 980 nm diode laser, namely ZHC-NS©, ROS production increased and led to enhanced antibacterial activity against Streptococcus mutans in planktonic and biofilm form. A statistically significant difference was found between ZHC-NSs without laser irradiation and photoexcited ZHC-NSs. CONCLUSION ZHC-NSs© with the potential ability to produce ROS could be effective in complementary treatment against S. mutans.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saghatchi
- Knowledge-Based ImenNanoFam Company, Sciences and Technology Park of Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, USA
| | - Mohammad Reza Karimi
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ghribi F, Bejaoui S, Chetoui I, Trabelsi W, Belhassen D, Ben Fayala C, Boubaker S, Mili S, Soudani N. Toxicological effects of cobalt on common carp: oxidative stress, ionic imbalance, fatty acid disruption, and gill histopathology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:98. [PMID: 40035912 DOI: 10.1007/s10653-025-02407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
Cobalt (Co) is an essential element to fish and other organisms that become toxic at high concentrations. This element is emerging as a concerning pollutant in water bodies, potentially endangering the health of marine biota. The aim of this study was to investigate the short-term subcellular toxicity of cobalt in the common carp Cyprinus carpio (0, 1.13, 11.34, 22.68 and 45.37 µg/L of Co2+ for 72 h), with emphasis on oxidative balance (enzymatic and non-enzymatic antioxidants), fatty acid composition, Na+K+/Mg2+ATPases activities and histopathological changes. Co exposure increased the levels of the ferric reducing antioxidant power, hydrogen peroxide, malondialdehyde and protein carbonyl along with enzymatic and non-enzymatic antioxidant-related markers. The observed prooxidant-antioxidant imbalance in exposed fish was solidified by histological sections confirming alterations in the histomorphological structure of C. carpio gills. Results showed that increases in Co2+ exposure of fish altered the ATPases activities revealing changes in osmoregulation. Additionally, the analysis of fatty acids (FA) underscored shifts in the fish's fatty acid profile, which is indicative of Co2+ impact on C. carpio overall metabolism and immune response. Significant changes occurred in some major FA which were associated with lipid peroxidation increase and the inhibition of Na+K+ and Mg2+ ATPases activities. Overall, the current results suggest that the mechanism of Co2+ toxicity involves oxidative damage, disruption of ionic balance, cellular homeostasis and the normal physiological function of the fish gills.
Collapse
Affiliation(s)
- Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Dalya Belhassen
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Chaima Ben Fayala
- Service d'anatomie pathologique humaine et experimentale, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Samir Boubaker
- Service d'anatomie pathologique humaine et experimentale, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sami Mili
- Laboratory of Fisheries Sciences, National Institute of Marine Sciences and Technologies (INSTM), 28 Rue du 2 mars 1934, Salammbô 2025, Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7021, Tunis, Zarzouna, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Tunis Faculty of Science, University of Tunis El Manar, 2092, Tunis, Tunisia
- Basic Sciences departement, Physiology and functional explorations section, Faculty of Medicine, Tunis, Tunisia
| |
Collapse
|
10
|
Derikvand Z, Tahmourespour A, Akbari N, Amiri GR, Fesharaki M. Early apoptosis induction in MCF-7 breast cancer cells by bacterial exopolysaccharide-coated magnetic iron oxide nanoparticles (MIONS). Int J Biol Macromol 2025; 306:141605. [PMID: 40037454 DOI: 10.1016/j.ijbiomac.2025.141605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
As breast cancer is the most widespread female malignancy, innovative and safe synergistic anticancer strategies are needed, particularly to improve drug delivery to the tumor. One of the important aspects of cancer targeting is apoptosis induction, which is the main purpose of this study. Exopolysaccharide (EPS) extracted from Streptococcus mutans and magnetic iron oxide nanoparticles-coated EPS (EPS/MIONS) effects on MCF-7 and MCF-10A were studied. MIONS was synthesized by co-deposition method and characterized by TEM and XRD; its surface was coated with EPS, checked by FT-IR. MTT assay, AO/EB staining, and flow cytometry analysis were performed to assess the MCF-7 cells viability at various EPS/MIONS and EPS concentrations, as well as to determine apoptosis. The levels of superoxide dismutase (SOD), catalase (CAT), also malondialdehyde (MDA) enzymes were determined. The XRD and FT-IR spectrum confirmed the MIONS purity and chemical integration of EPS/MIONS. The EPS and EPS/MIONS significantly reduced the MCF-7 cell viability without showing toxicity on MCF-10A cells. The most effective dose (IC50) was 250 μg/mL EPS/MIONS after 48 h. According to flow cytometry studies, the percentages of early and late apoptotic cells were equal to 71.87 ± 1.25 and 21.7 ± 2 for EPS/MIONS, and 59.09 ± 5 and 39.95 ± 1 for EPS. The SOD and CAT levels were increased in the presence of EPS and EPS/MIONS groups compared to the control (pValue<0.05). However, the MDA levels significantly decreased. The EPS/MIONS found to be superior in apoptosis induction, morphological alterations, and cell growth suppression. This research emphasizes the importance of EPS, its conjugation with MIONS, and their potential as novel anticancer-promising agents.
Collapse
Affiliation(s)
- Zahra Derikvand
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Neda Akbari
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Gholam Reza Amiri
- Department of Basic Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mehrafarin Fesharaki
- Department of Cell Sciences Research Center Medical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Souza ARD, Antinarelli LMR, Lemos ASDO, Glanzmann N, Vicente B, Midlej VDV, Silva Neto AFD, Machado RRP, da Silva AD, Coimbra ES. Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy. Chem Biol Interact 2025; 409:111409. [PMID: 39922522 DOI: 10.1016/j.cbi.2025.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the in vitro activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of Leishmania amazonensis, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC50 = 0.13 μM and IC50 = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-like death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating L. amazonensis-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its in vivo efficacy in a murine model of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Andrezza Rodrigues de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Ari Sergio de Oliveira Lemos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Nicolas Glanzmann
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno Vicente
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor do Valle Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Adilson David da Silva
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
12
|
Aguilar-Bañuelos JA, Bernal-Hernández YY, Medina-Díaz IM, Ruiz-Arias MA, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Agraz-Cibrián JM, Zambrano-Zaragoza JF, Verdín-Betancourt FA, Ruiz NP, Flores-Alfaro E, Rojas-García AE. Environmental exposure to pesticides is associated with oxidative stress, oxidative DNA damage, and elevated interleukin-8 in a child population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104656. [PMID: 39978743 DOI: 10.1016/j.etap.2025.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Pesticide exposure can cause various adverse effects in humans, with children being particularly susceptible. Such exposure leads to neurological, immunological, respiratory, and genetic damage, primarily by generating reactive oxygen species (ROS). The increase in ROS induces lipid peroxidation (LPO) and the formation of hydroxyl radicals, which generate DNA adducts. This study involved children aged 6-12 from three communities: two in an agricultural region (communities A and B) and one reference population (community C). The objective was to evaluate lipid peroxidation through malondialdehyde (MDA) levels, the content of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, and the concentrations of the cytokines IL-6, IL-8, IL-10, and TNF-α in children environmentally exposed to pesticides. Anthropometric measurements were taken from the study population. Dialkylphosphates (DAP) in urine were determined by gas chromatography and mass spectrometry. Plasma concentrations of MDA and pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and the anti-inflammatory cytokine (IL-10) were quantified using biochemical assays and urinary concentrations of 8-OHdG. The findings showed that DAP, MDA, and 8-OHdG concentrations in communities A and B increased significantly compared with community C. Additionally, IL-8 exhibited a significant increase in community A compared to community C, while no significant differences were observed for IL-6, IL-10, and TNF-α. Higher pesticide exposure is linked to oxidative stress, DNA damage and inflammation, key indicators of chronic diseases. In conclusion, this study provides evidence linking environmental pesticide exposure in agricultural communities to increased oxidative stress and inflammatory responses in children.
Collapse
Affiliation(s)
- José Antonio Aguilar-Bañuelos
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Miguel Alfonso Ruiz-Arias
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico; Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Padrón de Investigadoras e Investigadores por México, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | | | - Néstor Ponce Ruiz
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N. Ciudad del Conocimiento, Tepic, Nayarit, Mexico
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico.
| |
Collapse
|
13
|
Kazmierska-Grebowska P, Jankowski MM, Obrador E, Kolodziejczyk-Czepas J, Litwinienko G, Grebowski J. Nanotechnology meets radiobiology: Fullerenols and Metallofullerenols as nano-shields in radiotherapy. Biomed Pharmacother 2025; 184:117915. [PMID: 39983431 DOI: 10.1016/j.biopha.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite significant advances in the development of radioprotective measures, the clinical application of radioprotectors and radiomitigators remains limited due to insufficient efficacy and high toxicity of most agents. Additionally, in oncological radiotherapy, these compounds may interfere with the therapeutic effectiveness. Recent progress in nanotechnology highlights fullerenols (FulOHs) and metallofullerenols (Me@FulOHs) as promising candidates for next-generation radioprotectors. These nanostructures possess unique antioxidant properties, demonstrating greater efficacy in rediucing oxidative stress compared to conventional agents. Moreover, their potential to minimize pro-oxidative risks depends on the precise identification of cellular environments and irradiation conditions that optimize their radioprotective effects. In parallel, Me@FulOHs serve as powerful theranostic tools in oncology. Their strong imaging signals enable high-resolution PET and MRI, facilitating early detection and accurate localization of pathogenic alterations. This dual functionality positions Me@FulOHs as key components in advanced radiotherapy. By integrating these nanomaterials with modern theranostic approaches, it is possible to enhance the precision of treatment while minimizing side effects, addressing a critical need in contemporary oncology. This review emphasizes the importance of systematic evaluation of context-dependent effects of Me@FulOHs, particularly in pre- and post-irradiation scenarios, to optimize their clinical relevance. The dual role of Me@FulOHs as both radioprotectors and diagnostic agents distinguishes them from traditional compounds, paving the way for innovative practical applications. Their use in radiotherapy represents a significant step toward the development of safer and more effective strategies in radiation protection and cancer treatment. We also review ionizing radiation effects, classifications, cancer radiotherapy applications, and countermeasures.
Collapse
Affiliation(s)
- Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gabriela Narutowicza 11/12, Gdansk 80-233, Poland
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Jacek Grebowski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, Warsaw 04-141, Poland.
| |
Collapse
|
14
|
Pacchini S, Vanzan G, Schumann S, Piva E, Bakiu R, Bertotto D, Bottacin-Busolin A, Irato P, Marion A, Santovito G. Characterisation of the prdx4 gene in Squalius cephalus and its role in freshwater environments with varying impact of perfluoroalkyl substances (PFAS). CHEMOSPHERE 2025; 373:144167. [PMID: 39889648 DOI: 10.1016/j.chemosphere.2025.144167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Given the pervasive detection of perfluoroalkyl substances (PFAS) in several environmental matrices and their known toxicological effects, it is imperative to investigate their impact on the physiological responses of freshwater organisms. This research is crucial for developing effective strategies to protect aquatic ecosystems by directly addressing how PFAS influences aquatic species' health and survival. In this study, we conducted a biomonitoring analysis to evaluate the effects of naturally occurring PFAS, specifically perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), on the physiology of common chub (Squalius cephalus), a freshwater fish native to the Veneto region. We measured oxidative damage in the kidney and skeletal muscle, with results showing that low PFAS contamination is sufficient to increase protein oxidation in both tissues. Conversely, even high PFAS levels did not induce lipid peroxidation in either tissue. We also examined the expression of peroxiredoxin isoform 4 (prdx4) in the kidney, finding its down-regulation with increasing PFAS pollution, which demonstrates the minor function of Prdx4 against oxidative stress. Instead, its down-regulation plays an important role in increasing lipid accumulation in the cell, creating a hydrophobic environment that limits PFAS bioaccumulation and their capacity to bind proteins, thus preserving them from further damage.
Collapse
Affiliation(s)
| | | | | | | | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Albania.
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy.
| | | | - Paola Irato
- Department of Biology, University of Padova, Italy.
| | - Andrea Marion
- Department of Industrial Engineering, University of Padova, Italy.
| | | |
Collapse
|
15
|
Li N, Alzahrani FM, El Safadi M, Attaullah S, Alzahrani KJ, Alshehri FF, Mehreen A, Shah TA. Nephroprotective potential of robinin to counteract aldicarb induced renal dysfunction via modulating TLR4/MyD88, HMGB1/RAGE, NF-κB pathway: A biochemical and pharmacodynamic approach. Food Chem Toxicol 2025; 197:115298. [PMID: 39889879 DOI: 10.1016/j.fct.2025.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The current investigation was conducted to evaluate the nephroprotective potential of robinin (RBN) to avert aldicarb (ALD) induced renal impairments. Thirty-two adult albino rats (Sprague Dawley) were divided into four groups including control, ALD (15 mgkg-1), ALD (15 mgkg-1) + RBN (6 mgkg-1) and RBN (6 mgkg-1) alone treated group. The results of the current study demonstrated that ALD intoxication increased the gene expression of receptor for advanced glycation end products (RAGE), tumor necrosis factor- α (TNF-α), toll-like receptor 4 (TLR4), high mobility group box1 (HMGB1), nuclear factor-kappa B (NF-κB), myeloid differentiation primary response protein 88 (MyD88), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and interleukin-1β (IL-1β). Moreover, activities of HO-1, GSH, GPx, SOD, GSR, and CAT were suppressed while the levels of ROS and MDA were escalated following the ALD exposure. ALD intoxication upregulated the levels of cystatin C, KIM-1, creatinine, NAG, uric acid, urea, NGAL and BUN while reducing the levels of creatinine clearance in renal tissues. The levels of Bax, Caspase-9 and Caspase-3 were elevated while the levels of Bcl-2 were reduced after ALD administration. Histopathological analysis showed ALD disrupted the normal architecture of renal tissues. However, RBN therapy substantially protected the renal tissues owing to its antioxidative, anti-inflammatory and anti-apoptotic potential.
Collapse
Affiliation(s)
- Ning Li
- Department of Ultrasonic, Zibo Central Hospital, Zibo City, 255036, Shandong Province, China
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sunbal Attaullah
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Ad Dawadimi, 17464, Shaqra University, Saudi Arabia
| | - Arifa Mehreen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Tawaf Ali Shah
- College of Agriculture engineering and food science, Shandong University of Technology, zibo, 255000, China
| |
Collapse
|
16
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2025; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
17
|
Zhao S, Yang L, Li W, Zhang S, Liu X, Zhang Y, Xu X, Zhou P, Meng Q, Pan T, Liu J, Zhang J. The interaction of isoquinoline alkaloid crebanine with immunoglobulin G and cytotoxic effects toward MCF-7 breast cancer cell line. Int J Biol Macromol 2025; 293:139194. [PMID: 39730052 DOI: 10.1016/j.ijbiomac.2024.139194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
In this study, the interaction of crebanine, an isoquinoline alkaloid, with immunoglobulin G (IgG) was evaluated. Subsequently, the anticancer effects of crebanine in MCF-7 breast cancer cells were assessed. The results demonstrate that static quenching plays a key role in the fluorescence quenching of the IgG by crebanine, and some embedded hydrophobic patches of the IgG are exposed upon interaction with crebanine, while the characteristic β-sheet conformation of the IgG was almost preserved. Theoretical studies also show that several hydrophilic and hydrophobic residues play a crucial role in the formation of hydrogen bonds between crebanine and IgG, along with the stability of the complex. Cellular studies indicate that crebanine induces selective anticancer effects in MCF-7 cells (IC50: 36.76 μM) compared to human embryonic kidney cells (HEK-293, IC50: 723.77 μM) through the inhibition of colony formation, induction of oxidative stress and lipid peroxidation, upregulation of the Bax/Bcl-2 ratio, and cytochrome c release, which are indicative of the intrinsic apoptosis pathway. In conclusion, this study provides valuable information regarding the protein binding affinity and anticancer activity of crebanine, which are essential factors for determining the pharmacological activity of small molecules as drug candidates.
Collapse
Affiliation(s)
- Shaorong Zhao
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Shichao Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xu Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchen Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaotong Xu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qingxiang Meng
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Jingjing Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
18
|
Qiu P, Wen M, Zhuang Z, Niu S, Tao C, Yu N, Chen Z. Biomimetic polymeric nanoreactors with photooxidation-initiated therapies and reinvigoration of antigen-dependent and antigen-free immunity. Biomaterials 2025; 314:122884. [PMID: 39405823 DOI: 10.1016/j.biomaterials.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
Immune cell-mediated anticancer modalities usually suffer from immune cell exhaustion and limited efficacy in solid tumors. Herein, the oxygen-carrying biomimetic nanoreactors (BNR2(O2)) have been developed with photooxidation-driven therapies and antigen-dependent/antigen-free immune reinvigoration against xenograft tumors. The BNR2(O2) composes polymeric nanoreactors camouflaged with cancer cell membranes can efficiently target homotypic tumors. It continuously releases O2 to boost intracellular reactive oxygen species (ROS) to oxide diselenide bonds, which controllably releases seleninic acids and anti-folate Pemetrexed compared to hydrogen peroxide and glutathione incubation. The O2-rich microenvironment sensitizes Pemetrexed and blocks programmed cell-death ligand 1 (PD-L1) to reverse T cell immunosuppression. The ROS and Pemetrexed upregulate pro-apoptosis proteins and inhibit folate-related enzymes, which cause significant apoptosis and immunogenic cell death to stimulate dendritic cell maturation for improved secretion of cytokines, expanding antigen-dependent T cell immunity. Furthermore, by regulating the release of seleninic acids, the checkpoint receptor human leukocyte antigen E of tumor cells can be blocked to reinvigorate antigen-free natural killer cell immunity. This work offers an advanced antitumor strategy by bridging biomimetic nanoreactors and modulation of multiple immune cells.
Collapse
Affiliation(s)
- Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zixuan Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
19
|
Li X, Zhang J, Chun, Ling X, Luan T. Association between the composite dietary antioxidant index and risk of infertility: Evidence from NHANES 2013-2020 and a Mendelian randomization study. Int J Gynaecol Obstet 2025; 168:1264-1275. [PMID: 39422585 DOI: 10.1002/ijgo.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE The Composite Dietary Antioxidant Index (CDAI) measures the antioxidant capacity of the diet, which is believed to provide protection against various diseases, including depression, osteoporosis, and papillomavirus infection, by neutralizing harmful oxidative stress. However, the relationship between CDAI and infertility is not well understood. This research aims to explore the potential correlations between CDAI and the risk of infertility. METHODS This research harnessed data from the National Health and Nutrition Examination Survey (NHANES) to execute a cross-sectional analysis involving 8263 US women aged 20-45. Each participant was subjected to two distinct 24-h dietary recall interviews. We calculated the CDAI using average daily antioxidant intake. Infertility was assessed using a standardized questionnaire. The association between CDAI and infertility was examined using weighted multiple logistic regression models, while nonlinear correlations were explored through restricted cubic splines. To affirm the robustness of our findings, sensitivity and subgroup analyses were performed using unweighted logistic regression. Additionally, to ascertain the causal influence of circulating antioxidant levels on infertility, a two-sample univariable Mendelian randomization (MR) analysis was conducted, using the inverse variance weighted (IVW) method as the primary analytic approach. RESULTS Participants who were infertile exhibited lower CDAI levels compared to their fertile counterparts. When confounding variables were accounted for in the multivariate weighted logistic regression model, an inverse relationship was observed between CDAI and infertility, with the odds ratio for the highest versus lowest quartile being 0.55 (0.33-0.90, P = 0.02). However, the IVW method indicated that genetically predicted elevated levels of CDAI did not significantly correlate with infertility. CONCLUSION Cross-sectional observational studies indicate that antioxidants from diets might diminish infertility risks. However, findings from MR studies do not confirm a causal connection. Additional prospective research is required to elucidate this association further.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - JuanJuan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chun
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| |
Collapse
|
20
|
Al-Fartusie FS, Mohammed MA, Thani MZ, Kader S, Khadim RM. Evaluation of Heavy Metal and Specific Trace Elements Levels Among Fast-Food Workers and Their Susceptibility to Atherosclerosis. Biol Trace Elem Res 2025; 203:1317-1326. [PMID: 38878220 DOI: 10.1007/s12011-024-04262-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 03/04/2025]
Abstract
Fast-food workers in Iraq face significant health risks due to exposure to heavy metals from fumes and dust during cooking activities. Heavy metals, such as lead (Pb), cadmium (Cd), and nickel (Ni), are toxic to cells even at low concentrations and can cause health risks, including atherosclerosis, due to oxidative stress and reduced antioxidant activity. To the best of our knowledge, this is the first study assess the levels of heavy metals in fast-food workers and investigate their potential link to atherosclerosis development by monitoring the levels of copper (Cu), zinc (Zn), magnesium (Mg), manganese (Mn), and iron (Fe). A total of 120 male participants aged between 20 and 40 years were included in the study, with 40 fast-food workers, 40 patients with atherosclerosis, and 40 healthy individuals evaluated. The levels of Pb, Cd, Ni, Cu, Zn, Mg, Mn, and Fe in all blood samples were determined using atomic absorption spectrometry. Results showed that the fast-food worker group had significantly higher levels of Pb, Cd, Cu, and Fe compared to the healthy control group, with increases of 57%, 75%, 30%, and 55%, respectively. Conversely, their levels of Zn and Mg were significantly lower, decreasing by 15% and 16%, respectively. On the other hand, the atherosclerosis patients' group had significantly higher levels of Pb, Cd, Cu, and Fe, with increases of 47%, 74%, 34%, and 28%, respectively, as well as significantly lower levels of Zn and Mg, decreasing by 17% and 21%, respectively, compared to the control group. These findings suggest that fast-food workers are at risk of developing atherosclerosis due to exposure to high levels of heavy metals and imbalances in essential trace elements. The results showed a significant increase in the levels of Pb and Cd in the sera of these workers, which was expected because of the long duration and high intensity of exposure to toxic heavy metals. This is a serious indicator that must be considered, as it has been previously established that increased levels of Pb and Cd in the body are linked to the risk of atherosclerosis. Additionally, an association between Pb and Cd levels and an imbalance in trace element levels (Cu, Zn, Mg, and Fe) were observed. The Implementation of stricter regulations and guidelines for maintaining cleanliness and safety in fast-food restaurants may be crucial for protecting workers and preventing long-term health complications.
Collapse
Affiliation(s)
- Falah S Al-Fartusie
- Department of Chemistry, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq.
| | - Muntaha A Mohammed
- Department of Chemistry, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq
| | - Mohammed Z Thani
- Department of Chemistry, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq
| | - Safaa Kader
- Department of Pathology and Forenisc Chemistry, College of Medicine, Nahrain University, Kahdimiya, Baghdad, Iraq.
| | - Roaa M Khadim
- Department of Chemistry, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq
| |
Collapse
|
21
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Ferreira MDR, Scalzo MDLM, Rodríguez S, D Alessandro ME. Changes in cerebral cortex redox status and cognitive performance in short- and long-term high-sucrose diet fed rats. Physiol Behav 2025; 290:114776. [PMID: 39638221 DOI: 10.1016/j.physbeh.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Rising evidence suggests that Metabolic Syndrome (MetS) would be correlated with the development of neurodegenerative diseases. Although this has emerged as a relevant area of research, it has not been fully explored. It is not clear if a greater impairment of the metabolic peripheral environment is accompanied by a greater impairment of the central nervous system. We have previously shown that feeding rats with a high-sucrose diet (HSD) represents an animal model that resembles the human MetS phenotype. The aim of the present work was to assess in rats fed a HSD for a short (3 weeks-wk) or a long (15 weeks-wk) term, whether the worsening of the peripheral metabolic and hormonal profile that occur as the time of HSD consumption increases, is also accompanied by a worsening of oxidative stress in the cerebral cortex and/or cognitive behavior. Male Wistar rats received a HSD or a control diet during 3 wk or 15 wk. We found an increase in reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs) and glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities in the cerebral cortex of 3 wk HSD-fed rats. All of these parameters, except for the GPx, were also increased in the 15 wk HSD-fed group and values were similar to those observed at 3 wk. Glutathione reduced form (GSH), catalase (CAT) activity and brain-to-body weight ratio were reduced in 15 wk HSD-fed animals. Glutathione S- transferase (GST) was similar in all dietary groups. A poor performance in novel object recognition test and T-maze memory tasks was observed in 3 wk and 15 wk HSD-fed rats in a similar magnitude. Our results add new evidence related to the association between an adverse peripheral metabolic environment and brain/cognitive dysfunction.
Collapse
Affiliation(s)
- María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María de Los Milagros Scalzo
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina
| | - Silvia Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Eugenia D Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
23
|
Abukhalil MH, Al-Alami Z, Alfwuaires MA, Imran MR, Aladaileh SH, Althunibat OY. Taxifolin Protects Against 5-Fluorouracil-Induced Cardiotoxicity in Mice Through Mitigating Oxidative Stress, Inflammation, and Apoptosis: Possible Involvement of Sirt1/Nrf2/HO-1 Signaling. Cardiovasc Toxicol 2025; 25:455-470. [PMID: 39827225 DOI: 10.1007/s12012-025-09962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Although 5-fluorouracil (5-FU) is widely utilized in cancer treatment, its side effects, including cardiotoxicity, limit its use. Taxifolin (TAX) is a bioactive anti-inflammatory and antioxidant flavonoid. This study aimed to elucidate the protective effect of TAX against 5-FU-induced cardiac injury in male mice. Mice were treated with TAX (25 and 50 mg/kg, orally) for 10 days and a single dose of 150 mg/kg 5-FU at day 8. Mice intoxicated with 5-FU showed increased creatine kinase-MB and lactate dehydrogenase activities and troponin I levels, with multiple cardiac histopathological changes. They also showed a significant increase in cardiac malondialdehyde (MDA) and nitric oxide (NO) and decreases in myocardial reduced glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities (P < 0.001). Pretreatment of 5-FU-injected mice with TAX suppressed cardiac injury, decreased MDA and NO contents (P < 0.001), and boosted antioxidant defenses in the myocardium. Moreover, TAX attenuated cardiac inflammatory response, as evidenced by the decreased expression levels of cardiac NF-κB p65, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines (P < 0.001). Largely, TAX ameliorated the decrease in Bcl-2 expression and the increase in BAX and caspase-3 in the heart. It also restored the cardiac Sirt1/Nrf2/HO-1 signaling pathway. In conclusion, TAX showed significant cardioprotective effects on 5-FU-induced cardiac injury and might represent a promising adjuvant in preventing cardiac injury associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan.
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan.
| | - Zina Al-Alami
- Department of Basic Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Mohd Rasheeduddin Imran
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, 39553, Hafr Al Batin, Saudi Arabia
| | - Saleem H Aladaileh
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, 39553, Hafr Al Batin, Saudi Arabia
| | - Osama Y Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, 21110, Jordan
| |
Collapse
|
24
|
Guo Z, Zhang T, Yang H, Zhu X, Lu S, Chen A, Fan M, Qu J. Unraveling tetracycline and its degradation product: Induction mechanisms of antibiotic resistance in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178959. [PMID: 40023879 DOI: 10.1016/j.scitotenv.2025.178959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In aquatic environments, antibiotics degrade into byproducts, potentially enhancing bacterial resistance. However, the specific mechanisms by which these byproducts induce bacterial resistance remain elusive. This study conducted experimental evolution experiments to explore how E. coli adapts to tetracycline (TC) and its primary degradation products-anhydrotetracycline (ATC), epitetracycline (ETC), and 4-epianhydrotetracycline (EATC)-through evolution experiments. Prolonged exposure to TC and its byproducts significantly increased frequency of resistant mutants in E. coli ATCC25922, with a maximum 106-fold increase. Resistant mutants exhibited markedly elevated minimum inhibitory concentrations (MICs) for TC, ampicillin (AMP), and ciprofloxacin (CIP), indicating multidrug resistance. Transcriptomic analysis showed that the antibiotic resistance phenotype could be related to enhanced target protection, metabolic adaptations, and reduced membrane permeability. The induction pathways between TC and its byproducts were distinct. Specifically, TC20d (where TC20d represents the mutants collected after 20 days of continuous exposure to TC) was associated with more alterations in ribosome-associated genes, which was correlated with an enhanced defensive response as shown by the data. Moreover, variations in energy metabolism gene expression suggest a robust metabolic defense in ATC20d and ETC20d. When TC and its byproducts-ATC, ETC, and EATC-act together, they induce antibiotic resistant mutants at rates of 29.8 %, 18.9 %, 18.3 %, and 31.9 %, respectively. This study provides a descriptive overview of the possible adaptive mechanisms and pathways that may be involved in antibiotic resistance due to environmental exposure.
Collapse
Affiliation(s)
- Zhengfeng Guo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaolin Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Anjie Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Mingyu Fan
- College of art, Hebei University of Economics and Business, Shijiazhuang 050000, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
25
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2025; 31:81-101. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
26
|
Schauenburg D, Weil T. Not So Bioorthogonal Chemistry. J Am Chem Soc 2025. [PMID: 40017419 DOI: 10.1021/jacs.4c15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The advent of bioorthogonal chemistry has transformed scientific research, offering a powerful tool for selective and noninvasive labeling of (bio)molecules within complex biological environments. This innovative approach has facilitated the study of intricate cellular processes, protein dynamics, and interactions. Nevertheless, a number of challenges remain to be addressed, including the need for improved reaction kinetics, enhanced biocompatibility, and the development of a more diverse and orthogonal set of reactions. While scientists continue to search for veritable solutions, bioorthogonal chemistry remains a transformative tool with a vast potential for advancing our understanding of biology and medicine. This Perspective offers insights into reactions commonly classified as "bioorthogonal", which, however, may not always demonstrate the desired selectivity regarding the interactions between their components and the additives or catalysts used under the reaction conditions.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Zhao H, Chen H, Wu G, Xu J, Zhu W, Chen J, Luo D, Guo S. Integrative metabolomics - GC-IMS approach to assess metabolic and flavour substance shifts during fermentation of Yangjiang douchi. Food Chem 2025; 466:142199. [PMID: 39602999 DOI: 10.1016/j.foodchem.2024.142199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Douchi is traditional Chinese condiment. In this study, electronic sense, GC-IMS and metabolomics were combined to analyse the changes in flavour profiles and metabolites of Yangjiang douchi at different fermentation stages. The results showed that umami was the primary taste characteristic of douchi. Aldehydes, esters, and ketones representing the predominant flavour compounds. Metabolomic analysis identified 13 compounds as key differential metabolites, which were mainly enriched in the arachidonic acid metabolic pathway in lipid metabolism. The correlation analysis indicated that heptanal, hexanal, phenyl acetaldehyde, benzene acetaldehyde and abhexone may be the key aroma substances during fermentation. The major free fatty acids that may act as key flavour precursors are palmitic acid, oleic acid and linoleic acid. This study provides a scientific basis for the industrial regulation of Yangjiang douchi fermentation.
Collapse
Affiliation(s)
- Huiyan Zhao
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haowen Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guixian Wu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jingting Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wan Zhu
- Experimental Station of China Agricultural University, Huaibei 235099, China
| | - Jianxu Chen
- Guangdong Mei Wei Yuan Flavours Co., Ltd., Yangjiang 529500, China
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China.
| | - Shuntang Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Wang F, Amona FM, Pang Y, Zhang Q, Liang Y, Chen X, Ke Y, Chen J, Song C, Wang Y, Li Z, Zhang C, Fang X, Chen X. Porcine reproductive and respiratory syndrome virus nsp5 inhibits the activation of the Nrf2/HO-1 pathway by targeting p62 to antagonize its antiviral activity. J Virol 2025:e0158524. [PMID: 40019253 DOI: 10.1128/jvi.01585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections often trigger oxidative stress and cytokine storms, resulting in significant tissue damage that causes fatalities in piglets and reproductive issues in sows. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to PRRSV infection. Here, we found that PRRSV induced cellular oxidative stress by triggering the production of reactive oxygen species and inhibiting the expression of antioxidant enzymes. Although Nrf2 is an important redox regulator that initiates the expression of downstream antioxidant genes, PRRSV can impair the Nrf2/HO-1 pathway. The overexpression of Nrf2 showed a significant anti-PRRSV effect, and inhibiting the expression of Nrf2 promoted the proliferation of PRRSV. Further analysis showed that Nrf2 positively regulated the production of type I interferons and interferon-stimulated genes, which may contribute to its anti-PRRSV effect. By screening the PRRSV-encoded protein, we found that the PRRSV nsp5 protein can degrade Nrf2 at the protein level. Mechanistically, nsp5 promotes Nrf2-Keap1 binding affinity by inhibiting p62-mediated Keap1 sequestration and increasing Keap1 expression. Subsequently, this increased Keap1-mediated degradation of Nrf2 ubiquitination through K48-linked polyubiquitin. Furthermore, we found that the residues Tyr146 and Arg147 of nsp5 are crucial for inhibiting the activation of the p62-mediated Nrf2 antioxidant pathway. Thus, our findings uncover a novel mechanism by which PRRSV disrupts the host antioxidant defense system and highlight the crucial role of the Nrf2/HO-1 antioxidant pathway in host defense against PRRSV.IMPORTANCEOxidative stress-induced redox imbalance is a crucial pathogenic mechanism in viral infections. Nrf2 and its antioxidant genes serve as the main defense pathways against oxidative stress. However, the role of Nrf2 in the context of porcine reproductive and respiratory syndrome virus (PRRSV) infection remains unclear. In this study, we demonstrated that PRRSV infection decreased the expression of antioxidant genes of the Nrf2 signaling pathway and overexpression of Nrf2 triggered a strong anti-PRRSV effect. PRRSV nsp5 enhanced Keap1-dependent degradation of Nrf2 ubiquitination, thereby weakening cellular resistance to oxidative stress and antagonizing the antiviral activity of Nrf2. Our study further revealed a new mechanism by which PRRSV evades host antiviral innate immunity by disturbing cellular redox homeostasis, providing a new target for developing anti-PRRSV drugs.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
29
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Duarte Bernardino C, Lee M, Ren Q, Ruehle B. Facile Spray-Coating of Antimicrobial Silica Nanoparticles for High-Touch Surface Protection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12507-12519. [PMID: 39939280 PMCID: PMC11873980 DOI: 10.1021/acsami.4c18916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The rising threat from infectious pathogens poses an ever-growing challenge. Metal-based nanomaterials have gained a great deal of attention as active components in antimicrobial coatings. Here, we report on the development of readily deployable, sprayable antimicrobial surface coatings for high-touch stainless steel surfaces that are ubiquitous in many healthcare facilities to combat the spread of pathogens. We synthesized mesoporous silica nanoparticles (MSNs) with different surface functional groups, namely, amine (MSN-NH2), carboxy (MSN-COOH), and thiol groups (MSN-SH). These were chosen specifically due to their high affinity to copper and silver ions, which were used as antimicrobial payloads and could be incorporated into the mesoporous structure through favorable host-guest interactions, allowing us to find the most favorable combinations to achieve antimicrobial efficacy against various microbes on dry or semidry high-touch surfaces. The antimicrobial MSNs were firmly immobilized on stainless steel through a simple two-step spray-coating process. First, the stainless steel surfaces are primed with sprayable polyelectrolyte solutions acting as adhesion layers, and then, the loaded nanoparticle dispersions are spray-coated on top. The employed polyelectrolytes were selected and functionalized specifically to adhere well to stainless steel substrates while at the same time being complementary to the MSN surface groups to enhance the adhesion, wettability, homogeneity, and stability of the coatings. The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as a fungal pathogen, Candida albicans. Especially MSN-SH loaded with silver ions showed excellent antimicrobial efficacy against all tested pathogens under application-relevant, (semi)dry conditions. The findings obtained here facilitate our understanding of the correlation between the surface properties, payloads, and antimicrobial activity and show a new pathway toward simple and easily deployable solutions to combat the spread of pathogens with the help of sprayable antimicrobial surface coatings.
Collapse
Affiliation(s)
- Carolina Duarte Bernardino
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
- Humboldt
University Berlin, Unter
den Linden 6, D-10117 Berlin, Germany
| | - Mihyun Lee
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bastian Ruehle
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
31
|
Das S, Jain D, Chaudhary P, Quintela-Tizon RM, Banerjee A, Kesavardhana S. Bat adaptations in inflammation and cell death regulation contribute to viral tolerance. mBio 2025:e0320423. [PMID: 39982110 DOI: 10.1128/mbio.03204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Bats are reservoirs for multiple viruses, some of which are known to cause global disease outbreaks. Virus spillovers from bats have been implicated in zoonotic transmission. Some bat species can tolerate viral infections, such as infections with coronaviruses and paramyxoviruses, better than humans and with less clinical consequences. Bat species are speculated to have evolved alongside these viral pathogens, and adaptations within the bat immune system are considered to be associated with viral tolerance. Inflammation and cell death in response to zoonotic virus infections prime human immunopathology. Unlike humans, bats have evolved adaptations to mitigate virus infection-induced inflammation. Inflammatory cell death pathways such as necroptosis and pyroptosis are associated with immunopathology during virus infections, but their regulation in bats remains understudied. This review focuses on the regulation of inflammation and cell death pathways in bats. We also provide a perspective on the possible contribution of cell death-regulating proteins, such as caspases and gasdermins, in modulating tissue damage and inflammation in bats. Understanding the role of these adaptations in bat immune responses can provide valuable insights for managing future disease outbreaks, addressing human disease severity, and improving pandemic preparedness.
Collapse
Affiliation(s)
- Subham Das
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Disha Jain
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Priyansh Chaudhary
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rita M Quintela-Tizon
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sannula Kesavardhana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Sangfuang N, McCoubrey LE, Awad A, Marzorati M, Ghyselinck J, Verstrepen L, Munck JD, Medts JD, Gaisford S, Basit AW. Effects of senotherapeutics on gut microbiome dysbiosis and intestinal inflammation in Crohn's disease: A pilot study. Transl Res 2025; 278:36-47. [PMID: 39986536 DOI: 10.1016/j.trsl.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, and is usually accompanied by dysbiosis in the gut microbiome, a factor that contributes to disease progression. Excessive production of reactive oxygen species (ROS) because of gut microbiome dysbiosis-one of the hallmark features of IBD-promotes chronic inflammation and facilitates the transformation of normal cells into senescent cells. Cellular senescence is associated with the development of various chronic and age-related diseases. We hypothesise that senolytic agents, specifically dasatinib (D) and quercetin (Q), could have a beneficial effect on both the gut microbiome and intestinal cells in IBD. The modulatory effects of a combination of D + Q was assessed in the M-SHIME model with faecal microbiota sourced from Crohn's disease patients. D + Q significantly modulated butyrate and lactate levels in the samples from specific patients. In addition, metabolomic analysis showed that D + Q positively impacted the abundance of anti-inflammatory bacteria while also significantly reducing the several species of pathogenic bacteria. Findings from a Caco-2 cell/THP1 co-culture model of IBD demonstrated that D + Q exerted strong immunomodulatory effects on the gut epithelium, evidenced by reduced NF-kB activity, and lower levels of the pro-inflammatory markers TNF-α, CXCL-10, and MCP-1. Furthermore, D + Q induced the secretion of anti-inflammatory cytokines, including IL-6 and IL-10. However, it should be noted that D + Q also led to the secretion of the pro-inflammatory cytokines IL-8. These findings suggest that D + Q could offer a novel therapeutic approach for advanced IBD management by modulating both the gut microbiome and inflammatory pathways. The results support the potential repurposing of senotherapeutic agents as a strategy for addressing the chronic inflammation central to IBD pathogenesis.
Collapse
Affiliation(s)
| | - Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Now at Drug Product Development, GSK R&D, Ware SG12 0GX, UK
| | - Atheer Awad
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | | | | | | | | | | | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
33
|
Li S, Yang H, Duan Y, Wu L, Hu C, Yu B, Zhao Y. Role of heat shock proteins in response to temperature stress and their effect on apoptosis in Drosophila melanogaster. Int J Biol Macromol 2025; 306:141320. [PMID: 39984102 DOI: 10.1016/j.ijbiomac.2025.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Temperature is a key ecological factor influencing insect development and survival. Temperature stress triggers insect cell apoptosis. However, factors surrounding the response of insects to various temperature stresses at different developmental stages remain unclear. The molecular mechanisms by which these factors reduce apoptosis are also not well understood. In this study, transcriptome sequencing and differential expression analysis were conducted on the W1118 strain of Drosophila melanogaster at various developmental stages under different temperature treatments (6 °C, 26 °C, 35 °C/37 °C). The analysis revealed that DmenHSP68 is a differentially expressed gene for different developmental stages and under different temperature stresses. The RNA interference (RNAi) suppression of DmenDNAJA1 (HSP40 family), DmenHSP68 (HSP70 family), and DmenHSP83 (HSP90 family) significantly decreased adult survival rates under temperature stress. RT-PCR results showed a significant upregulation of apoptosis-related genes. The levels of apoptosis markers, such as reactive oxygen species (ROS), cytochrome c (Cytc) levels, and Caspase-3 activity significantly increased, while adenosine triphosphate (ATP) levels significantly decreased. This study provides a theoretical foundation for further elucidation of the molecular mechanisms underlying apoptosis in Drosophila under different temperature stresses.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Hao Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yong Duan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liang Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Chunyu Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Bo Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
34
|
Moon KS, Bae JM, Choi EJ, Oh S. Titania nanotubes with aminated reduced graphene oxide as efficient photocatalysts for antibacterial application under visible light. Sci Rep 2025; 15:6127. [PMID: 39971972 PMCID: PMC11839948 DOI: 10.1038/s41598-025-90270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Titania and reduced graphene oxide (rGO) are well-known materials with excellent photocatalytic properties, but research on the photocatalytic-based antibacterial effects of their combination remains limited. This study explored the suitability of titania nanotubes (TiO2 NTs) combined with rGO and two terminal functional groups (nonfunctional and aminated groups (NH2)) as efficient photocatalysts for antimicrobial applications under visible light irradiation. Field-emission scanning electron microscopy observations revealed that rGO covered the entire surface of the TiO2 NTs. Tauc plots calculated from the spectra of diffuse reflectance spectroscopy showed that the band gaps of the nonfunctional and amine functional groups of rGO-coated TiO2 NTs were 2.40 and 2.21 eV, respectively. Therefore, all rGO-coated TiO2 NTs exhibited photocatalytic activity under 470 nm visible light irradiation. An antibacterial colony forming unit test using S. aureus and P. aeruginosa, and two enzymatic activity tests (superoxide dismutase and catalase) on the same bacteria, showed that the aminated rGO-coated TiO2 NTs showed excellent antibacterial activity under 470 nm visible-light irradiation compared to nonfunctional rGO-coated TiO2 NTs and uncoated TiO2 NTs groups. In addition, the MTT assay showed that the aminated rGO-coated TiO2 NTs enhanced cell viability after visible light irradiation. Therefore, the combination of aminated rGO-coated TiO2 NTs and visible-light-triggered photocatalytic activity has significant potential for expressing antibacterial properties in dental applications.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Ji-Myung Bae
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University College of Dentistry, Iksan-Daero 460, Iksan, 54538, Republic of Korea.
| |
Collapse
|
35
|
Shalaby AM, Elshamy AM, Albakkosh AM, Alnasser SM, Alorini M, Jaber FA, Alabiad MA, Hanafy SM, Soliman N, Tawfeek SE. Allicin protects against pancreatic damage induced by zearalenone in rats by inhibiting endoplasmic reticulum stress. Tissue Cell 2025; 94:102802. [PMID: 39986130 DOI: 10.1016/j.tice.2025.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Zearalenone (ZEL) is a mycotoxin generated by Fusarium fungus. Ingestion of ZEL-contaminated foods by humans or animals can cause major health concerns. This work assessed the protective role of allicin in mitigating pancreatic damage caused by ZEL in rats. The experimental rats were allocated into control, Allicin (45 mg/kg /day), ZEL (20 mg/kg/ day), and Allicin-ZEL groups. The agents were administered orally for six weeks. ZEL enhanced the serum levels of amylase and lipase, oxidative stress parameters, and endoplasmic reticulum (ER) stress biomarkers, along with a marked decrease in the serum level of insulin. The disturbed architecture of pancreatic acini was demonstrated in the form of vacuolation of acini, degenerated acini with pyknotic nuclei, and infiltration around dilated congested blood vessels, in addition to the presence of dilated intralobular ducts with retained secretions. Also, the islet of Langerhans cells showed vacuolation and darkly stained nuclei. Immunohistochemically, a marked rise in the expression of heat shock protein 70 (HSP70) and P53 and a marked decline in insulin expression were demonstrated. Ultrastructurally, the pancreatic acinar cells and islets of Langerhans cells displayed shrunken irregular nuclei with dilated perinuclear cisternae and dilated rER. Interestingly, co-administration of allicin and ZEL greatly mitigated these detrimental effects. In summary, allicin inhibited pancreatic injury induced by ZEL by decreasing oxidative stress, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Amira Mostafa Elshamy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah 51911, Saudi Arabia
| | - Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pathology Department, General Medicine Practice program, Batterjee Medical College, Aseer 61961, Saudi Arabia.
| | - Sabah Mohamed Hanafy
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory Medicine Department, Applied Medical Science, Al Baha University, Al Baha, Saudi Arabia
| | - Nema Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence in Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen Elsayed Tawfeek
- Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
36
|
Naik RA, Mir MN, Malik IA, Bhardwaj R, Alshabrmi FM, Mahmoud MA, Alhomrani M, Alamri AS, Alsanie WF, Hjazi A, Ghatak T, Poeggeler B, Singh MP, Ts G, Singh SK. The Potential Mechanism and the Role of Antioxidants in Mitigating Oxidative Stress in Alzheimer's Disease. FRONT BIOSCI-LANDMRK 2025; 30:25551. [PMID: 40018917 DOI: 10.31083/fbl25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and a significant contributor to health issues and mortality among older individuals. This condition involves a progressive deterioration in cognitive function and the onset of dementia. Recent advancements suggest that the development of AD is more intricate than its underlying brain abnormalities alone. In addition, Alzheimer's disease, metabolic syndrome, and oxidative stress are all intricately linked to one another. Increased concentrations of circulating lipids and disturbances in glucose homeostasis contribute to the intensification of lipid oxidation, leading to a gradual depletion of the body's antioxidant defenses. This heightened oxidative metabolism adversely impacts cell integrity, resulting in neuronal damage. Pathways commonly acknowledged as contributors to AD pathogenesis include alterations in synaptic plasticity, disorganization of neurons, and cell death. Abnormal metabolism of some membrane proteins is thought to cause the creation of amyloid (Aβ) oligomers, which are extremely hazardous to neurotransmission pathways, especially those involving acetylcholine. The interaction between Aβ oligomers and these neurotransmitter systems is thought to induce cellular dysfunction, an imbalance in neurotransmitter signaling, and, ultimately, the manifestation of neurological symptoms. Antioxidants have a significant impact on human health since they may improve the aging process by combating free radicals. Neurodegenerative diseases are currently incurable; however, they may be effectively managed. An appealing alternative is the utilization of natural antioxidants, such as polyphenols, through diet or dietary supplements, which offer numerous advantages. Within this framework, we have extensively examined the importance of oxidative stress in the advancement of Alzheimer's disease, as well as the potential influence of antioxidants in mitigating its effects.
Collapse
Affiliation(s)
- Rayees Ahmad Naik
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, 470003 Sagar, Madhya Pradesh, India
| | - Mehak Naseer Mir
- NIMS Institute of Allied Medical Science, National Institute of Medical Sciences (NIMS), 303121 Jaipur, Rajasthan, India
| | - Ishfaq Ahmad Malik
- Department of Zoology, Bar. Ramrao Deshmukh Arts, Smt. Indiraji Kapadia Commerce & Nya. Krishnarao Deshmukh Science College, 444701 Amravati, Maharashtra, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, 411007 Pune, Maharashtra, India
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mahmoud Abdulrahman Mahmoud
- Department of Family & Community Medicine, College of Medicine, Imam Muhammad Ibn Saud Islamic University, 13313 Riyadh, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Tanmoy Ghatak
- Department of Emergency Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014 Lucknow, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology Georg August University Göttingen, Göttingen and Goettingen Research Campus, D-38524 Sassenburg, Germany
| | - Mahendra P Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, 273009 Gorakhpur, Uttar Pradesh, India
| | - Gopenath Ts
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, 570015 Mysuru, Karnataka, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, 226001 Lucknow, Uttar Pradesh, India
| |
Collapse
|
37
|
Chu X, Wang X, Feng K, Bi Y, Xin Y, Liu S. Fucoidan ameliorates lipid accumulation, oxidative stress, and NF-κB-mediated inflammation by regulating the PI3K/AKT/Nrf2 signaling pathway in a free fatty acid-induced NAFLD spheroid model. Lipids Health Dis 2025; 24:55. [PMID: 39962463 PMCID: PMC11831825 DOI: 10.1186/s12944-025-02483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Previous studies have reported that fucoidan can relieve obesity and hepatic steatosis in vivo, although the molecular mechanism remains unclear. This study aimed to explore the effect and potential molecular mechanism of fucoidan in NAFLD using the free fatty acid (FFA)-induced NAFLD spheroid model. MATERIALS AND METHODS The spheroids were constructed by fusing the HepG2 and LX-2 cells. Spheroids and HepG2 cells were stimulated with FFAs and fucoidan, then the intracellular lipid contents and the oxidative stress levels (ROS/MDA/GSH/GR/GPx/NQO1/GCLC/HO-1) were detected. Furthermore, the regulation of PI3K/AKT/Nrf2 pathway and the expression of inflammatory factors (TNF-α and IL-6) were measured. RESULTS Fucoidan markedly reduced FFA-induced intracellular lipid accumulation in spheroids and HepG2 cells. Notably, fucoidan relieved FFA-induced oxidative stress by reducing the levels of ROS and MDA, and elevating the levels of GSH, GR, and GPx. Furthermore, fucoidan reduced FFA-induced oxidative stress by activating the PI3K/AKT/Nrf2 signaling pathway and by inhibiting ROS-induced P65 NF-κB activation and inflammatory responses via Nrf2 pathway activation. CONCLUSIONS Our results demonstrated that fucoidan ameliorated FFA-induced lipid accumulation, oxidative stress, and NF-κB-mediated inflammation through the PI3K/AKT/Nrf2 signaling pathway in the spheroid and HepG2 cells model of NAFLD. These results provided new evidence for the clinical use of fucoidan in the treatment of NAFLD and its potential molecular mechanism of action.
Collapse
Affiliation(s)
- Xueru Chu
- School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xuan Wang
- School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Keqing Feng
- School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yanzhen Bi
- Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong Province, 266011, China
| | - Yongning Xin
- School of Medicine and Pharmacy, Ocean University of China, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China.
- Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong Province, 266011, China.
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
38
|
Albiach-Delgado A, Pinilla-González A, Cascant-Vilaplana MM, Solaz-García Á, Torrejón-Rodríguez L, Lara-Cantón I, Parra-Llorca A, Cernada M, Gormaz M, Pertierra Á, Tapia C, Iriondo M, Aguar M, Kuligowski J, Vento M. The effect of inhaled nitric oxide treatment on biomarkers of oxidative/nitrosative damage to proteins and DNA/RNA. Free Radic Biol Med 2025; 228:350-359. [PMID: 39818239 DOI: 10.1016/j.freeradbiomed.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids. A method for the simultaneous detection of a panel of oxidative and nitrosative stress-related biomarkers for quantifying damage to proteins and DNA/RNA in 20 μL of infant urine samples based on reversed-phase ultra-performance liquid chromatography coupled to tandem mass spectrometry operating in positive electrospray ionization mode (ESI+) was optimized and validated. Infant urine samples from two different studies were analyzed: (i) term and preterm infants from a nutrition study (Nutrishield, N = 50) and (ii) infants with respiratory insufficiency, including infants with PPHN (N = 16) that required iNO treatment and a control group without treatment (N = 14). Eleven of 14 metabolites were detected in >50 % of infant urine samples, with ranges between 0.008 and 1400 μmol/g creatinine. When comparing across groups, differences in samples collected after iNO treatment in comparison to the rest of the groups were found for m-tyrosine (m-Tyr and m-Tyr/Phe) and ortho-tyrosine (o-Tyr and o-Tyr/Phe) (p-values <0.001, Wilcoxon rank-sum test). Positive linear relationships were found with NO exposure corrected by infant weight for m-Tyr, m-Tyr/Phe, o-Tyr, o-Tyr/Phe and 3-nitrotyrosine. Future studies will focus on the evaluation of the impact of iNO treatment on health and oxidative/nitrosative stress-related morbidities associated with prematurity.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Pinilla-González
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Álvaro Solaz-García
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Laura Torrejón-Rodríguez
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Inmaculada Lara-Cantón
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Cernada
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Gormaz
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - África Pertierra
- Division of Neonatology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain
| | - Caridad Tapia
- Division of Neonatology, University General Hospital of Alicante, Pintor Baeza 11, 03010, Alicante, Spain
| | - Martin Iriondo
- Division of Neonatology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain
| | - Marta Aguar
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
39
|
Das N, Pal S, Ray H, Acharya S, Mandal S. Unveiling the impact of anthropogenic wastes on greenhouse gas emissions from the enigmatic mangroves of Indian Sundarban. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178647. [PMID: 39899972 DOI: 10.1016/j.scitotenv.2025.178647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
The greenhouse gas (GHG) emissions from the mangrove ecosystem due to climate change have been an emerging environmental issue in the present scenario. However, the GHGs, emitted through anthropogenic causes in these vulnerable regions are often neglected. The level of soil pollution has increased due to the uncontrolled disposal of wastes from ports, ferry services, plastics, and metals, emitting huge amounts of GHGs. Here, a novel dynamic model on GHG emission was proposed for the simulation of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions using R programming language, where, anthropogenic and environmental drivers were considered. The CO2 emission was sensitive to HMeff2 (impact rate of heavy metals on microbial respiration process) and MPeff3 (impact rate of microplastics on microbial respiration process). The CH4 dynamics was sensitive to HMeff1 (impact rate of heavy metal on methanogenesis process) and MPeff1 (impact rate of microplastics on methanogenesis process) and the N2O pool was sensitive to N2O dif rt. (N2O diffusion rate). Fish waste, heavy metals, and microplastics are the prime emitters of GHG in the Sundarbans. Control and monitoring of plastics, fish wastes, and heavy metals, and strategic implementation of no-plastic or no-waste zones in line with the Sustainable Development Goals (SDGs) would ensure solutions to the present problem.
Collapse
Affiliation(s)
- Nilanjan Das
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Soumyadip Pal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Harisankar Ray
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Suman Acharya
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Sudipto Mandal
- Ecology and Environmental Modelling Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India.
| |
Collapse
|
40
|
Abdelbagi O, Taha M, Al-Kushi AG, Alobaidy MA, Baokbah TAS, Sembawa HA, Azher ZA, Obaid R, Babateen O, Bokhari BT, Qusty NF, Malak HA. Ameliorative Effect of N-Acetylcysteine Against 5-Fluorouracil-Induced Cardiotoxicity via Targeting TLR4/NF-κB and Nrf2/HO-1 Pathways. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:335. [PMID: 40005451 PMCID: PMC11857307 DOI: 10.3390/medicina61020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: 5-Fluorouracil (5-FU) is a widely prescribed and effective chemotherapeutic drug, but its cardiotoxic side effects pose a significant challenge to its use. Identifying a protective agent that does not affect its anticancer efficacy is essential. Our study aimed to investigate the cardioprotective effect of N-acetyl cysteine (NAC) against 5-FU-induced cardiac injury and to elucidate the underlying mechanisms. Materials and Methods: This study included four experimental groups, each with eight rats (n = 8): Group I (control group), Group II (NAC group), Group III (5-FU group), and Group IV (combined group 5-FU+NAC). Cardiac enzymes, oxidative stress, inflammatory, and apoptotic markers were investigated, and cardiac sections from the different groups were histologically examined. Results: Co-treatment of 5-FU with NAC resulted in significantly lower levels of cardiac enzymes (alanine transaminase (ALT) by 62.1%, aspartate transaminase (AST) by 73.6%, lactate dehydrogenase (LDH) by 55.8%, and creatine kinase (CK) by 57.3%) compared to the 5-FU group, along with marked improvements in heart tissue histology. Additionally, NAC enhanced the activity of cardiac antioxidant enzymes (superoxide dismutase (SOD) by 295.6%, catalase (CAT) by 181%, and glutathione peroxidase (GPx) by 320.9%) while decreasing malondialdehyde (MDA) by 51.1%, a marker of membranous lipid peroxidation. This might be due to significant upregulation of the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway at the gene and protein levels. The combined treatment significantly decreased the gene expression of the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) pathway. Furthermore, it downregulated the protein levels of inflammatory markers, including tumor necrosis factor-alpha (TNF-α) by 29.9%, interleukin-1 beta (IL-1β) by 21.9%, and interleukin-6 (IL-6) by 49.3%. Moreover, it upregulated the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) protein levels by 269% and decreased apoptotic indicators Bcl-2-associated protein x (Bax) by 57.9% and caspase-3 by 30.6% compared to the 5-FU group. Conclusions: This study confirmed that NAC prevented the cardiotoxic effect of 5-FU through its antioxidant, anti-inflammatory, and antiapoptotic properties, suggesting its potential application as an adjuvant therapy in chemotherapy to alleviate 5-FU-induced cardiotoxicity.
Collapse
Affiliation(s)
- Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah G. Al-Kushi
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (A.G.A.-K.); (M.A.A.)
| | - Mohammad Ahmad Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (A.G.A.-K.); (M.A.A.)
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Hatem A. Sembawa
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Zohor Asaad Azher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia;
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Bayan T. Bokhari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (B.T.B.); (N.F.Q.)
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (B.T.B.); (N.F.Q.)
| | - Hesham A. Malak
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
41
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
42
|
Gu T, He Y, Zhou J, Qiu X, Yang W, Zhu Q, Liang Y, Zheng Y, Yik JHN, Haudenschild DR, Fan S, Liu C, Shi W, Yao S, Ni W, Hu Z. CircFUNDC1 interacts with CDK9 to promote mitophagy in nucleus pulposus cells under oxidative stress and ameliorates intervertebral disc degeneration. Cell Death Dis 2025; 16:94. [PMID: 39948068 PMCID: PMC11825710 DOI: 10.1038/s41419-025-07425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, with limited effective treatments due to an incomplete understanding of disease mechanisms. In this study, we report that circFUNDC1, a nuclear circular RNA, is markedly downregulated in nucleus pulposus cells (NPCs) from patients with end-stage IVDD. CircFUNDC1 is derived from the gene encoding the FUN14 domain-containing 1 (FUNDC1) protein, which is essential for mitophagy and cell survival. Functional analyses reveal that circFUNDC1 plays a crucial role in maintaining extracellular matrix homeostasis by enhancing the expression of anabolic factors in NPCs. Additionally, we identified the transcriptional regulator cyclin-dependent kinase 9 (CDK9) as a novel binding partner for circFUNDC1. Binding with circFUNDC1 recruits CDK9 via complementary nucleotides to the FUNDC1 promoter to stimulate the production of full-length FUNDC1 mRNAs and proteins, forming a positive feedback loop. Overexpression of circFUNDC1 protects NPCs from oxidative stress by promoting mitophagy, reducing reactive oxygen species levels, and inhibiting cellular senescence. Moreover, circFUNDC1 overexpression delays the onset of IVDD in an ex-vivo culture model. This study is the first to demonstrate that circFUNDC1 is vital for protecting NPCs from oxidative stress, suggesting circFUNDC1 as a potential therapeutic target for IVDD.
Collapse
Affiliation(s)
- Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yong He
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiong Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yang Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jasper H N Yik
- Houston Methodist Research Institute, Department of Translational Orthopedic Research, Houston, TX, US
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, US
| | - Dominik R Haudenschild
- Houston Methodist Research Institute, Department of Translational Orthopedic Research, Houston, TX, US
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, US
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chao Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenli Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ziang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Rout S, Panda PK, Dash P, Srivastav PP, Hsieh CT. Cold Plasma-Induced Modulation of Protein and Lipid Macromolecules: A Review. Int J Mol Sci 2025; 26:1564. [PMID: 40004030 PMCID: PMC11855354 DOI: 10.3390/ijms26041564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Nowadays, the food industry is prioritizing many innovative processing technologies that can produce minimally processed foods with superior and higher quality, lower costs, and faster operations. Among these advancements, cold plasma (CP) processing stands out for its remarkable capabilities in food preservation and extending the shelf life. Beyond its established role in microbial inactivation, CP has emerged as a transformative tool for modifying food biomolecules through reactive plasma species, addressing the versatile requirements of food industries for various applications. This review focuses on the interactions between reactive plasma species and essential food macromolecules, including proteins, lipids, and polysaccharides. The novelty lies in its detailed examination of how CP technology triggers structural, functional, and biochemical changes in proteins and lipids and explains the mechanisms involved. It connects fundamental molecular transformations to practical applications, such as enhanced protein functionality, lipid stabilization, and improved oxidative resistance. CP induces alterations in protein structure, especially in amino acid configurations, that can be applicable to the formulation of advanced gel, 3D printing, thermostable emulsions, enhanced solubility, and sensory materials. This review explores the ability of CP to modify protein allergenicity, its different effects on the mechanical and interfacial properties of proteins, and its role in the production of trans-fat-free oils. Despite its potential, a detailed understanding of the mechanism of CP's interactions with food macromolecules is also discussed. Furthermore, this review addresses key challenges and outlines future research opportunities, positioning CP as a sustainable and adaptable approach for innovating next-generation food systems. Further research is crucial to fully understand the potential of CP for food processing, followed by product development.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan;
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
44
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
45
|
Lin B, Wu T, Nasb M, Li Z, Chen N. Regular exercise alleviates metabolic dysfunction-associated steatohepatitis through rescuing mitochondrial oxidative stress and dysfunction in liver. Free Radic Biol Med 2025; 230:163-176. [PMID: 39954868 DOI: 10.1016/j.freeradbiomed.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe mitochondrial dysfunction, associated with the production of mitochondrial reactive oxygen species (mROS). The substantial generation of mROS in the MASH liver, resulting from lipid surplus and electron transport chain (ETC) overload, impairs mitochondrial structure and functionality, thereby contributing to the development of severe hepatic steatosis and inflammation. Regular exercise represents an effective strategy for the treatment of MASH. Understanding the effects of exercise on oxidative stress and mitochondrial function is essential for effective treatment of MASH. This article reviews the pathological alterations in mitochondrial β-oxidation, ETC efficiency and mROS production within MASH liver. Additionally, it discusses how exercise influences the redox state and mitochondrial quality control mechanisms-such as biogenesis, mitophagy, fusion, and fission-within the MASH liver. The article emphasizes the importance of in-depth studies on exercise-induced MASH mitigation through the enhancement of mitochondrial redox balance, quality control, and function. Exploring the relationship between exercise and hepatic mitochondria could provide valuable insights into identifying potential therapeutic targets for MASH.
Collapse
Affiliation(s)
- Baoxuan Lin
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Zeyun Li
- Department of Rehabilitation Medicine, Xiangtan Central Hospital, Xiangtan, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China.
| |
Collapse
|
46
|
Schlor LA, Peußner M, Müller S, Marx A. Potent inhibitors of the human RNA ligase Rlig1 highlights its role in RNA integrity maintenance under oxidative cellular stress. Chem Sci 2025; 16:3313-3322. [PMID: 39845873 PMCID: PMC11747885 DOI: 10.1039/d4sc06542e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Human RNA ligase 1 (Rlig1) catalyzes the ligation of 5'-phosphate to 3'-hydroxyl ends via a conserved three-step mechanism. Rlig1-deficient HEK293 cells exhibit reduced cell viability and RNA integrity under oxidative stress, suggesting Rlig1's role in RNA repair maintenance. Reactive oxygen species (ROS) are linked to various diseases, including neurodegenerative disorders and cancer, where RNA damage has significant effects. This study identifies and characterizes Rlig1 inhibitors to elucidate its role in RNA metabolism. We developed a fluorescence resonance energy transfer (FRET)-based assay to monitor RNA ligation and screened a library of 13 026 bioactive small molecules. SGI-1027 emerged as a promising lead compound, and structure-activity relationship (SAR) studies revealed that the terminal residues play a key role in its inhibitory effect. In total 22 SGI-1027 derivatives were synthesized and tested, providing insights into the structural requirements for effective Rlig1 inhibition. Three derivatives showed low micromolar IC50 values and minimal cytotoxicity in HEK293 cells under physiological conditions. The combination of Rlig1 inhibition and oxidative stress led to reduced cell viability and compromised RNA integrity, reinforcing Rlig1's role in RNA maintenance. These findings provide a foundation for developing novel therapeutics aimed at targeting RNA maintenance pathways in conditions of dysregulated ROS levels.
Collapse
Affiliation(s)
- Lisa A Schlor
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Maya Peußner
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Silke Müller
- Department of Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Screening Center, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
47
|
Yang J, Park MJ. Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules 2025; 30:833. [PMID: 40005143 PMCID: PMC11858331 DOI: 10.3390/molecules30040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Essential oils from citrus cultivars are widely used in food, cosmetic, and pharmaceutical industries, and they have been extensively studied in the last decades. This study investigates the antioxidant activities of essential oils from 21 citrus cultivars and the active antioxidant constituents of the oils. Essential oils are extracted from the peels of citrus cultivars via hydrodistillation, and their chemical compositions are analyzed by gas-chromatography-mass-spectroscopy. The antioxidant activities of the citrus cultivars are determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric-reducing antioxidant potential (FRAP) assays. Based on the results, the major constituent of the oils is d-limonene (50.88-97.19%). The essential oil from Citrus junos shows the highest phenolic content (360.04 ± 24.75 mg GAE/100 g), followed by that from Citrus × latifolia (339.42 ± 31.14 mg GAE/100 g), [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata (327.05 ± 14.29 mg GAE/100 g), and [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata (322.92 ± 21.43 mg GAE/100 g). The essential oil from [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata shows the highest DPPH and ABTS radical scavenging activity, with an EC50 of 86.17 ± 4.87 and 0.16 ± 0.06 mg/mL, respectively. The essential oil from Citrus reticulata and [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata shows the highest ferric-reducing activities (2302.55 ± 237.26 and 2213.12 ± 35.54 mg/100 g, respectively). These results indicate that the essential oil from [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata has a higher antioxidation effect than that from other cultivars. By comparing the chemical compositions of the essential oils, 12 compounds are selected as the major contributors to the antioxidant activities of the oils, and α-phellandrene and α-terpinene are the most active constituents of the oils.
Collapse
Affiliation(s)
- Jiyoon Yang
- Division of Wood Industry, Department of Forest Products and Industry, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Mi-Jin Park
- Division of Forest Industrial Materials, Department of Forest Products and Industry, National Institute of Forest Science, Seoul 02455, Republic of Korea
| |
Collapse
|
48
|
Kaltsas A, Giannakas T, Stavropoulos M, Kratiras Z, Chrisofos M. Oxidative Stress in Benign Prostatic Hyperplasia: Mechanisms, Clinical Relevance and Therapeutic Perspectives. Diseases 2025; 13:53. [PMID: 39997060 PMCID: PMC11854834 DOI: 10.3390/diseases13020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) is among the most common conditions affecting men as they age, resulting in lower urinary tract symptoms (LUTS) that can profoundly impact quality of life. While historically attributed primarily to androgenic imbalances, current evidence implicates additional factors-particularly oxidative stress (OS) and chronic inflammation-in BPH pathogenesis. This review aims to synthesize research on the interplay between OS, inflammation, and hormonal regulation in BPH, emphasizing their clinical relevance and potential therapeutic implications. METHODS A comprehensive review of peer-reviewed literature was conducted focusing on mechanistic studies, clinical trials, and observational reports. Searches included data on ROS generation, antioxidant capacity, inflammatory mediators, and their contribution to pathological prostatic overgrowth. Potential interventions targeting OS-such as antioxidant supplementation, anti-inflammatory drugs, vitamin D receptor agonists, and phytotherapeutics-were also evaluated for their efficacy and safety profiles. RESULTS Chronic inflammation and OS were consistently identified within hyperplastic prostate tissue. Excessive ROS production, diminished antioxidant defense, and sustained cytokine release create a proproliferative and antiapoptotic environment, accelerating disease progression. Metabolic comorbidities (e.g., obesity, insulin resistance) further exacerbate these imbalances. Standard therapies (α-blockers and 5-ARIs) effectively relieve symptoms but do not directly address the oxidative-inflammatory axis. Emerging evidence suggests that pharmacological and dietary approaches targeting OS and inflammation may reduce prostate volume expansion and alleviate LUTS. CONCLUSIONS Findings indicate that OS and inflammation are key contributors to BPH progression. Incorporating antioxidant and anti-inflammatory strategies alongside conventional treatments holds promise for improving clinical outcomes and patient quality of life. Future research should focus on validating OS-specific biomarkers and optimizing personalized therapy regimens.
Collapse
Affiliation(s)
| | | | | | | | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (T.G.); (M.S.); (Z.K.)
| |
Collapse
|
49
|
Gonçalves ASC, Fernandes JR, Saavedra MJ, Guimarães NM, Pereira C, Simões M, Borges A. New insights on antibacterial mode of action of blue-light photoactivated berberine and curcumin-antibiotic combinations against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2025; 52:104514. [PMID: 39920956 DOI: 10.1016/j.pdpdt.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Antimicrobial photodynamic inactivation (aPDI), using photosensitisers in combination with antibiotics, is a promising multi-target strategy to address antibiotic resistance, particularly in wound infections. This study aimed to elucidate the antibacterial mode of action of combinations of berberine (Ber) or curcumin (Cur) with selected antibiotics (Ber-Ab or Cur-Ab) under blue light irradiation (420 nm) against Staphylococcus aureus, including methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Multiple physiological parameters were assessed using complementary assays (fluorometry, epifluorescence microscopy, flame emission and atomic absorption spectroscopy, zeta potential, flow cytometry, and the plate agar method) to examine the effect on ROS production, membrane integrity, DNA damage, motility and virulence factors of S. aureus. Results indicated that blue light photoactivated Ber-Ab and Cur-Ab combinations led to substantial ROS generation, even at low concentrations, causing oxidative stress that severely impacted bacterial membrane integrity (approximately 90 % in MRSA and 40 % in MSSA). Membrane destabilization was further confirmed by elevated intercellular potassium release (≈ 2.00 and 2.40 µg/mL in MRSA and MSSA, respectively). Furthermore, significant DNA damage was observed in both strains (≈ 50 %). aPDI treatment with blue light also reduced S. aureus pathogenicity by impairing motility and inhibiting key virulence factors such as proteases, lipases, and gelatinases, all of which play key roles in the infectious process. Overall, Ber-Ab combinations demonstrated the highest efficacy across all parameters tested, highlighting for the first time the multi-target therapeutic potential of this phytochemical-based aPDI strategy to combat antibiotic-resistant S. aureus infections and improve wound infection treatment outcomes.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801, Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Nuno M Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, d, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
50
|
Ahmedy GS, Selim HM, El-Aasr M, Ibrahim SM, El-Sherbeni SA. Phytochemicals of Vitis vinifera L. var. King Ruby protect mice from benzo(a)pyrene-induced lung injury. Sci Rep 2025; 15:4536. [PMID: 39915503 PMCID: PMC11802910 DOI: 10.1038/s41598-025-86173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
The world's concern about smoking hazards, chronic obstructive pulmonary disease (COPD) and lung cancer was the motivation to investigate plants as a source of new drugs with lung protective effect. The phytochemical profile of Vitis vinifera L. var. King Ruby leaves methanol extract (VLME) was tentatively recognized by liquid chromatography electrospray ionization tandem mass spectrometric (LC-ESI-MS/MS). Fifty-two and forty-seven compounds were identified by negative and positive ESI modes, respectively. Taraxerol (1), β-sitosterol (2), daucosterol (3), quercetin-3-O-β-D-glucuronoide-6″-methyl ester (4) and isoquercetin (5) were isolated from VLME. The sulforhodamine B (SRB) assay of the different fractions against A-549 cell line revealed that the methylene chloride fraction (MCF) had the lowest cell viability at 300 µg/mL (4.54 ± 0.19%). Mice of 10 groups (n = 6) was treated as follows: Group I (negative control group), group II (disease control, mice received B(a)P 125 mg/kg, orally), groups III-V (mice received 100, 200, and 300 mg/kg of VLME, followed by B(a)P), group VI (mice received only 300 mg/kg of VLME), groups VII-XI (mice received 100, 200, and 300 mg/kg of MCF, followed by B(a)P), group X (mice received only 300 mg/kg of MCF). On the seventh day, all groups received a single oral dose of B(a)P 125 mg/kg body, except group I, VI and X. In vivo studies showed VLME and MCF (300 mg/kg body weight) effectively mitigated benzo(a)pyrene-induced lung injuries in mice. The anti-inflammatory effects were confirmed by the downregulation of cyclooxygenase-2 (COX-2) and CD34, alongside reduced nuclear factor-kappa B (NF-κB) expression. Antioxidant activity was indicated by decreased malondialdehyde (MDA) levels and inducible nitric oxide synthase (iNOS) expression with the remarkable increase in glutathione (GSH). Histological improvements further support the potential of Vitis vinifera L. leaves as a natural lung protectant. Further pre-clinical and clinical investigations will be required to deliver a new drug with promising protection effect.
Collapse
Affiliation(s)
- Gehad S Ahmedy
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Hend M Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Souzan M Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Suzy A El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|