1
|
Gao Y, Qiu Y, Lu S. Genetically Predicted Sleep Traits and Sensorineural Hearing Loss: A Mendelian Randomization Study. Laryngoscope 2024; 134:4723-4729. [PMID: 38818872 DOI: 10.1002/lary.31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Observational studies suggest a potential association between sleep characteristics, sensorineural hearing loss (SNHL), and sudden SNHL (SSNHL), but causal evidence is scarce. We sought to clarify this issue using two-sample Mendelian randomization analysis. METHODS The inverse-variance weighted (IVW) method was performed as primary analysis to assess bidirectional causal associations between sleep traits (chronotype, sleep duration, insomnia, daytime sleepiness, and snoring) and SNHL/SSNHL using publicly available Genome-Wide Association Studies summary data from two large consortia (UK Biobank and FinnGen). Sensitivity analyses, including Mendelian randomization (MR)-Egger, Mendelian randomization pleiotropy residual sum and outlier, weight median, Cochran's Q test, leave-one-out analysis, and potential pleiotropy analysis, were conducted to ensure robustness. RESULTS IVW analysis found suggestive associations of morning chronotype (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 1.01-1.16, p = 0.031) and daytime sleepiness (OR = 1.88, 95% CI = 1.24-2.87, p = 0.003) with SNHL onset. Additionally, morning chronotype was nominally associated with SSNHL onset using IVW method (OR = 1.37, 95% CI = 1.10-1.71, p = 0.006). However, there was no evidence for the causal effect of SNHL and SSNHL on different sleep traits (all p > 0.05). Sensitivity analysis showed that the results were stable. CONCLUSION Within the MR limitations, morning chronotype and daytime sleepiness were underlying causal contributors to the burden of SNHL, indicating that optimal sleep might facilitate the prevention and development of SNHL. LEVEL OF EVIDENCE 3 Laryngoscope, 134:4723-4729, 2024.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Jung J, Lee J, Kang H, Park K, Kim YS, Ha J, So S, Sung S, Yun JH, Jang JH, Choi SJ, Choung YH. miR-409-3p Regulates IFNG and p16 Signaling in the Human Blood of Aging-Related Hearing Loss. Cells 2024; 13:1595. [PMID: 39329776 PMCID: PMC11429563 DOI: 10.3390/cells13181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition caused by the natural aging process affecting the auditory system. Genome-wide association studies (GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete. This study aims to evaluate a potential protective tool for ARHL treatment by comparing human blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response, apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.
Collapse
Affiliation(s)
- Junseo Jung
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jeongmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Kyeongjin Park
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Jungho Ha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Seongjun So
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Siung Sung
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Jeong Hyeon Yun
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Nie J, Yan K, Wang J, Wang X, Zhao Y. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study. Front Nutr 2024; 11:1458484. [PMID: 39221159 PMCID: PMC11363541 DOI: 10.3389/fnut.2024.1458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Inflammatory diets can trigger chronic inflammation and affect gut microbiota. However, the relationship between dietary preferences and sensorineural hearing loss (SNHL) remains unclear. This study aims to elucidate the relationship between different dietary preferences and sensorineural deafness. Methods The Dietary Inflammation Index (DII) and SNHL were defined by data from the National Health and Nutrition Examination Survey (NHANES), and exploring their relationship. Using Mendelian randomization (MR) to analyze the relationship between 34 dietary preferences, 211 gut microbiota, and SNHL. Results Smooth curve fitting indicated that the risk of SNHL increased with increasing DII score when the DII score was greater than 5.15. MR results suggest that a diet including both oily and non-oily fish can substantially reduce the risk of SNHL. Additionally, six specific gut microbiota were found to have significant causal relationship with SNHL. Conclusion An inflammatory diet may increase the risk of developing SNHL. The observed relationship between fish consumption, gut microbiota, and SNHL suggests the existence of a gut-inner ear axis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiayi Nie
- Xi’an University of Technology, Xi’an, China
| | - Kaige Yan
- Northwest A&F University, Yangling, China
| | - Jing Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
4
|
Song X, Tian Z, Jiang K, He K, Huang Y, Hu C, He X, Jin L, Tao Y. Associations between Plant-Based Dietary Patterns and Sensory Impairments among Chinese Older Adults: Based on the Chinese Longitudinal Healthy Longevity Survey. Gerontology 2024; 70:1042-1054. [PMID: 39097967 PMCID: PMC11493375 DOI: 10.1159/000540611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION The aim of this study was to investigate the relationship between the plant-based dietary index and vision impairment (VI), hearing impairment (HI), and dual sensory impairment (DSI) among Chinese aged 65 and older. METHODS Based on the 2018 data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a cross-sectional study was conducted on 14,859 samples. The assessment of dietary quality utilized the plant-based diet index (PDI), healthy plant-based diet index (hPDI), and unhealthy plant-based diet index (uPDI). Logistic regression analysis was used to examine the associations between PDIs and sensory impairments. Additionally, restricted cubic spline analysis was utilized to investigate the nonlinear association between PDIs and sensory impairments. RESULTS Participants in the highest quintile of PDI exhibited reduced prevalence of VI (OR 0.78, 95% CI: 0.67-0.90, ptrend <0.001), HI (OR 0.83, 95% CI: 0.70-0.99, ptrend <0.001), and DSI (OR 0.62, 95% CI: 0.51-0.77, ptrend <0.001) relative to those in the lowest quintile. Moreover, individuals who ranked in the highest quintile for hPDI exhibited a 25% reduced risk of VI disease. Conversely, those in the highest quintile of uPDI were associated with increased prevalence of VI (OR 1.37, 95% CI: 1.17-1.61, ptrend <0.001), HI (OR 1.36, 95% CI: 1.12-1.65, ptrend <0.001), and DSI (OR 1.56, 95% CI: 1.25-1.95, ptrend <0.001). The relationship between PDIs increasing by every 10 units and sensory impairments showed similar patterns. Notably, hPDI demonstrated a nonlinear relationship with HI (pfor nonlinearity = 0.001), while the others exhibited linear associations. CONCLUSION The increase in PDI and hPDI correlates with a reduced prevalence of one or more sensory impairments. Conversely, an increase in uPDI is associated with an elevated prevalence of multiple sensory impairments. Our study findings emphasize the significance of plant-based food quality, advocating for adherence to a plant-based dietary pattern while reducing the intake of less healthy plant foods and animal-based products.
Collapse
Affiliation(s)
- Xingxu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zhong Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Kexin Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Kai He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuhan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Chengxiang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xue He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuchun Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
5
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
6
|
Guo Z, Wu Y, Chen B, Kong M, Xie P, Li Y, Liu D, Chai R, Gu N. Superparamagnetic iron oxide nanoparticle regulates microbiota-gut-inner ear axis for hearing protection. Natl Sci Rev 2024; 11:nwae100. [PMID: 38707203 PMCID: PMC11067960 DOI: 10.1093/nsr/nwae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zhanhang Guo
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yunhao Wu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengdie Kong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Peng Xie
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Southeast university Shenzhen research institute, Shenzhen 518063, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
- Cardiovascular Disease Research Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Qiu K, Mao M, Pang W, Deng D, Ren J, Zhao Y. The emerging roles and therapeutic implications of immunosenescence-mediated inflammaging in age-related hearing loss. AMERICAN JOURNAL OF STEM CELLS 2024; 13:101-109. [PMID: 38765806 PMCID: PMC11101989 DOI: 10.62347/dtap3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Age-related hearing loss (ARHL) represents one of the most prevalent chronic sensory deficits experienced by the elderly, significantly diminishing their quality of life and correlating with various medical and psychological morbidities. This condition arises from the cumulative effects of aging on the auditory system, implicating intricate interactions between genetic predispositions and environmental factors. Aging entails a progressive decline in immune system functionality, termed immunosenescence, leading to a chronic low-grade inflammation known as inflammaging. This phenomenon potentially serves as a common mechanism underlying ARHL and other age-related pathologies. Recent research suggests that rejuvenating immunosenescence could mitigate inflammaging and ameliorate age-related functional declines, offering promising insights into anti-aging therapies. Consequently, this review endeavors to elucidate the role of immunosenescence-mediated inflammaging in ARHL progression and discuss its therapeutic implications.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Di Deng
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| |
Collapse
|
8
|
Lee DY, Shin JW, Shin YJ, Han SW, Kim DH. Lactobacillus plantarum and Bifidobacterium longum Alleviate Liver Injury and Fibrosis in Mice by Regulating NF-κB and AMPK Signaling. J Microbiol Biotechnol 2024; 34:149-156. [PMID: 38105432 PMCID: PMC10840473 DOI: 10.4014/jmb.2310.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
In a preliminary study, live biotherapeutic products (LBPs) Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 inhibited the secretion of alanine transaminase (ALT) and aspartate transaminase (AST) in LPS-stimulated HepG2 cells, while Escherichia coli K1 (Ec) increased ALT and ALT secretion. Therefore, we examined the effects of LC27 and LC67 on LPS-induced liver injury and fibrosis in mice and the correlation between their biomarkers in cell and animal experiments. Orally administered LC27 or LC67 significantly decreased blood ALT, AST, γ-glutamyl transferase (γGTP), TNF-α, triglyceride (TG), total cholesterol (TCh), total bile acid, and LPS levels, liver TNF-α, toll-like receptor-4 gene (Tlr4), α-smooth muscle actin (αSMA), and collagen-1 expression and αSMA+GFAP+ and NF-κB+F4/80+ cell populations, and colonic Tlr4, TNF-α, and IL-6 expression and NF-κB-positive cell population in LPS-treated mice. Furthermore, they increased AMPKa phosphorylation in the liver and colon. However, Ec increased the expression of TNF-α and IL-6 in blood, liver, and colon. The suppression of LPS-stimulated ALT and AST secretion in HepG2 cells by LBPs was positively correlated with their ameliorating effects on LPS-induced blood γGTP, ALT, and AST levels and liver αSMA and collagen-1 expression in mice. Based on these findings, LC27 and LC67 may improve liver injury and fibrosis by regulating NF-κB and AMPK signaling pathway and a protocol that can assay the inhibitory activity of LBPs on LPS-induced ALT and AST secretion in HepG2 may be useful for guessing their antihepatitic effects in the in vivo experiments.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Hemida MBM, Vuori KA, Borgström NC, Moore R, Rosendahl S, Anturaniemi J, Estrela-Lima A, Hielm-Björkman A. Early life programming by diet can play a role in risk reduction of otitis in dogs. Front Vet Sci 2023; 10:1186131. [PMID: 38026629 PMCID: PMC10657834 DOI: 10.3389/fvets.2023.1186131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Otitis in dogs is often chronic while local treatment primarily consists of flushing, antibiotics, and/or antifungals. We were interested in finding early life variables that associate with otitis later in life, preferably some that could be modified. Methods A cross-sectional hypothesis-driven study with longitudinal data was performed to search for associations between pre- and postnatal exposures, and the incidence of owner-reported otitis in dogs at over 1 year of age. The multivariate logistic regression analysis study included data from 3,064 dogs and explored 26 different early life variables at four early life stages: prenatal, neonatal, postnatal, and puppyhood. We compared two feeding patterns, a non-processed meat-based diet (NPMD, raw) and an ultra-processed carbohydrate-based diet (UPCD, dry). Results We report that eating a NPMD diet significantly decreased the risk of otitis later in life, while eating a UPCD diet significantly increased the risk. This was seen in different life stages of mother or puppy: The maternal diet during pregnancy (p=0.011) and the puppies' diet from 2 to 6 months of age (p=0.019) were both significantly associated with otitis incidence later in life, whereas the puppies' first solid diet, was associated in the same way, but did not reach significance (p=0.072). Also, analyzing food ratios showed that when puppies were consuming >25% of their food as NPMD it significantly decreased their incidence of otitis later in life, while a ratio of >75% UPCD in their diet significantly increased their risk of otitis. Also, if the dog was born in the current family, was exposed to sunlight for more than 1 hour daily, and was raised on a dirt floor during puppyhood, there was a lower risk of otitis development later in life. Discussion The findings only suggest causality, and further studies are required. However, we propose that veterinarians, breeders, and owners can impact otitis risk by modifying factors such as diet and environment.
Collapse
Affiliation(s)
- Manal B. M. Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Nona C. Borgström
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alessandra Estrela-Lima
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Li Y, Si H, Ma Y, Li S, Gao L, Liu K, Liu X. Vitamin D3 affects the gut microbiota in an LPS-stimulated systemic inflammation mouse model. Microbes Infect 2023; 25:105180. [PMID: 37419238 DOI: 10.1016/j.micinf.2023.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Although gut dysbiosis contributes to systemic inflammation, the counteractive effect of systemic inflammation on gut microbiota is unknown. Vitamin D may exert anti-inflammatory effects against systemic inflammation, but its regulation of the gut microbiota is poorly understood. In this study, mice were intraperitoneally injected with lipopolysaccharide (LPS) to create a systemic inflammation model and received vitamin D3 treatment orally for 18 continuous days. Then, body weight, morphological changes in the colon epithelium, and gut microbiota (n = 3) were evaluated. We verified that LPS stimulation caused inflammatory changes in the colon epithelium, which could be obviously attenuated by vitamin D3 treatment (10 μg/kg/day) in mice. Then, 16S rRNA gene sequencing of the gut microbiota first revealed that LPS stimulation induced a large number of operational taxonomic units, and vitamin D3 treatment reduced the number. In addition, vitamin D3 had distinctive effects on the community structure of the gut microbiota, which was obviously changed after LPS stimulation. However, neither LPS nor vitamin D3 affected the alpha and beta diversity of the gut microbiota. Furthermore, statistical analysis of differential microorganisms showed that the relative abundance of microorganisms in the phylum Spirochaetes decreased, the family Micrococcaceae increased, the genus [Eubacterium]_brachy_group decreased, the genus Pseudarthrobacter increased, and the species Clostridiales_bacterium_CIEAF_020 decreased under LPS stimulation, but vitamin D3 treatment significantly reversed the LPS-induced changes in the relative abundance of these microorganisms. In conclusion, vitamin D3 treatment affected the gut microbiota and alleviated inflammatory changes in the colon epithelium in the LPS-stimulated systemic inflammation mouse model.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Hongbo Si
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Shuang Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China.
| |
Collapse
|
11
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
12
|
Yin Q, Shi G, Zhu L. Association between gut microbiota and sensorineural hearing loss: a Mendelian randomization study. Front Microbiol 2023; 14:1230125. [PMID: 37915857 PMCID: PMC10616596 DOI: 10.3389/fmicb.2023.1230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Several recent studies speculated that the gut microbiota is associated with sensorineural hearing loss (SNHL) and proposed the concept of the gut-inner ear axis. However, the causal effect of gut microbiota on SNHL is still unknown. In this study, we performed a two-sample Mendelian randomization (MR) analysis to estimate the causal effect of gut microbiota on SNHL. Methods Gut microbiota data were obtained from the largest available genome-wide association study (n = 18,340) conducted by the MiBioGen consortium. The summary statistics of SNHL were obtained from the FinnGen consortium R8 release data (28,310 cases and 302,750 controls). The causal effects were estimated with inverse-variance weighted, MR-Egger, and weighted median. Reverse Mendelian randomization analysis was performed on the bacteria that were found to be associated with SNHL in forward Mendelian randomization analysis. We then performed sensitivity analyses, including Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, cML-MA-BIC, and leave-one-out analysis, to detect heterogeneity and pleiotropy. Results The inverse-variance weighted results suggested that Lachnospiraceae (UCG001) had a significant protective effect against SNHL (odds ratio = 0.85, 95% confidence interval: 0.78-0.93, P = 6.99 × 10-4). In addition, Intestinimonas (odds ratio = 0.89, 95% confidence interval: 0.82-0.97, P = 8.53 × 10-3) presented a suggestively protective effect on SNHL. Rikenellaceae (RC9gutgroup) (odds ratio = 1.08, 95% confidence interval: 1.02-1.15, P = 0.01) and Eubacterium (hallii group) (odds ratio = 1.12, 95% confidence interval: 1.00-1.24, P = 0.048) suggestively increase the risk of SNHL. The results of the reverse MR analysis showed that there is no significant causal effect of SNHL on the gut microbiota. No significant heterogeneity of instrumental variables or pleiotropy was detected. Conclusion The evidence that the four genera mentioned above are associated with SNHL supports the hypothesis of a gut-inner ear axis. Our study provides microbial markers for the prevention and treatment of SNHL, and further studies are needed to explore the mechanisms of the gut microbiome-inner ear axis in health and diseases.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Zhang X, Luo Q, Huang Z, Xiang X. Association between nineteen dietary fatty acids and hearing thresholds: findings from a nationwide survey. Lipids Health Dis 2023; 22:126. [PMID: 37563575 PMCID: PMC10413493 DOI: 10.1186/s12944-023-01896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Hearing loss is a prevalent health concern, and dietary factors, such as fatty acid intake, may play a role in its development. The current study aimed to investigate the association between the intake of dietary fatty acids and hearing thresholds among U.S. adults. METHODS The researchers examined data from the National Health and Nutrition Examination Survey (NHANES), including 7,623 participants with available dietary fatty acid intake and audiometry data. Dietary fatty acid intake was assessed using dietary recalls, and hearing thresholds were measured using pure-tone audiometry. Multivariate linear regression models and smoothing curve fitting were utilized to explore the associations between dietary fatty acid intake and hearing thresholds, adjusting for relevant covariates. RESULTS This study reveals a direct association between both low and high frequency pure tone average (PTA) hearing thresholds and the dietary intake of total saturated fatty acids (SFAs) and total polyunsaturated fatty acids (PUFAs). Conversely, the intake of total monounsaturated fatty acids (MUFAs) demonstrates an inverted U-shaped correlation with low-frequency and high-frequency PTA hearing thresholds, having inflection points at 11.91 (energy (%)) and 10.88 (energy (%)), respectively. CONCLUSION Dietary intake of certain fatty acids may influence hearing thresholds in adults.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Department of Otolaryngology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qin Luo
- Department of Otolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Zhicheng Huang
- Department of Otolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin Xiang
- Department of Otolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
15
|
Liu F, Han B, Zhou X, Huang S, Huang J. Research progress on the treatment and nursing of sensorineural hearing loss. Front Neurosci 2023; 17:1199946. [PMID: 37346087 PMCID: PMC10279882 DOI: 10.3389/fnins.2023.1199946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
This article provides a comprehensive review of the progress in the treatment and care of sensorineural hearing loss (SNHL), which is a common disease in the field of otolaryngology. In recent years, the incidence of SNHL has been on the rise due to factors such as fast-paced lifestyles, work pressure, and environmental noise pollution, which have a significant impact on the quality of life of patients. Therefore, the study of the treatment and care of SNHL remains a hot topic in the medical community. Despite significant advances in this field, there are still some challenges and limitations. For example, there is currently no single method that can completely cure SNHL, and the effectiveness of treatment may vary significantly among individuals. In addition, due to the complex etiology of SNHL, the prognosis of patients may vary greatly, requiring the development of personalized treatment plans and care strategies. To address these challenges, continuous research is needed to explore new treatment methods and care models to improve the quality of life of patients. In addition, there is a need for health education programs for the general public to raise awareness of SNHL and promote preventive measures to reduce its incidence. The ultimate goal is to ensure the sustainable development of the field of SNHL treatment and care, thus ensuring the health and well-being of affected individuals.
Collapse
Affiliation(s)
| | | | | | - Shuo Huang
- *Correspondence: Shuo Huang, ; Jing Huang,
| | - Jing Huang
- *Correspondence: Shuo Huang, ; Jing Huang,
| |
Collapse
|
16
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
17
|
Slevin E, Koyama S, Harrison K, Wan Y, Klaunig JE, Wu C, Shetty AK, Meng F. Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness. J Cell Mol Med 2023; 27:891-905. [PMID: 36716094 PMCID: PMC10064030 DOI: 10.1111/jcmm.17631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 01/31/2023] Open
Abstract
Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.
Collapse
Affiliation(s)
- Elise Slevin
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Kelly Harrison
- Department of Transplant SurgeryBaylor Scott & White Memorial HospitalTempleTexasUSA
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - James E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Chaodong Wu
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Ashok K. Shetty
- Department of Molecular and Cellular MedicineInstitute for Regenerative Medicine, Texas A&M College of MedicineCollege StationTexasUSA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
18
|
Ozdemir O, Ucar A, Cakir AD, Misir E, Yigit O. The association of metabolic syndrome status with sensorineural hearing loss in pediatric obese patients. Int J Pediatr Otorhinolaryngol 2023; 165:111454. [PMID: 36696712 DOI: 10.1016/j.ijporl.2023.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The prevalences of pediatric obesity and its associated comorbidities such as metabolic syndrome (metS) are rising. The aim of this study was to evaluate the association of metS status with sensorineural hearing loss in pediatric obese patients. METHODS A two-center observationalprospective study was designed. In this study, 252 consecutive treatment-naive pediatric obese patients aged 5.8-17.8 yr in a tertiary pediatric Endocrinology outpatient clinic were prospectively enrolled. Following standard clinical and biochemical evaluations, the obese patients were diagnosed as having metabolic syndrome (metS) or not according to Internetional Diabetes Federation Criteria. All the patients were evaluated with tympanometry and pure tone audiometry tests after otomicroscopic examination. Comparative analyses of audiometric evaluations were performed between metS+ and metS- subgroups of the obese patients. RESULTS The median age of the patients was 12.5 yr (range: 6.0-17.8 yr) and 56.3% of the patients were male. Metabolic syndrome was diagnosed in 82 (32.5%) patients. Age, gender distribution, history of the ventilation tube, and pubertal stage of the metS + patients and metS- counterparts were not statistically different (p > 0.05 for all). Pure tone hearing thresholds at all frequencies (125, 250, 500, 1k, 2k, 4k, 8k) were significantly higher in the metS + group then the metS- group (p˂0.05 for all). The tympanometry results were not statistically different between the two groups (p˃0.05). Abdominal obesity, hypertension, fasting hyperglycemia and dyslipidemia were not associated with increased hearing thresholds in metS + patients (p˃0.05 for all). CONCLUSION Metabolic syndrome was associated with increased rates of subclinical hearing loss in our cohort. None of the investigated metS components emerged as a positive association with hearing loss in our cohort. Longitudinal follow-up of our cohort may help probe the causality of the association we found.
Collapse
Affiliation(s)
- Ozan Ozdemir
- University of Health Sciences Istanbul Teaching and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Ahmet Ucar
- University of Health Sciences Sisli Etfal Training and Research Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey.
| | - Aydilek Dagdeviren Cakir
- University of Health Sciences Sisli Etfal Training and Research Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey.
| | - Esra Misir
- University of Health Sciences Istanbul Teaching and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Ozgur Yigit
- University of Health Sciences Istanbul Teaching and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey.
| |
Collapse
|
19
|
Tseng CH. Metformin Reduces the Risk of Hearing Loss: A Retrospective Cohort Study. Otolaryngol Head Neck Surg 2023; 168:1389-1400. [PMID: 36939574 DOI: 10.1002/ohn.232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To compare the risk of hearing loss with regard to metformin exposure. STUDY DESIGN Retrospective cohort. SETTING Taiwan's National Health Insurance database. METHODS We enrolled 292,071 ever users and 18,200 never users of metformin with new-onset diabetes mellitus from 1999 to 2005 and followed them for hearing loss from January 1, 2006, to December 31, 2011. Hazard ratios (HRs) weighted by propensity score were estimated. RESULTS Hearing loss was newly diagnosed in 10,085 ever users and 1072 never users. Their respective incidence rates (per 100,000 person-years) were 738.09 and 1366.83. The HR comparing ever-to-never users was 0.534 (95% confidence interval [CI]: 0.501-0.569]. The HR (95% CI) for the first (<27.07 months), second (27.07-59.13 months), and third (>59.13 months) tertiles of cumulative duration of metformin therapy were 0.912 (0.852-0.975), 0.544 (0.508-0.582), and 0.275 (0.255-0.295), respectively; and were 0.900 (0.841-0.962), 0.531 (0.496-0.569), and 0.293 (0.273-0.315), respectively, for the first (<796.70 g), second (796.70-2020.15 g), and third (>2020.15 g) tertiles of cumulative dose. The magnitude of risk reduction became more remarkable in corresponding to the increasing tertiles of the defined daily dose prescribed. Subtype analyses suggested that the risk reduction was more significant for sensorineural than conductive hearing loss. Findings derived from a propensity score-matched cohort did not substantially change the conclusions, and the risk reduction for mixed hearing loss was not statistically significant in the matched cohort as significantly observed in the unmatched cohort. CONCLUSION The risk of hearing loss is reduced in a dose-response pattern in patients who use metformin.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, Division of Endocrinology and Metabolism, National Taiwan University Hospital, Taipei, Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
20
|
Denton AJ, Godur DA, Mittal J, Bencie NB, Mittal R, Eshraghi AA. Recent Advancements in Understanding the Gut Microbiome and the Inner Ear Axis. Otolaryngol Clin North Am 2022; 55:1125-1137. [PMID: 36088154 DOI: 10.1016/j.otc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiome and its dynamic association with organ systems beyond the gastrointestinal tract, such as the nervous and cardiovascular systems, is an emerging area of research. Although the role of the gut microbiome has been extensively characterized in the gut-brain axis, the implications of gut dysbiosis in inner ear inflammation and hearing deficits have still not been explored. With some similarities outlined between the blood-brain barrier (BBB) and the blood labyrinth barrier (BLB) of the inner ear, this review aims to explore the axis between the gut microbiome and the inner ear as it pertains to their bidirectional communication.
Collapse
Affiliation(s)
- Alexa J Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dimitri A Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B Bencie
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
21
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
22
|
Chan J, Telang R, Kociszewska D, Thorne PR, Vlajkovic SM. A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice. Int J Mol Sci 2022; 23:5179. [PMID: 35563572 PMCID: PMC9101486 DOI: 10.3390/ijms23095179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (J.C.); (R.T.); (D.K.); (P.R.T.)
| |
Collapse
|