1
|
Sahraei S, Mahdinezhad N, Emamjomeh A, Kavousi K, Solouki M, Delledonne M. Differentiation of long Non-Coding RNA expression profiles in three Fruiting stages of grape. Gene 2025; 934:149029. [PMID: 39447709 DOI: 10.1016/j.gene.2024.149029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Grapes are considered a crucial fruit crop with extensive uses globally. Cluster compactness is an undesirable trait for the productivity of Yaghooti grape, and it reduces its desirability among consumers. The RNA-Seq data were analyzed in three stages of cluster development using the FEELnc software, leading to the identification of 849 lncRNAs. 183 lncRNAs were differentially expressed during cluster development stages. The GO and KEGG enrichment analyses of these lncRNAs revealed that they target 1,814 genes, including CKX, PG, PME, NPC2, and UGT. The analysis demonstrated a relationship between these lncRNAs and key processes such as grape growth and development, secondary metabolite synthesis, and resistance to both biotic and abiotic stresses. These findings, combined with molecular experiments on lncRNA interactions with other regulatory factors, could enhance Yaghooti grape quality and decrease cluster compactness.
Collapse
Affiliation(s)
- Shahla Sahraei
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Nafiseh Mahdinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
2
|
Zheng S, Chen J, He Y, Lu J, Chen H, Liang Z, Zhang J, Liu Z, Li J, Zhuang C. The OsAGO2-OsNAC300-OsNAP module regulates leaf senescence in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2395-2411. [PMID: 39171847 PMCID: PMC11583845 DOI: 10.1111/jipb.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Leaves play a crucial role in the growth and development of rice (Oryza sativa) as sites for the production of photosynthesis. Early leaf senescence leads to substantial drops in rice yields. Whether and how DNA methylation regulates gene expression and affects leaf senescence remains elusive. Here, we demonstrate that mutations in rice ARGONAUTE 2 (OsAGO2) lead to premature leaf senescence, with chloroplasts in Osago2 having lower chlorophyll content and an abnormal thylakoid structure compared with those from wild-type plants. We show that OsAGO2 associates with a 24-nt microRNA and binds to the promoter region of OsNAC300, which causes DNA methylation and suppressed expression of OsNAC300. Overexpressing OsNAC300 causes the similar premature leaf senescence as Osago2 mutants and knocking out OsNAC300 in the Osago2 mutant background suppresses the early senescence of Osago2 mutants. Based on yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays, we propose that OsNAC300 directly regulates transcription of the key rice aging gene NAC-like, activated by APETALA3/PISTILLATA (OsNAP) to control leaf senescence. Our results unravel a previously unknown epigenetic regulatory mechanism underlying leaf senescence in which OsAGO2-OsNAC300-OsNAP acts as a key regulatory module of leaf senescence to maintain leaf function.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Ying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Hong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zipeng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
3
|
Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, Alagarswamy S, Swaminathan M, Manickam S, Muthurajan R. Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2972. [PMID: 39519891 PMCID: PMC11547960 DOI: 10.3390/plants13212972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs.
Collapse
Affiliation(s)
- Archana Thiruppathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shobica Priya Ramasamy
- Department of Plant Breeding and Genetics, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Rakshana Palaniswamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| |
Collapse
|
4
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Haber Z, Sharma D, Selvaraj KSV, Sade N. Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112021. [PMID: 38311249 DOI: 10.1016/j.plantsci.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have been implemented in recent years in the genome editing of eukaryotes, including plants. The original system of knocking out a single gene by causing a double-strand break (DSB), followed by non-homologous end joining (NHEJ) or Homology-directed repair (HDR) has undergone many adaptations. These adaptations include employing CRISPR/Cas9 to upregulate gene expression or to cause specific small changes to the DNA sequence of the gene-of-interest. In plants, multiplexing, i.e., inducing multiple changes by CRISPR/Cas9, is extremely relevant due to the redundancy of many plant genes, and the time- and labor-consuming generation of stable transgenic plant lines via crossing. Here we discuss relevant examples of various traits, such as yield, biofortification, gluten content, abiotic stress tolerance, and biotic stress resistance, which have been successfully manipulated using CRISPR/Cas9 in plants. While existing studies have primarily focused on proving the impact of CRISPR/Cas9 on a single trait, there is a growing interest among researchers in creating a multi-stress tolerant wheat cultivar 'super wheat', to commercially and sustainably enhance wheat yields under climate change. Due to the complexity of the technical difficulties in generating multi-target CRISPR/Cas9 lines and of the interactions between stress responses, we propose enhancing already commercial local landraces with higher yield traits along with stress tolerances specific to the respective localities, instead of generating a general 'super wheat'. We hope this will serve as the sustainable solution to commercially enhancing crop yields under both stable and challenging environmental conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - K S Vijai Selvaraj
- Vegetable Research Station, Tamil Nadu Agricultural University, Palur 607102, Tamil Nadu, India
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Lu J, Jiang Z, Chen J, Xie M, Huang W, Li J, Zhuang C, Liu Z, Zheng S. SET DOMAIN GROUP 711-mediated H3K27me3 methylation of cytokinin metabolism genes regulates organ size in rice. PLANT PHYSIOLOGY 2024; 194:2069-2085. [PMID: 37874747 DOI: 10.1093/plphys/kiad568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Organ size shapes plant architecture during rice (Oryza sativa) growth and development, affecting key factors influencing yield, such as plant height, leaf size, and seed size. Here, we report that the rice Enhancer of Zeste [E(z)] homolog SET DOMAIN GROUP 711 (OsSDG711) regulates organ size in rice. Knockout of OsSDG711 produced shorter plants with smaller leaves, thinner stems, and smaller grains. We demonstrate that OsSDG711 affects organ size by reducing cell length and width and increasing cell number in leaves, stems, and grains. The result of chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) using an antitrimethylation of histone H3 lysine 27 (H3K27me3) antibody showed that the levels of H3K27me3 associated with cytokinin oxidase/dehydrogenase genes (OsCKXs) were lower in the OsSDG711 knockout line Ossdg711. ChIP-qPCR assays indicated that OsSDG711 regulates the expression of OsCKX genes through H3K27me3 histone modification. Importantly, we show that OsSDG711 directly binds to the promoters of these OsCKX genes. Furthermore, we measured significantly lower cytokinin contents in Ossdg711 plants than in wild-type plants. Overall, our results reveal an epigenetic mechanism based on OsSDG711-mediated modulation of H3K27me3 levels to regulate the expression of genes involved in the cytokinin metabolism pathway and control organ development in rice. OsSDG711 may be an untapped epigenetic resource for ideal plant type improvement.
Collapse
Affiliation(s)
- Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zuojie Jiang
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minyan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenda Huang
- China Water Resources Pearl River Planning, Surveying & Designing Co. Ltd., Guangzhou 510610, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Rengasamy B, Manna M, Thajuddin NB, Sathiyabama M, Sinha AK. Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:185-198. [PMID: 38623165 PMCID: PMC11016042 DOI: 10.1007/s12298-024-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01423-y.
Collapse
Affiliation(s)
- Balakrishnan Rengasamy
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nargis Begum Thajuddin
- P. G. and Research Department of Biotechnology, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
8
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
Li J, Liu Y, Zhang J, Cao L, Xie Q, Chen G, Chen X, Hu Z. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108160. [PMID: 37944243 DOI: 10.1016/j.plaphy.2023.108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Hexokinase is considered to be the key molecule in sugar signaling and metabolism. Here, we reported that silencing SlHXK1 resulted in a decrease in flower number, increased rate of flower dropping, abnormal thickening of the anther wall, and reduced pollen and seed viability. An anatomical analysis revealed the loss of small cells and abnormal thickening of anther walls in SlHXK1-RNAi lines. Treatment with auxin and 1-methylcyclopropene inhibited flower dropping from the pedicel abscission zone. qRT-PCR analysis revealed that the effect of SlHXK1 on abscission was associated with the expression levels of genes related to key meristem, auxin, ethylene, cell wall metabolism and programmed cell death. Pollen germination and pollen staining experiments showed that pollen viability was significantly reduced in the SlHXK1-RNAi lines. Physiological and biochemical analyses showed that hexokinase activity and starch content were markedly decreased in the transgenic lines. The expression of genes related to tomato pollen development was also suppressed in the transgenic lines. Although the RNAi lines eventually produced some viable seeds, the yield and quality of the seeds was lower than that of wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SlHXK1 interacted with SlKINγ. Furthermore, SlPIF4 inhibited the transcriptional expression of SlHXK1. In conclusion, our results demonstrate that SlHXK1 may play important roles in pollen, anther, seed and the pedicel abscission zone by affecting starch accumulation or cell wall synthesis, as well as by regulating the number of the transcripts of genes that are involved in auxin, ethylene and cell wall degradation.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Yu Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Lili Cao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
10
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
11
|
Zhao L, Yang Y, Hu P, Qiao Q, Lv G, Li J, Liu L, Wei J, Ren Y, Dong Z, Chen F. Genetic mapping and analysis of candidate leaf color genes in common winter wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:48. [PMID: 37313222 PMCID: PMC10248616 DOI: 10.1007/s11032-023-01395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
Leaf color-related genes play key roles in chloroplast development and photosynthetic pigment biosynthesis and affect photosynthetic efficiency and grain yield in crops. In this study, a recessive homozygous individual displaying yellow leaf color (yl1) was identified in the progeny population derived from a cross between wheat cultivars Xingmai1 (XM1) and Yunong3114 (YN3114). Phenotypic identification showed that yl1 exhibited the yellow character state over the entire growth period. Compared with XM1, yl1 plants had significantly lower chlorophyll content and net photosynthetic rate, and similar results were found between the green-type lines and yellow-type lines in the BC2F3 XM1 × yl1 population. Gene mapping via the bulked segregant exome capture sequencing (BSE-seq) method showed that the target gene TaYL1 was located within the region of 582,556,971-600,837,326 bp on chromosome 7D. Further analysis by RNA-seq suggested TraesCS7D02G469200 as a candidate gene for yellow leaf color in common wheat, which encodes a protein containing the AP2 domain. Moreover, comparative transcriptome profiling revealed that most differentially expressed genes (DEGs) were enriched in chlorophyll metabolism and photosynthesis pathways. Together, these results indicate that TaYL1 potentially affects chlorophyll synthesis and photosynthesis. This study further elucidates the biological mechanism of chlorophyll synthesis, metabolism, and photosynthesis in wheat and provides a theoretical basis for high photosynthetic efficiency in wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01395-z.
Collapse
Affiliation(s)
- Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yulu Yang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Pengyu Hu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Qi Qiao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Jiaqi Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Jiajie Wei
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|
12
|
Li Y, Liu W, Zhang X, Wang S, Yadegari R, Wang J. Editorial: Advances in crop biomass production based on multi-omics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1155442. [PMID: 37152170 PMCID: PMC10154669 DOI: 10.3389/fpls.2023.1155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Yin Li,
| | - Weizhen Liu
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Wang Y, Wang Y, Tang Y, Zhu XG. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102310. [PMID: 36376162 DOI: 10.1016/j.pbi.2022.102310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
100-120 words. References should not be included. Abbreviations should be avoided as far as possible. Low stomatal conductance (gs) poses a major constraint for improving photosynthetic efficiency for greater yield. Options at the molecular, leaf, canopy, and even the whole plant scales can be developed to enhance gs for greater light and water use efficiencies. Among these, many genes regulating stomatal development and stomatal movement have been discovered and manipulated to increase light and water use efficiencies under well-watered, drought, or facility agriculture conditions with the manual-controlled growth environmental. Optimization of canopy conductance to increase whole plant photosynthesis with full consideration of the heterogeneities in gs, microclimates and leaf ontology inside the canopy represents a largely uncharted area to improve crop efficiency.
Collapse
Affiliation(s)
- Yin Wang
- College of Urban and Environmental Sciences, Peking University, China
| | - Yizhou Wang
- College of Agriculture and Biotechnology, Zhejiang University, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, Peking University, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
14
|
Ren R, Wan Z, Chen H, Zhang Z. The effect of inter-varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:1-13. [PMID: 36030618 DOI: 10.1016/j.plaphy.2022.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Sugar synthesis from photosynthesis and its utilization through sugar metabolism jointly determine leaf sugar content, and in contrast, excess sugar represses leaf photosynthesis. Although plant photosynthesis is affected by leaf sugar metabolism, the relationship between sugar metabolism and photosynthetic capacity of different grape genotypes remains unclear. In this study, two grape (Vitis vinifera L.) genotypes 'Riesling' (RI, high sugar content in leaf) and 'Petit Manseng' (PM, low sugar content in leaf) were used to evaluate the relationship between sugar metabolism and photosynthesis. Sugar content, chlorophyll content, photosynthetic parameters, enzyme activity, and gene expression related to sucrose metabolism in leaves were measured, and the correlations between photosynthesis and sugar metabolism were assessed. The contents of sucrose and glucose were significantly higher in RI leaves than in PM leaves, while the fructose content pattern was reversed. Cell wall invertase activity for sucrose hydrolysis and the transcript levels of VvCWINV, VvHTs, VvTMT1, VvFKs, and VvHXK2 were also higher in RI leaves than in PM leaves, whereas that of VvHXK1 mediating glucose phosphorylation, was lower in RI leaves than in PM leaves. Net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll content were lower in RI leaves than in PM leaves and negatively correlated with glucose content, and the transcript levels of VvCWINV, VvHTs, VvTMT1, and VvHXK2. In conclusion, this study indicates that leaf sugar metabolism and transport are related to photosynthesis in Vitis vinifera L., which provides a theoretical basis for improving grape photosynthesis.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Huawei Chen
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China; China Wine Industry Technology Institute, Room 1606, Zhongguancun Innovation Center, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
15
|
Yun P, Li Y, Wu B, Zhu Y, Wang K, Li P, Gao G, Zhang Q, Li X, Li Z, He Y. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3417-3431. [PMID: 35941236 DOI: 10.1007/s00122-022-04189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.
Collapse
Affiliation(s)
- Peng Yun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Liu C, Li N, Lu Z, Sun Q, Pang X, Xiang X, Deng C, Xiong Z, Shu K, Yang F, Hu Z. CG and CHG Methylation Contribute to the Transcriptional Control of OsPRR37-Output Genes in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:839457. [PMID: 35242159 PMCID: PMC8885545 DOI: 10.3389/fpls.2022.839457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
Plant circadian clock coordinates endogenous transcriptional rhythms with diurnal changes of environmental cues. OsPRR37, a negative component in the rice circadian clock, reportedly regulates transcriptome rhythms, and agronomically important traits. However, the underlying regulatory mechanisms of OsPRR37-output genes remain largely unknown. In this study, whole genome bisulfite sequencing and high-throughput RNA sequencing were applied to verify the role of DNA methylation in the transcriptional control of OsPRR37-output genes. We found that the overexpression of OsPRR37 suppressed rice growth and altered cytosine methylations in CG and CHG sequence contexts in but not the CHH context (H represents A, T, or C). In total, 35 overlapping genes were identified, and 25 of them showed negative correlation between the methylation level and gene expression. The promoter of the hexokinase gene OsHXK1 was hypomethylated at both CG and CHG sites, and the expression of OsHXK1 was significantly increased. Meanwhile, the leaf starch content was consistently lower in OsPRR37 overexpression lines than in the recipient parent Guangluai 4. Further analysis with published data of time-course transcriptomes revealed that most overlapping genes showed peak expression phases from dusk to dawn. The genes involved in DNA methylation, methylation maintenance, and DNA demethylation were found to be actively expressed around dusk. A DNA glycosylase, namely ROS1A/DNG702, was probably the upstream candidate that demethylated the promoter of OsHXK1. Taken together, our results revealed that CG and CHG methylation contribute to the transcriptional regulation of OsPRR37-output genes, and hypomethylation of OsHXK1 leads to decreased starch content and reduced plant growth in rice.
Collapse
Affiliation(s)
- Chuan Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Chuan Liu,
| | - Na Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zeping Lu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Qianxi Sun
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinhan Pang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xudong Xiang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Changhao Deng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhengshuojian Xiong
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Dou L, Li Z, Wang H, Li H, Xiao G, Zhang X. The hexokinase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:882587. [PMID: 35651774 PMCID: PMC9149573 DOI: 10.3389/fpls.2022.882587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Hexokinase (HXK) is involved in hexose phosphorylation, sugar sensing, and signal transduction, all of which regulate plant growth and adaptation to stresses. Gossypium hirsutum L. is one of the most important fiber crops in the world, however, little is known about the HXKs gene family in G. hirsutum L. We identified 17 GhHXKs from the allotetraploid G. hirsutum L. genome (AADD). G. raimondii (DD) and G. arboreum (AA) are the diploid progenitors of G. hirsutum L. and contributed equally to the At_genome and Dt_genome GhHXKs genes. The chromosomal locations and exon-intron structures of GhHXK genes among cotton species are conservative. Phylogenetic analysis grouped the HXK proteins into four and three groups based on whether they were monocotyledons and dicotyledons, respectively. Duplication event analysis demonstrated that HXKs in G. hirsutum L. primarily originated from segmental duplication, which prior to diploid hybridization. Experiments of qRT-PCR, transcriptome and promoter cis-elements demonstrated that GhHXKs' promoters have auxin and GA responsive elements that are highly expressed in the fiber initiation and elongation stages, while the promoters contain ABA-, MeJA-, and SA-responsive elements that are highly expressed during the synthesis of the secondary cell wall. We performed a comprehensive analysis of the GhHXK gene family is a vital fiber crop, which lays the foundation for future studies assessing its role in fiber development.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zihan Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - HuaiZhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guanghui Xiao,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| |
Collapse
|
18
|
Zheng S, Lu J, Yu D, Li J, Zhou H, Jiang D, Liu Z, Zhuang C. Hexokinase gene OsHXK1 positively regulates leaf senescence in rice. BMC PLANT BIOLOGY 2021; 21:580. [PMID: 34879830 PMCID: PMC8653616 DOI: 10.1186/s12870-021-03343-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence. RESULTS This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice. The upregulation of OsHXK1 led to premature senescence of rice leaves, a decreased level of chlorophyll, and damage to the chloroplast structure. The overexpression of OsHXK1 resulted in increases in glucose and ROS levels and produced programmed cell death (PCD) signals earlier at the booting stage. Further analysis showed that expression level of the respiratory burst oxidase homolog (RBOH) genes and OsGLO1 were increased in OsHXK1-overexpressing plants at the booting stage. CONCLUSIONS Overall, the outcomes of this study suggested that OsHXK1 could act as a positive regulator of rice leaf senescence by mediating glucose accumulation and inducing an increase in ROS.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Di Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. PLANTS 2021; 10:plants10102055. [PMID: 34685863 PMCID: PMC8540305 DOI: 10.3390/plants10102055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
RNA-guided genomic transcriptional regulation tools, namely clustered regularly interspaced short palindromic repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for gene functional studies. Deriving from the CRISPR/Cas9 system, both systems consist of a catalytically dead Cas9 (dCas9), a transcriptional effector and a single guide RNA (sgRNA). This type of dCas9 is incapable to cleave DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, protospacer adjacent motif (PAM) sequence requirements, efficient delivery methods and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement.
Collapse
Affiliation(s)
- Chou Khai Soong Karlson
- Center for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd-Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nadja Nolte
- Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands;
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|