1
|
He Y, Zhou J, Lv C, Zhang J, Zhong L, Zhang D, Li P, Xiao L, Quan M, Wang D, Zhang D, Du Q. Binding of PtoRAP2.12 to demethylated and accessible chromatin regions in the PtoGntK promoter stimulates growth of poplar. THE NEW PHYTOLOGIST 2025; 245:232-248. [PMID: 39487606 DOI: 10.1111/nph.20228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
DNA methylation is an essential epigenetic modification for gene regulation in plant growth and development. However, the precise mechanisms of DNA methylation remain poorly understood, especially in woody plants. We employed whole-genome bisulfite sequencing (WGBS), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and RNA-Seq to investigate epigenetic regulatory relationships in Populus tomentosa treated with DNA methylation inhibitor 5-azacitidine. Expression-quantitative trait methylation analysis (eQTM), epigenome-wide association study (EWAS), and joint linkage-linkage disequilibrium mapping were used to explore the epigenetic regulatory genes, and using CRISPR/Cas9 to identify the role of candidate genes. Plant developmental abnormalities occurred when DNA methylation levels were substantially reduced. DNA methylation regulated 112 expressed genes via chromatin accessibility, of which 61 genes were significantly influenced by DNA methylation variation at the population level. One DNA methylation-regulated gene, PtoGntK, was located in a major quantitative trait locus (QTL) for poplar growth. Overexpression and CRISPR/Cas9 of PtoGntK revealed it affected poplar height and stem diameter. The PtoRAP2.12 was found to bind to the demethylated accessible region in the PtoGntK promoter, thereby promoting growth in poplar. This study identified key genes with epigenetic regulation for plant growth and provides insights into epigenetic regulation mechanisms in woody plants.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Leishi Zhong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Donghai Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
2
|
Kharbikar LL, Shanware AS, Nandanwar SK, Saharan MS, Nayak S, Martha SR, Marathe A, Dixit A, Mishra NS, Edwards SG. An in - silico perspective on the role of methylation-related genes in wheat - Fusarium graminearum interaction. 3 Biotech 2025; 15:12. [PMID: 39698303 PMCID: PMC11649892 DOI: 10.1007/s13205-024-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
Wheat (Triticum aestivum L.), a vital cereal crop, provides over 20% of the total calories and protein in the human diet. However, Fusarium graminearum, the pathogen responsible for Fusarium head blight (FHB), poses a significant threat to wheat production by contaminating grains with harmful mycotoxins. Although Fusarium head blight is currently a minor disease in India, it has the potential to cause substantial yield and quality losses, especially if rain occurs during mid-anthesis. Epigenetic mechanisms, including DNA methylation and sRNA accumulation, are crucial in regulating gene expression and enabling plants to adapt to environmental stresses. Previous studies investigating wheat's response to F. graminearum through transcriptome analysis of lines differing in 2DL FHB resistance QTLs did not fully explore the role of methylation-related genes. To address this gap, we re-analyzed RNA-Seq data to uncover the response of methylation-related genes to pathogen infection. Our analysis revealed that 16 methylation-related genes were down-regulated in the susceptible line 2-2890, with Gene Ontology (GO) analysis linking these genes to L-methionine salvage from methylthioadenosine (GO:0019509), S-adenosylmethionine metabolism (GO:0033353), and steroid biosynthesis (GO:0006694) (p-value = 0.001). Co-expression analysis identified a negative correlation (-0.82) between methionine S-methyl-transferase (MSM; TraesCS1A02G013800) and 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR; TraesCS5A02G269300). HMGCR also showed negative correlations (-1.00) with genes encoding pathogenesis-related, detoxification proteins, and xylanase inhibitors, with GO associating these genes with methionine S-methyl transferase activity (p-value = 0.001). In pathogen-inoculated samples, the elevated expression of HMGCR (Log2 3.25-4.00) and the suppression of MSM (Log2 1.25-3.25) suggest a dual role in stress response and susceptibility, potentially linked to disrupted DNA methylation and isoprenoid biosynthesis pathways. Furthermore, 43 genes down-regulated by miR9678 were associated with biotic stimulus responses and glucan endo-1,4-beta-glucanase activity, highlighting the complex regulatory networks involved in wheat's defense against F. graminearum. This study reveals the roles of methylation-related genes in susceptible wheat lines 2-2890, providing new insights into their potential impact on pathogen response and plant susceptibility. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04179-0.
Collapse
Affiliation(s)
- Lalit L. Kharbikar
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
- Rajiv Gandhi Biotechnology Centre, RTM Nagpur University, Nagpur, 440 034 M.S India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110 067 India
- Agriculture and Environment Department, Harper Adams University, Newport Shropshire, TF10 8NB UK
| | - Arti S. Shanware
- Rajiv Gandhi Biotechnology Centre, RTM Nagpur University, Nagpur, 440 034 M.S India
| | - Shweta K. Nandanwar
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Mahender S. Saharan
- Division of Plant Pathology, ICAR – Indian Agricultural Research Institute, Pusa, New Delhi 110 012 India
| | - Sarmistha Nayak
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, 751 003 India
| | - Sushma Rani Martha
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, 751 003 India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Anil Dixit
- ICAR - National Institute of Biotic Stress Management, Baronda, Raipur, 493 225 Chhattisgarh India
| | - Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110 067 India
| | - Simon G. Edwards
- Agriculture and Environment Department, Harper Adams University, Newport Shropshire, TF10 8NB UK
| |
Collapse
|
3
|
Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. PLANT SIGNALING & BEHAVIOR 2024; 19:2365576. [PMID: 38899525 PMCID: PMC11195469 DOI: 10.1080/15592324.2024.2365576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, Punjab, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Chandigarh, Punjab, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Li X, Bu F, Zhang M, Li Z, Zhang Y, Chen H, Xue W, Guo R, Qi J, Kim C, Kawabata S, Wang Y, Zhang Q, Li Y, Zhang Y. Enhancing nature's palette through the epigenetic breeding of flower color in chrysanthemum. THE NEW PHYTOLOGIST 2024. [PMID: 39721988 DOI: 10.1111/nph.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Flower color is an important character of ornamental plants and one of the main target traits for variety innovation. We previously identified a CmMYB6 epigenetic allele that affects the flower color in chrysanthemum, and changes in flower color are caused by the DNA methylation level of this gene. However, it is still unknown which DNA methyltransferases are involved in modifying the DNA methylation levels of this gene. Here, we used dead Cas9 (dCas9) together with DNA methyltransferases that methylate cytosine residues in the CHH context to target the CmMYB6 promoter through transient and stable transformation methods. We found that CmDRM2a increased the DNA methylation level of the CmMYB6 promoter, the expression of CmMYB6 decreased and a lighter flower color resulted. By contrast, both CmDRM2b and CmCMT2 enhanced DNA methylation levels of the CmMYB6 promoter, the expression of CmMYB6 increased and a deeper flower color resulted. Furthermore, the regulatory mechanism of DNA methyltransferase in the formation of chrysanthemum flower color was investigated, pointing to a new strategy for silencing or activating CmMYB6 epiallele to regulate anthocyanin synthesis. This lays a solid foundation for regulating flower color in chrysanthemum through epigenetic breeding.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haowen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ronghua Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jingze Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, 1880002, Japan
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
5
|
Nilsen AML, Hoarau G, Smolina I, Coyer JA, Boström C, Kopp MEL, Jueterbock A. The methylome of clonal seagrass shoots shows age-associated variation and differentiation of roots from other tissues. Biochim Biophys Acta Gen Subj 2024:130748. [PMID: 39719185 DOI: 10.1016/j.bbagen.2024.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Factors influencing variance of DNA methylation in vegetatively reproducing plants, both terrestrial plants and aquatic seagrasses, is just beginning to be understood. Improving our knowledge of these mechanisms will increase understanding of transgenerational epigenetics in plant clones, of the relationship between DNA methylation and seagrass development, and of the drivers of epigenetic variation, which may underly acclimation in clonally reproducing plants. Here, we sampled leaves, rhizomes and roots of three physically and spatially separated ramet sections from a clonally propagated field of the seagrass Zostera marina. Using reduced methylome sequencing, we studied variations in the methylome of seagrass Zostera marina between the sampled tissue types and across age groups. Our analysis of ramets of different ages showed variations in methylation between older and younger samples in both specific methylation patterns and global methylation levels. Our analysis of tissue types showed a marked differentiation of the roots from the rhizomes and leaves, which showed more similar methylation patterns. These findings are in agreement with the strong connection of DNA methylation and plant development and tissue differentiation. We also suggest an effect of differential environmental exposures on the methylome of the younger versus the older ramets due to the forming of molecular stress memories.
Collapse
Affiliation(s)
- Anne M L Nilsen
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Galice Hoarau
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Irina Smolina
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Morse Hall, Suite 113, 8 College Road, Durham, NH 03824, USA
| | - Christoffer Boström
- Environmental and Marine Biology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Martina E L Kopp
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
6
|
Balao F, Medrano M, Bazaga P, Paun O, Alonso C. Long-term methylome changes after experimental seed demethylation and their interaction with recurrent water stress in Erodium cicutarium (Geraniaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1199-1212. [PMID: 39250311 DOI: 10.1111/plb.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The frequencies and lengths of drought periods are increasing in subtropical and temperate regions worldwide. Epigenetic responses to water stress could be key for plant resilience to these largely unpredictable challenges. Experimental DNA demethylation, together with application of a stress factor is an appropriate strategy to reveal the contribution of epigenetics to plant responses to stress. We analysed leaf cytosine methylation changes in adult plants of the annual Mediterranean herb, Erodium cicutarium, in a greenhouse, after seed demethylation with 5-Azacytidine and/or recurrent water stress. We used bisulfite RADseq (BsRADseq) and a newly reported reference genome for E. cicutarium to characterize methylation changes in a 2 × 2 factorial design, controlling for plant relatedness. In the long term, 5-Azacytidine treatment alone caused both hypo- and hyper-methylation at individual cytosines, with substantial hypomethylation in CG contexts. In control conditions, drought resulted in a decrease in methylation in all but CHH contexts. In contrast, the genome of plants that experienced recurrent water stress and had been treated with 5-Azacytidine increased DNA methylation level by ca. 5%. Seed demethylation and recurrent drought produced a highly significant interaction in terms of global and context-specific cytosine methylation. Most methylation changes occurred around genic regions and within Transposable Elements. The annotation of these Differentially Methylated Regions associated with genes included several with a potential role in stress responses (e.g., PAL, CDKC, and ABCF), confirming an epigenetic contribution in response to stress at the molecular level.
Collapse
Affiliation(s)
- F Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Medrano
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - P Bazaga
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - C Alonso
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
7
|
Sang Y, Ma Y, Wang R, Wang Z, Wang T, Su Y. Epigenetic regulation of organ-specific functions in Mikania micrantha and Mikania cordata: insights from DNA methylation and siRNA integration. BMC PLANT BIOLOGY 2024; 24:1142. [PMID: 39609688 PMCID: PMC11605950 DOI: 10.1186/s12870-024-05858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DNA methylation is a crucial epigenetic mechanism that regulates gene expression during plant growth and development. However, the role of DNA methylation in regulating the organ-specific functions of the invasive weed Mikania micrantha remains unknown. RESULTS Here, we generated DNA methylation profiles for M. micrantha and a local congeneric species, Mikania cordata, in three vegetative organs (root, stem, and leaf) using whole-genome bisulfite sequencing. The results showed both differences and conservation in methylation levels and patterns between the two species. Combined with transcriptome data, we found that DNA methylation generally inhibited gene expression, with varying effects depending on the genomic region and sequence context (CG, CHG, and CHH). Genes overlapping with differentially methylated regions (DMRs) were more likely to be differentially expressed between organs, and DMR-associated upregulated differentially expressed genes (DEGs) were enriched in organ-specific pathways. A comparison between photosynthetic (leaf) and non-photosynthetic (root) organs of M. micrantha further confirmed the regulatory role of DNA methylation in leaf-specific photosynthesis. Integrating small RNA-Seq data revealed that 24-nt small interfering RNAs (siRNAs) were associated with CHH methylation in gene-rich regions and regulated CHH methylation in the flanking regions of photosynthesis-related genes. CONCLUSION This study provides insights into the complex regulatory role of DNA methylation and siRNAs in organ-specific functions and offers valuable information for exploring the invasive characteristics of M. micrantha from an epigenetic perspective.
Collapse
Affiliation(s)
- Yatong Sang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yitong Ma
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
8
|
Stevens K, Roberts MR, Jeynes-Cupper K, Majeed L, Pastor V, Catoni M, Luna E. Developmentally regulated generation of a systemic signal for long-lasting defence priming in tomato. THE NEW PHYTOLOGIST 2024. [PMID: 39562729 DOI: 10.1111/nph.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Tomato is a major global crop. However, its production is limited by Botrytis cinerea. Due to the toxicity of postharvest pesticide application, alternative control methods such as priming are being investigated. Plants were treated with β-aminobutyric acid (BABA) at two developmental stages and resistance against B. cinerea was tested in fruit tissue and in progenies. DNA methylation and RNA sequencing were conducted to characterise the (epi)genetic changes associated with long-lasting resistance. Grafting experiments were done to assess the systemic nature of this signal, which was further characterised by small RNA (sRNA) sequencing of scions. Only BABA-treated seedlings displayed induced resistance (IR). DNA methylation analysis revealed seedling-specific changes, which occurred in the context of lower basal methylation. BABA-IR was found to be transmissible from primed rootstock to grafted unprimed scions. In these scions, we identified a subset of mobile 24 nt sRNAs associated with genes showing primed expression during infection in fruit. Our results demonstrate the functional association of a systemic signal with long-lasting IR and priming. Through integrated omics approaches, we have identified markers of long-lasting priming in tomato fruit which could also serve as targets for durable resistance in other crops.
Collapse
Affiliation(s)
- Katie Stevens
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Lamya Majeed
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Victoria Pastor
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences Department, University Jaume I, 12071, Castellon, Spain
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2024. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Nkongolo K, Michael P. Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch ( Betula papyrifera) exposed to nickel. Genome 2024; 67:351-367. [PMID: 39226484 DOI: 10.1139/gen-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (Betula papyrifera Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.
Collapse
Affiliation(s)
- Kabwe Nkongolo
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
11
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
12
|
Wang L, Liu Y, Song X, Wang S, Zhang M, Lu J, Xu S, Wang H. Ozone stress-induced DNA methylation variations and their transgenerational inheritance in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1463584. [PMID: 39385991 PMCID: PMC11461238 DOI: 10.3389/fpls.2024.1463584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Elevated near-surface ozone (O3) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors. However, the epigenetic response of plants to O3 stress, particularly DNA methylation variations and their intergenerational transmission, remains poorly understood. This study aims to explore the epigenetic mechanisms underlying plant responses to ozone stress across generations and to identify potential epigenetic modification sites or genes crucial in response to ozone stress. Using Open Top Chambers (OTCs), we simulated ozone conditions and subjected foxtail millet to continuous ozone stress at 200 nmol mol-1 for two consecutive generations (S0 and S1). Results revealed that under high-concentration ozone stress, foxtail millet leaves exhibited symptoms ranging from yellowing and curling to desiccation, but the damage in the S1 generation was not more severe than that in the S0 generation. Methylation Sensitive Amplified Polymorphism (MSAP) analysis of the two generations indicated that ozone stress-induced methylation variations ranging from 10.82% to 13.59%, with demethylation events ranged from 0.52% to 5.58%, while hypermethylation occurred between 0.35% and 2.76%. Reproductive growth stages were more sensitive to ozone than vegetative stages. Notably, the S1 generation exhibited widespread demethylation variations, primarily at CNG sites, compared to S0 under similar stress conditions. The inheritance pattern between S0 and S1 generations was mainly of the A-A-B-A type. By recovering and sequencing methylation variant bands, we identified six stress-related differential amplification sequences, implicating these variants in various biological processes. These findings underscore the potential significance of DNA methylation variations as a critical mechanism in plants' response to ozone stress, providing theoretical insights and references for a comprehensive understanding of plant adaptation mechanisms to ozone stress and the epigenetic role of DNA methylation in abiotic stress regulation.
Collapse
Affiliation(s)
- Long Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Yang Liu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Institute of Broomcorn Millet, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, China
| | - Xiaohan Song
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Shiji Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Meichun Zhang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Jiayi Lu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Sheng Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
13
|
Labella-Ortega M, Martín C, Valledor L, Castiglione S, Castillejo MÁ, Jorrín-Novo JV, Rey MD. Unravelling DNA methylation dynamics during developmental stages in Quercus ilex subsp. ballota [Desf.] Samp. BMC PLANT BIOLOGY 2024; 24:823. [PMID: 39223458 PMCID: PMC11370289 DOI: 10.1186/s12870-024-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.
Collapse
Affiliation(s)
- Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| | - Carmen Martín
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Cat. Rodrigo Uría s/n, Oviedo, 33006, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - María-Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| |
Collapse
|
14
|
Li Z, Wang W, Yu X, Zhao P, Li W, Zhang X, Peng M, Li S, Ruan M. Integrated analysis of DNA methylome and transcriptome revealing epigenetic regulation of CRIR1-promoted cold tolerance. BMC PLANT BIOLOGY 2024; 24:631. [PMID: 38965467 PMCID: PMC11225538 DOI: 10.1186/s12870-024-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.
Collapse
Affiliation(s)
- Zhibo Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenjuan Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- College of Tropical Crops, Hainan University, Haikou, 570228, P.R. China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
15
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
16
|
Liu L, Wang W, Lu X, Zhang T, Wu J, Fang Y, Ma L, Pu Y, Yang G, Wang W, Sun W. Methyl-Sensitive Amplification Polymorphism (MSAP) Analysis Provides Insights into the DNA Methylation Changes Underlying Adaptation to Low Temperature of Brassica rapa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1748. [PMID: 38999588 PMCID: PMC11244143 DOI: 10.3390/plants13131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND DNA methylation can change rapidly to regulate the expression of stress-responsive genes. Previous studies have shown that there are significant differences in the cold resistance of winter rapeseed (Brassica rapa L.) after being domesticated in different selection environments; however, little is known about the epigenetic regulatory mechanisms of its cold resistance formation. METHODS Four winter rapeseed materials ('CT-2360', 'MXW-1', '2018-FJT', and 'DT-7') domesticated in different environments were selected to analyze the DNA methylation level and pattern changes under low temperature using methylation-sensitive amplified polymorphism technology with 60 primer pairs. RESULTS A total of 18 pairs of primers with good polymorphism were screened, and 1426 clear bands were amplified, with 594 methylation sites, accounting for 41.65% of the total amplified bands. The total methylation ratios of the four materials were reduced after low-temperature treatment, in which the DNA methylation level of 'CT-2360' was higher than that of the other three materials; the analysis of methylation patterns revealed that the degree of demethylation was higher than that of methylation in 'MXW-1', '2018-FJT', and 'DT-7', which were 22.99%, 19.77%, and 24.35%, respectively, and that the methylation events in 'CT-2360' were predominantly dominant at 22.95%. Fifty-three polymorphic methylated DNA fragments were randomly selected and further analyzed, and twenty-nine of the cloned fragments were homologous to genes with known functions. The candidate genes VQ22 and LOC103871127 verified the existence of different expressive patterns before and after low-temperature treatment. CONCLUSIONS Our work implies the critical role of DNA methylation in the formation of cold resistance in winter rapeseed. These results provide a comprehensive insight into the adaptation epigenetic regulatory mechanism of Brassica rapa L. to low temperature, and the identified differentially methylated genes can also be used as important genetic resources for the multilateral breeding of winter-resistant varieties.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanpeng Wang
- Zhangye Academy of Agricultural Sciences, Zhangye 734000, China
| | - Xiaoming Lu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyu Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
17
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Jiang S, Zou M, Zhang C, Ma W, Xia C, Li Z, Zhao L, Liu Q, Yu F, Huang D, Xia Z. A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics. MOLECULAR HORTICULTURE 2024; 4:23. [PMID: 38807235 PMCID: PMC11134676 DOI: 10.1186/s43897-024-00098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.
Collapse
Affiliation(s)
- Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Wanfeng Ma
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chengcai Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixuan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | | | - Qi Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fen Yu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, China.
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
19
|
Sala-Cholewa K, Tomasiak A, Nowak K, Piński A, Betekhtin A. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers. BMC PLANT BIOLOGY 2024; 24:448. [PMID: 38783206 PMCID: PMC11112930 DOI: 10.1186/s12870-024-05162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.
Collapse
Affiliation(s)
- Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| | - Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| |
Collapse
|
20
|
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N. Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 2024; 81:222. [PMID: 38767725 PMCID: PMC11106227 DOI: 10.1007/s00018-024-05255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.
Collapse
Affiliation(s)
- Bapatla Kesava Pavan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Molecular Biology, Acrannolife Genomics Private Limited, Chennai, Tamilnadu, 600035, India
| | - Sébastien Beaubiat
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Chandra Bhan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Department of Genetics, Genomics, and Breeding, NIAB-EMR, East Malling, East Malling, ME19 6BJ, UK
| | - Ravit Eshed
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel.
| | - Nicolas Bouché
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
21
|
Varela A, Marfil CF, Talquenca SG, Fontana A, Asurmendi S, Buscema F, Berli FJ. Three-year study of DNA cytosine methylation dynamics in transplanted Malbec grapevines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112037. [PMID: 38367820 DOI: 10.1016/j.plantsci.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
DNA cytosine methylation, an epigenetic mechanism involved in gene regulation and genome stability, remains poorly understood in terms of its role under changing environmental conditions. Previous research using methylation-sensitive amplified polymorphism (MSAP) markers in a Vitis vinifera L. cv. Malbec clone showed vineyard-specific DNA methylation polymorphism, but no change in overall methylation levels. To complement these findings, the present study investigates the intra-seasonal epigenetic dynamics between genetically identical plants grown in different vineyards through a transplanting experiment. Cuttings of the same clone, showing differential methylation patterns imposed by the vineyard of origin (Agrelo and Gualtallary), were cultivated in a common vineyard (Lunlunta). Using high-performance liquid chromatography-ultraviolet detection, the quantification of global DNA 5-methylcytosine (5-mC) levels revealed relatively low overall 5-mC percentages in grapevines, with higher levels in Agrelo (5.8%) compared to Gualtallary plants (3.7%). The transplanted plants maintained the 5-mC levels differences between vineyards (9.8% vs 6.2%), which equalized in subsequent seasons (7.5% vs 7%). Additionally, the study examined 5-mC polymorphism using MSAP markers in Lunlunta transplanted plants over three seasons. The observed differences between vineyards in MSAP patterns during the initial growing season gradually diminished, suggesting a reprogramming of the hemimethylated pattern following implantation in the common vineyard. In contrast, the non-methylated pattern exhibited greater stability, indicating a potential memory effect. Overall, this study provides valuable insights into the dynamic nature of DNA methylation in grapevines under changing environmental conditions, with potential implications for crop management and breeding strategies.
Collapse
Affiliation(s)
- Anabella Varela
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina
| | - Carlos F Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín, Mendoza, Luján de Cuyo 3853, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina.
| | - Sebastián Gomez Talquenca
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín, Mendoza, Luján de Cuyo 3853, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, De Los Reseros y N. Repetto w/n, Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Fernando Buscema
- Catena Institute of Wine, Bodega Catena Zapata, Mendoza, Argentina
| | - Federico J Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina.
| |
Collapse
|
22
|
Jiang H, Chai ZX, Chen XY, Zhang CF, Zhu Y, Ji QM, Xin JW. Yak genome database: a multi-omics analysis platform. BMC Genomics 2024; 25:346. [PMID: 38580907 PMCID: PMC10998334 DOI: 10.1186/s12864-024-10274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, 610041, Chengdu, Sichuan, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China.
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China.
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China.
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China.
| |
Collapse
|
23
|
Song B, Yu J, Li X, Li J, Fan J, Liu H, Wei W, Zhang L, Gu K, Liu D, Zhao K, Wu J. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol 2024; 25:87. [PMID: 38581061 PMCID: PMC10996114 DOI: 10.1186/s13059-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Collapse
Affiliation(s)
- Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jinshan Yu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jing Fan
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Hainan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Lingchao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kejiao Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
24
|
Jyoti TP, Chandel S, Singh R. Unveiling the epigenetic landscape of plants using flow cytometry approach. Cytometry A 2024; 105:231-241. [PMID: 38437027 DOI: 10.1002/cyto.a.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
25
|
Mmbando GS. The recent possible strategies for breeding ultraviolet-B-resistant crops. Heliyon 2024; 10:e27806. [PMID: 38509919 PMCID: PMC10950674 DOI: 10.1016/j.heliyon.2024.e27806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The sensitivity of crops to ultraviolet B (UVB, 280-315 nm) radiation varies significantly. Plants' sensitivity to UVB is heavily influenced by the activity of the enzyme cyclobutane pyrimidine dimer (CPD) photolyase, which fixes UVB-induced CPDs. Crops grown in tropical areas with high level of UVB radiation, like O. glaberrima from Africa and O. sativa ssp. indica rice from Bengal, are more sensitive to UVB radiation and could suffer more as a result of rising UVB levels on the earth's surface. Therefore, creating crops that can withstand high UVB is crucial in tropical regions. There is, however, little information on current techniques for breeding UVB-resistant plants. The most recent techniques for producing UVB-resistant crops are presented in this review. The use of DNA methylation, boosting the antioxidant system, regulating the expression of micro-RNA396, and overexpressing CPD photolyase in transgenic plants are some of the methods that are discussed. CPD photolyase overexpression in transgenic plants is the most popular technique for producing UVB-resistant rice. The study also offers several strategies for creating UVB-resistant plants using gene editing techniques. To feed the world's rapidly expanding population, researchers can use the information from this study to improve food production.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma P. O. BOX 259, Dodoma, Tanzania
| |
Collapse
|
26
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
27
|
Yadav S, Meena S, Kalwan G, Jain PK. DNA methylation: an emerging paradigm of gene regulation under drought stress in plants. Mol Biol Rep 2024; 51:311. [PMID: 38372841 DOI: 10.1007/s11033-024-09243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Drought is an enormous threat to global crop production. In order to ensure food security for the burgeoning population, we must develop drought tolerant crop varieties. This necessitates the identification of drought-responsive genes and understanding the mechanisms involved in their regulation. DNA methylation is a widely studied mechanism of epigenetic regulation of gene expression, which is known to play vital role in conferring tolerance to various biotic and abiotic stress factors. The recent advances in next-generation sequencing (NGS) technologies, has allowed unprecedented access to genome-wide methylation marks, with single base resolution. The most important roles of DNA methylation have been studied in terms of gene body methylation (gbM), which is associated with regulation of both transcript abundance and its stability. The availability of mutants for the various genes encoding enzymes involved in methylation of DNA has allowed ascertainment of the biological significance of methylation. Even though a vast number of reports have emerged in the recent past, where both genome-wide methylation landscape and locus specific changes in DNA methylation have been studied, a conclusive picture with regards to the biological role of DNA methylation is still lacking. Compounding this, is the lack of sufficient evidence supporting the heritability of these epigenetic changes. Amongst the various epigenetic variations, the DNA methylation changes are observed to be the most stable. This review describes the drought-induced changes in DNA methylation identified across different plant species. We also briefly describe the stress memory contributed by these changes. The identification of heritable, drought-induced methylation marks would broaden the scope of crop improvement in the future.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Shashi Meena
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
28
|
Liu XS, Li H, Feng SJ, Yang ZM. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice. Gene 2024; 892:147900. [PMID: 37839767 DOI: 10.1016/j.gene.2023.147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Environmental contaminants such as cadmium (Cd) pose high risks to crop production and human health. The genetic basis for regulation of Cd stress-responsive genes for plant adaptation to adverse environments remains poorly understood. In this study, we characterized a rice Zeta family glutathione-S-transferase (OsGSTZ4) gene for Cd detoxification. Heterologous expression of OsGSTZ4 in a yeast (Saccharomyces cerevisiae) conferred cellular Cd tolerance. Transgenic rice overexpressing OsGSTZ4 improved plant growth, attenuated Cd-induced toxicity, and accumulated more Cd in roots. OsGSTZ4 transcription was rapidly induced 3 h after Cd exposure and then declined to the basal level. This was followed by (days after Cd treatment) by CHH hypermethylation (by 41.2 %) at a MITE (Miniature Inverted-repeat Transposable Element) transposable element (TE) inserted in the 5'-untranscribed region (UTR) (-1,722 ∼ -1,392 bp) of OsGSTZ4. Meanwhile, three 24-nt siRNAs derived from the TE (-1,722 ∼ -1,471 bp) were detected and was also rapidly enriched under Cd stress. To validate the possibility that Cd-induced change in OsGSTZ4 expression correlates with the siRNAs-involved CHH methylation through an RdDM (RNA-directed DNA methylation) pathway, genetic analyses were performed. We found that the CHH methylation at the promoter and transcript level of OsGSTZ4 were compromised in the osdrm2 (loss of function for CHH methylation) and osrdr2i (defective in RNA-dependent RNA polymerase 2) but did not change in other types of methyltransferases such as osmet1, ossdg714 or osros1. Promoter deletion analyses confirmed that the siRNA target sequences were essential for the proper expression of OsGSTZ4. Our studies reveal an unusual feedback mechanism by which the Cd-induced rapid OsGSTZ4 expression for Cd tolerance would interplay with the late CHH hypermethylation to silence the TE through the 24-nt siRNAs- and Osdrm2-mediated RdDM pathway, and help understand the diversity of gene regulation via an epigenetic mechanism for rice adaptation to the environmental stress.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Tselika M, Belmezos N, Kallemi P, Andronis C, Chiumenti M, Navarro B, Lavigne M, Di Serio F, Kalantidis K, Katsarou K. PSTVd infection in Nicotiana benthamiana plants has a minor yet detectable effect on CG methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1258023. [PMID: 38023875 PMCID: PMC10645062 DOI: 10.3389/fpls.2023.1258023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Viroids are small circular RNAs infecting a wide range of plants. They do not code for any protein or peptide and therefore rely on their structure for their biological cycle. Observed phenotypes of viroid infected plants are thought to occur through changes at the transcriptional/translational level of the host. A mechanism involved in such changes is RNA-directed DNA methylation (RdDM). Till today, there are contradictory works about viroids interference of RdDM. In this study, we investigated the epigenetic effect of viroid infection in Nicotiana benthamiana plants. Using potato spindle tuber viroid (PSTVd) as the triggering pathogen and via bioinformatic analyses, we identified endogenous gene promoters and transposable elements targeted by 24 nt host siRNAs that differentially accumulated in PSTVd-infected and healthy plants. The methylation status of these targets was evaluated following digestion with methylation-sensitive restriction enzymes coupled with PCR amplification, and bisulfite sequencing. In addition, we used Methylation Sensitive Amplification Polymorphism (MSAP) followed by sequencing (MSAP-seq) to study genomic DNA methylation of 5-methylcytosine (5mC) in CG sites upon viroid infection. In this study we identified a limited number of target loci differentially methylated upon PSTVd infection. These results enhance our understanding of the epigenetic host changes as a result of pospiviroid infection.
Collapse
Affiliation(s)
- Martha Tselika
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | - Paraskevi Kallemi
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Matthieu Lavigne
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
30
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
31
|
Li J, Li C, Deng Y, Wei H, Lu S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad114. [PMID: 37577393 PMCID: PMC10419789 DOI: 10.1093/hr/uhad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
Salvia miltiorrhiza is a model medicinal plant with significant economic and medicinal value. Its roots produce a group of diterpenoid lipophilic bioactive components, termed tanshinones. Biosynthesis and regulation of tanshinones has attracted widespread interest. However, the methylome of S. miltiorrhiza has not been analysed and the regulatory mechanism of DNA methylation in tanshinone production is largely unknown. Here we report single-base resolution DNA methylomes from roots and leaves. Comparative analysis revealed differential methylation patterns for CG, CHG, and CHH contexts and the association between DNA methylation and the expression of genes and small RNAs. Lowly methylated genes always had higher expression levels and 24-nucleotide sRNAs could be key players in the RdDM pathway in S. miltiorrhiza. DNA methylation variation analysis showed that CHH methylation contributed mostly to the difference. Go enrichment analysis showed that diterpenoid biosynthetic process was significantly enriched for genes with downstream overlapping with hypoCHHDMR in July_root when comparing with those in March_root. Tanshinone biosynthesis-related enzyme genes, such as DXS2, CMK, IDI1, HMGR2, DXR, MDS, CYP76AH1, 2OGD25, and CYP71D373, were less CHH methylated in gene promoters or downstream regions in roots collected in July than those collected in March. Consistently, gene expression was up-regulated in S. miltiorrhiza roots collected in July compared with March and the treatment of DNA methylation inhibitor 5-azacytidine significantly promoted tanshinone production. It suggests that DNA methylation plays a significant regulatory role in tanshinone biosynthesis in S. miltiorrhiza through changing the levels of CHH methylation in promoters or downstreams of key enzyme genes.
Collapse
Affiliation(s)
- Jiang Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
32
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
33
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
34
|
Zhu W, Xie Z, Chu Z, Ding Y, Shi G, Chen W, Wei X, Yuan Y, Wei F, Tian B. The Chromatin Remodeling Factor BrCHR39 Targets DNA Methylation to Positively Regulate Apical Dominance in Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1384. [PMID: 36987072 PMCID: PMC10051476 DOI: 10.3390/plants12061384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The SHPRH (SNF2, histone linker, PHD, RING, helicase) subfamily belonging to ATP-dependent chromatin remodeling factor is the effective tumor-suppressor, which can polyubiquitinate PCNA (proliferating cell nuclear antigen) and participate in post-replication repair in human. However, little is known about the functions of SHPRH proteins in plants. In this study, we identified a novel SHPRH member BrCHR39 and obtained BrCHR39-silenced transgenic Brassica rapa. In contrast to wild-type plants, transgenic Brassica plants exhibited a released apical dominance phenotype with semi-dwarfism and multiple lateral branches. Furthermore, a global alteration of DNA methylation in the main stem and bud appeared after silencing of BrCHR39. Based on the GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis, the plant hormone signal transduction pathway was clearly enriched. In particular, we found a significant increase in the methylation level of auxin-related genes in the stem, whereas auxin- and cytokinin-related genes were hypomethylated in the bud of transgenic plants. In addition, further qRT-PCR (quantitative real-time PCR) analysis revealed that DNA methylation level always had an opposite trend with gene expression level. Considered together, our findings indicated that suppression of BrCHR39 expression triggered the methylation divergence of hormone-related genes and subsequently affected transcription levels to regulate the apical dominance in Brassica rapa.
Collapse
Affiliation(s)
- Wei Zhu
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenni Chu
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Yakun Ding
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiwei Chen
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
36
|
Hayashi K, Alseekh S, Fernie AR. Genetic and epigenetic control of the plant metabolome. Proteomics 2023:e2200104. [PMID: 36781168 DOI: 10.1002/pmic.202200104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Plant metabolites are mainly produced through chemical reactions catalysed by enzymes encoded in the genome. Mutations in enzyme-encoding or transcription factor-encoding genes can alter the metabolome by changing the enzyme's catalytic activity or abundance, respectively. Insertion of transposable elements into non-coding regions has also been reported to affect transcription and ultimately metabolite content. In addition to genetic mutations, transgenerational epigenetic variations have also been found to affect metabolic content by controlling the transcription of metabolism-related genes. However, the majority of cases reported so far, in which epigenetic mechanisms are associated with metabolism, are non-transgenerational, and are triggered by developmental signals or environmental stress. Although, accumulating research has provided evidence of strong genetic control of the metabolome, epigenetic control has been largely untouched. Here, we provide a review of the genetic and epigenetic control of metabolism with a focus on epigenetics. We discuss both transgenerational and non-transgenerational epigenetic marks regulating metabolism as well as prospects of the field of metabolic control where intricate interactions between genetics and epigenetics are involved.
Collapse
Affiliation(s)
- Koki Hayashi
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
37
|
Eprintsev AT, Fedorin DN, Igamberdiev AU. Light Dependent Changes in Adenylate Methylation of the Promoter of the Mitochondrial Citrate Synthase Gene in Maize ( Zea mays L.) Leaves. Int J Mol Sci 2022; 23:13495. [PMID: 36362281 PMCID: PMC9653993 DOI: 10.3390/ijms232113495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 09/29/2023] Open
Abstract
Limited methyl-specific restriction of genomic DNA by endonuclease MAL1 revealed the changes in its methyl status caused by adenine modification in maize (Zea mays L.) leaves under different light conditions (dark, light, irradiation by red and far-red light). Incubation in the light and irradiation by red light exhibited an activating effect on DNA adenine methylase activity, which was reflected in an increase in the number of methylated adenines in GATC sites. Far-red light and darkness exhibited an opposite effect. The use of nitrite conversion of DNA followed by methyladenine-dependent restriction by MboI nuclease revealed a phytochrome B-dependent mechanism of regulation of the methyl status of adenine in the GATC sites in the promoter of the gene encoding the mitochondrial isoform of citrate synthase. Irradiation of plants with red light caused changes in the adenine methyl status of the analyzed amplicon, as evidenced by the presence of restriction products of 290, 254, and 121 nucleotides. Adenine methylation occurred at all three GATC sites in the analyzed DNA sequence. It is concluded that adenylate methylation is controlled by phytochrome B via the transcription factor PIF4 and represents an important mechanism for the tricarboxylic acid cycle regulation by light.
Collapse
Affiliation(s)
- Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|