1
|
Giurranna E, Nencini F, Bettiol A, Borghi S, Argento FR, Emmi G, Silvestri E, Taddei N, Fiorillo C, Becatti M. Dietary Antioxidants and Natural Compounds in Preventing Thrombosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:11457. [PMID: 39519009 PMCID: PMC11546393 DOI: 10.3390/ijms252111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive oxygen species (ROS) contribute to endothelial dysfunction, platelet activation, and coagulation abnormalities, promoting thrombus formation. Given the growing interest in non-pharmacological approaches to modulate oxidative stress, we examine the potential of various dietary interventions and antioxidant supplementation in reducing oxidative damage and preventing thrombotic events. Key dietary patterns, such as the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and ketogenic diets, as well as antioxidant-rich supplements like curcumin, selenium, and polyphenols, demonstrate promising effects in improving oxidative stress markers, lipid profiles, and inflammatory responses. This review highlights recent advances in the field, drawing from in vitro, ex vivo, and clinical studies, and underscores the importance of integrating dietary strategies into preventive and therapeutic approaches for managing thrombosis and cardiovascular health. Further research is needed to better understand long-term effects and personalize these interventions for optimizing patient outcomes.
Collapse
Affiliation(s)
- Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Giacomo Emmi
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU, Aja PM, Okoroiwu G, Ubosi N, Pius T, Ashiru M, Akaba K, Adias TC. Soluble platelet selectin and platelets in COVID-19: a multifaceted connection. Ann Med Surg (Lond) 2024; 86:4634-4642. [PMID: 39118706 PMCID: PMC11305715 DOI: 10.1097/ms9.0000000000002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
The COVID-19 pandemic has brought to light the intricate relationship between platelets, soluble platelet selectin (sP-selectin), and disease pathogenesis. Platelets, traditionally recognized for their role in hemostasis, have emerged as key contributors to the immunothrombotic complications observed in COVID-19 patients. Concurrently, elevated levels of sP-selectin, indicative of platelet activation and endothelial injury, have been consistently identified in COVID-19 patients and have shown associations with disease severity and adverse outcomes. This multifaceted connection underscores the pivotal role of platelets and sP-selectin in orchestrating thromboinflammation, vascular dysfunction, and disease progression in COVID-19. Platelet activation triggers the release of inflammatory mediators and promotes platelet-leukocyte interactions, amplifying the systemic inflammatory response and exacerbating endothelial injury. Additionally, platelet-derived factors contribute to microvascular thrombosis, further exacerbating tissue damage and organ dysfunction in severe COVID-19. Elevated sP-selectin levels serve as biomarkers for disease severity and prognostication, aiding in risk stratification and early identification of patients at higher risk of adverse outcomes. Therapeutic strategies targeting platelet dysfunction and sP-selectin-mediated pathways hold promise in mitigating thromboinflammation and improving outcomes in COVID-19 patients. Antiplatelet agents, platelet inhibitors, and anti-inflammatory therapies represent potential interventions to attenuate platelet activation, inhibit platelet-leukocyte interactions, and alleviate endothelial dysfunction. A comprehensive understanding of the multifaceted connection between platelets, sP-selectin, and COVID-19 pathogenesis offers opportunities for tailored therapeutic approaches aimed at mitigating thromboinflammation and improving patient outcomes in this complex and challenging clinical setting.
Collapse
Affiliation(s)
| | | | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Ebonyi State
| | - G.I.A. Okoroiwu
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - N.I. Ubosi
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - Theophilus Pius
- Department of Medical Laboratory Science, Kampala International University
| | - Muhammad Ashiru
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - Kingsley Akaba
- Department of Haematology, University of Calabar, Calabar, Cross-River State
| | - Teddy Charles Adias
- Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Federal University Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
3
|
Yang M, Silverstein RL. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants (Basel) 2024; 13:83. [PMID: 38247507 PMCID: PMC10812781 DOI: 10.3390/antiox13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress increases the risk for clinically significant thrombotic events, yet the mechanisms by which oxidants become prothrombotic are unclear. In this review, we provide an overview of cysteine reactivity and oxidation. We then highlight recent findings on cysteine oxidation events in oxidative stress-related thrombosis. Special emphasis is on the signaling pathway induced by a platelet membrane protein, CD36, in dyslipidemia, and by protein disulfide isomerase (PDI), a member of the thiol oxidoreductase family of proteins. Antioxidative and chemical biology approaches to target cysteine are discussed. Lastly, the knowledge gaps in the field are highlighted as they relate to understanding how oxidative cysteine modification might be targeted to limit thrombosis.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-924, Boston, MA 02115, USA
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Hub 8745, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Sadykova D, Nigmatullina R, Salakhova K, Slastnikova E, Galimova L, Khaliullina C, Valeeva I. Membrane Transporter of Serotonin and Hypercholesterolemia in Children. Int J Mol Sci 2024; 25:767. [PMID: 38255840 PMCID: PMC10815017 DOI: 10.3390/ijms25020767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The serotonin membrane transporter is one of the main mechanisms of plasma serotonin concentration regulation. Serotonin plays an important role in the pathogenesis of various cardiovascular diseases, stimulating the proliferation of smooth muscle cells, key cells in the process of hypertrophic vascular remodeling. Vascular remodeling is one of the leading prognostically unfavorable factors of atherosclerosis, the main manifestation of familial hypercholesterolemia. Familial hypercholesterolemia is one of the most common genetically determined lipid metabolism disorders and occurs in 1 in 313 people. The aim of our study was to investigate the levels of plasma and platelet serotonin, 5-hydroxyindoleacetic acid, and membrane transporter in a cross-sectional study of two pediatric groups, including patients with familial hypercholesterolemia and the control group, which consisted of apparently healthy children without cardiovascular diseases. The study involved 116 children aged 5 to 17 years old. The proportion of boys was 50% (58/116) and the average age of the children was 10.5 years (CI 2.8-18.1). The concentrations of serotonin in blood plasma and platelets and 5-hydroxyindoleacetic acid were higher in children with familial hypercholesterolemia than in the controls. The concentration of the serotonin transporter in platelets in healthy children, compared with the main group, was 1.3 times higher. A positive correlation was revealed between the level of serotonin (5-HT and PWV: ρ = 0.6, p < 0.001), its transporter (SERT and PWV: ρ = 0.5, p < 0.001), and the main indicators of arterial vascular stiffness. Our study revealed the relationship between high serotonin and SERT concentrations and markers of arterial stiffness. The results we obtained suggest the involvement of serotonin and SERT in the process of vascular remodeling in familial hypercholesterolemia in children.
Collapse
Affiliation(s)
- Dinara Sadykova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Razina Nigmatullina
- Department of Normal Physiology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Karina Salakhova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Evgeniia Slastnikova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Liliya Galimova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Chulpan Khaliullina
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Ildaria Valeeva
- Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| |
Collapse
|
5
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
6
|
Ye Y, Yang L, Leng M, Wang Q, Wu J, Wan W, Wang H, Li L, Peng Y, Chai S, Meng Z. Luteolin inhibits GPVI-mediated platelet activation, oxidative stress, and thrombosis. Front Pharmacol 2023; 14:1255069. [PMID: 38026984 PMCID: PMC10644720 DOI: 10.3389/fphar.2023.1255069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Luteolin inhibits platelet activation and thrombus formation, but the mechanisms are unclear. This study investigated the effects of luteolin on GPVI-mediated platelet activation in vitro and explored the effect of luteolin on thrombosis, coagulation, and platelet production in vivo. Methods: Washed human platelets were used for aggregation, membrane protein expression, ATP, Ca2+, and LDH release, platelet adhesion/spreading, and clot retraction experiments. Washed human platelets were used to detect collagen and convulxin-induced reactive oxygen species production and endogenous antioxidant effects. C57BL/6 male mice were used for ferric chloride-induced mesenteric thrombosis, collagen-epinephrine induced acute pulmonary embolism, tail bleeding, coagulation function, and luteolin toxicity experiments. The interaction between luteolin and GPVI was analyzed using solid phase binding assay and surface plasmon resonance (SPR). Results: Luteolin inhibited collagen- and convulxin-mediated platelet aggregation, adhesion, and release. Luteolin inhibited collagen- and convulxin-induced platelet ROS production and increased platelet endogenous antioxidant capacity. Luteolin reduced convulxin-induced activation of ITAM and MAPK signaling molecules. Molecular docking simulation showed that luteolin forms hydrogen bonds with GPVI. The solid phase binding assay showed that luteolin inhibited the interaction between collagen and GPVI. Surface plasmon resonance showed that luteolin bonded GPVI. Luteolin inhibited integrin αIIbβ3-mediated platelet activation. Luteolin inhibited mesenteric artery thrombosis and collagen- adrenergic-induced pulmonary thrombosis in mice. Luteolin decreased oxidative stress in vivo. Luteolin did not affect coagulation, hemostasis, or platelet production in mice. Discussion: Luteolin may be an effective and safe antiplatelet agent target for GPVI. A new mechanism (decreased oxidative stress) for the anti-platelet activity of luteolin has been identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Szymańska P, Luzak B, Siarkiewicz P, Golański J. Platelets as Potential Non-Traditional Cardiovascular Risk Factor-Analysis Performed in Healthy Donors. Int J Mol Sci 2023; 24:14914. [PMID: 37834362 PMCID: PMC10573668 DOI: 10.3390/ijms241914914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Abnormal lipid profile, increased glucose level, and elevated body weight are traditional cardiometabolic risk factors; however, the role of platelets in the development of cardiovascular disease (CVD) is increasingly being highlighted. The aim of this study was to select platelet-related parameters (non-genetic molecular and routine laboratory measurements) that may be associated with increased cardiovascular risk among healthy populations. We evaluated the level of platelet indices, platelet-based inflammatory markers, platelet reactivity parameters, and platelet reactive oxygen species (ROS) generation in relation to selected cardiometabolic risk factors. We noted the association between total cholesterol and LDL cholesterol with platelet aggregation and platelet ROS generation. We found the relationship between triglycerides, glucose, and body mass index with the relatively new multi-inflammatory indices (MII-1 and MII-3). Moreover, we noticed that the mean platelet volume-to-lymphocyte ratio in healthy subjects is not a good source of information about platelets and inflammation. We also highlighted that platelet-to-HDL-cholesterol ratio may be a promising prognostic cardiometabolic indicator. The association between platelet-related (especially molecular) and cardiometabolic parameters requires further research. However, the goal of this study was to shed light on the consideration of platelets as a non-traditional cardiovascular risk factor and a crucial element in identifying individuals at high-risk of developing CVD in the future.
Collapse
Affiliation(s)
- Patrycja Szymańska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| | - Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Jacek Golański
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (B.L.)
| |
Collapse
|
8
|
Barale C, Melchionda E, Tempesta G, Morotti A, Russo I. Impact of Physical Exercise on Platelets: Focus on Its Effects in Metabolic Chronic Diseases. Antioxidants (Basel) 2023; 12:1609. [PMID: 37627603 PMCID: PMC10451697 DOI: 10.3390/antiox12081609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic disorders are strongly linked to cardiovascular (CV) diseases, and it is unanimously accepted that regular exercise training is a key tool to improving CV risk factors, including diabetes, dyslipidemia, and obesity. Increased oxidative stress due to an imbalance between reactive oxygen species production and their scavenging by endogenous antioxidant capacity is the common ground among these metabolic disorders, and each of them affects platelet function. However, the correction of hyperglycemia in diabetes and lipid profile in dyslipidemia as well as the lowering of body weight in obesity all correlate with amelioration of platelet function. Habitual physical exercise triggers important mechanisms related to the exercise benefits for health improvement and protects against CV events. Platelets play an important role in many physiological and pathophysiological processes, including the development of arterial thrombosis, and physical (in)activity has been shown to interfere with platelet function. Although data reported by studies carried out on this topic show discrepancies, the current knowledge on platelet function affected by exercise mainly depends on the type of applied exercise intensity and whether acute or habitual, strenuous or moderate, thus suggesting that physical activity and exercise intensity may interfere with platelet function differently. Thus, this review is designed to cover the aspects of the relationship between physical exercise and vascular benefits, with an emphasis on the modulation of platelet function, especially in some metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Regione Gonzole, 10, Orbassano, I-10043 Turin, Italy; (C.B.); (E.M.); (G.T.); (A.M.)
| |
Collapse
|
9
|
Chyrchel B, Kruszelnicka O, Wieczorek-Surdacka E, Surdacki A. Association of ADP-Induced Whole-Blood Platelet Aggregation with Serum Low-Density Lipoprotein Cholesterol in Patients with Coronary Artery Disease When Receiving Maintenance Ticagrelor-Based Dual Antiplatelet Therapy. J Clin Med 2023; 12:4530. [PMID: 37445565 DOI: 10.3390/jcm12134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The degree of platelet inhibition in patients undergoing dual antiplatelet therapy (DAPT) affects cardiovascular outcomes after acute coronary syndromes (ACS) and/or percutaneous coronary intervention. Our aim was to search for correlates of residual ex vivo platelet reactivity and circulating soluble P-selectin (sP-selectin), an index of in vivo platelet activation, in patients being treated by DAPT with ticagrelor. Adenosine diphosphate (ADP)-induced platelet aggregability (by multiple electrode aggregometry) and plasma sP-selectin were estimated in 62 stable post-ACS subjects (46 men and 16 women; mean age: 64 ± 10 years; 30 with type 2 diabetes (T2DM)) undergoing maintenance DAPT with ticagrelor and aspirin. These patients did not exhibit heart failure or other relevant coexistent diseases except for properly controlled T2DM, mild renal insufficiency, and hypertension. We also assessed this in 64 subjects on clopidogrel-based DAPT matched for age, sex, and T2DM status. ADP-induced platelet aggregation was below the optimal levels (190-460 arbitrary units (AU) * min) in most patients receiving ticagrelor-based DAPT, especially in those with below-median (<1.9 mmol/L) serum concentrations of low-density lipoprotein cholesterol (LDL-c) (128 ± 61 vs. 167 ± 73 AU * min for below-median and above-median LDL-c, respectively, p = 0.025). In contrast, platelet reactivity did not differ by LDL-c on clopidogrel-based DAPT (246 ± 101 vs. 268 ± 108 AU * min for below-median and above-median LDL-c, respectively, p > 0.4). Plasma sP-selectin was found to be unrelated to serum LDL-c when receiving DAPT with ticagrelor (p > 0.4) or clopidogrel (p > 0.8). In conclusion, our preliminary observational study suggests the association of lower residual ex vivo platelet aggregability with better LDL-c control in patients undergoing ticagrelor-based maintenance DAPT, which does not appear to be reflected by plasma sP-selectin. Whether the serum LDL-c level should be considered among the factors affecting the degree of platelet inhibition for those treated with ticagrelor-based DAPT needs to be investigated in larger studies.
Collapse
Affiliation(s)
- Bernadeta Chyrchel
- Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Olga Kruszelnicka
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 80 Prądnicka Street, 31-202 Cracow, Poland
| | - Ewa Wieczorek-Surdacka
- Center of Innovative Medical Education, Jagiellonian University Medical College, 7 Medyczna Street, 30-688 Cracow, Poland
| | - Andrzej Surdacki
- Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| |
Collapse
|
10
|
Russo I, Barale C, Melchionda E, Penna C, Pagliaro P. Platelets and Cardioprotection: The Role of Nitric Oxide and Carbon Oxide. Int J Mol Sci 2023; 24:ijms24076107. [PMID: 37047079 PMCID: PMC10094148 DOI: 10.3390/ijms24076107] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nitric oxide (NO) and carbon monoxide (CO) represent a pair of biologically active gases with an increasingly well-defined range of effects on circulating platelets. These gases interact with platelets and cells in the vessels and heart and exert fundamentally similar biological effects, albeit through different mechanisms and with some peculiarity. Within the cardiovascular system, for example, the gases are predominantly vasodilators and exert antiaggregatory effects, and are protective against damage in myocardial ischemia-reperfusion injury. Indeed, NO is an important vasodilator acting on vascular smooth muscle and is able to inhibit platelet activation. NO reacts with superoxide anion (O2(-•)) to form peroxynitrite (ONOO(-)), a nitrosating agent capable of inducing oxidative/nitrative signaling and stress both at cardiovascular, platelet, and plasma levels. CO reduces platelet reactivity, therefore it is an anticoagulant, but it also has some cardioprotective and procoagulant properties. This review article summarizes current knowledge on the platelets and roles of gas mediators (NO, and CO) in cardioprotection. In particular, we aim to examine the link and interactions between platelets, NO, and CO and cardioprotective pathways.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Cristina Barale
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Elena Melchionda
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences of Turin University, Orbassano, I-10043 Turin, Italy
| |
Collapse
|
11
|
Sotler T, Šebeštjen M. PCSK9 as an Atherothrombotic Risk Factor. Int J Mol Sci 2023; 24:ijms24031966. [PMID: 36768292 PMCID: PMC9916735 DOI: 10.3390/ijms24031966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Disturbances in lipid metabolism are among the most important risk factors for atherosclerotic cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein in lipid metabolism that is also involved in the production of inflammatory cytokines, endothelial dysfunction and aherosclerotic plaque development. Studies have shown a connection between PCSK9 and various indicators of inflammation. Signalling pathways that include PCSK9 play important role in the initiation and development of atherosclerotic lesions by inducing vascular inflammation. Studies so far have suggested that PCSK9 is associated with procoagulation, enhancing the development of atherosclerosis. Experimentally, it was also found that an increased concentration of PCSK9 significantly accelerated the apoptosis of endothelial cells and reduced endothelial function, which created conditions for the development of atherosclerosis. PCSK9 inhibitors can therefore improve clinical outcomes not only in a lipid-dependent manner, but also through lipid-independent pathways. The aim of our review was to shed light on the impact of PCSK9 on these factors, which are not directly related to low-density lipoprotein (LDL) cholesterol metabolism.
Collapse
Affiliation(s)
- Tadeja Sotler
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
12
|
Mitochondrial Genetic Background May Impact Statins Side Effects and Atherosclerosis Development in Familial Hypercholesterolemia. Int J Mol Sci 2022; 24:ijms24010471. [PMID: 36613915 PMCID: PMC9820128 DOI: 10.3390/ijms24010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Heredity of familial hypercholesterolemia (FH) can present as a dominant monogenic disorder of polygenic origin or with no known genetic cause. In addition, the variability of the symptoms among individuals or within the same families evidence the potential contribution of additional factors than monogenic mutations that could modulate the development and severity of the disease. In addition, statins, the lipid-lowering drugs which constitute the first-line therapy for the disease, cause associated muscular symptoms in a certain number of individuals. Here, we analyze the evidence of the mitochondrial genetic variation with a special emphasis on the role of CoQ10 to explain this variability found in both disease symptoms and statins side effects. We propose to use mtDNA variants and copy numbers as markers for the cardiovascular disease development of FH patients and to predict potential statin secondary effects and explore new mechanisms to identify new markers of disease or implement personalized medicine strategies for FH therapy.
Collapse
|