1
|
Hirigoyen U, Guilbaud C, Krejbich M, Fouet M, Fresquet J, Arnaud B, Com E, Pineau C, Cadiou G, Burlaud-Gaillard J, Erbs P, Fradin D, Labarrière N, Fonteneau JF, Petithomme T, Boisgerault N. Oncolytic viruses alter the biogenesis of tumor extracellular vesicles and influence their immunogenicity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200887. [PMID: 39492948 PMCID: PMC11530755 DOI: 10.1016/j.omton.2024.200887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication in the tumor microenvironment. Tumor EVs are commonly associated with metastasis, immunosuppression or drug resistance. Viral infections usually increase EV secretion, but little is known about the effect of oncolytic viruses (OVs) on tumor EVs. Here, we investigated the impact of oncolytic vesicular stomatitis virus (VSV) and vaccinia virus on EVs secreted by human melanoma and thoracic cancer cells. We found that OV infection increases the production of EVs by tumor cells. These EVs contain proteins of viral origin, such as VSV-G, thus creating a continuum of particles sharing markers of both canonical EVs and viruses. As such, the presence of VSV-G on EVs improves the transfer of their protein content to cell types commonly found in the tumor microenvironment. A proteomic analysis also revealed that EVs-OV secreted during VSV infection are enriched in immunity-related proteins. Finally, CD8+ T cells incubated with EVs-OV from infected cells display slightly enhanced cytotoxic functions. Taken together, these data suggest that OVs enhance the communication mediated by tumor EVs, which could participate in the therapeutic efficacy of OVs. These results also provide rationale for engineering OVs to exploit EVs and disseminate therapeutic proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Hirigoyen
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Coraly Guilbaud
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Krejbich
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Fouet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Bastien Arnaud
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Emmanuelle Com
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Gwenann Cadiou
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, 37000 Tours, France
| | | | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Nathalie Labarrière
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Tacien Petithomme
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, CHU Nantes, 44000 Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| |
Collapse
|
2
|
Protto V, Miteva MT, Iannuzzi F, Marcocci ME, Li Puma DD, Piacentini R, Belli M, Sansone L, Pietrantoni A, Grassi C, Palamara AT, De Chiara G. HSV-1 infection induces phosphorylated tau propagation among neurons via extracellular vesicles. mBio 2024; 15:e0152224. [PMID: 39189744 PMCID: PMC11481531 DOI: 10.1128/mbio.01522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular vesicles (EV), key players in cell-to-cell communication, may contribute to disease propagation in several neurodegenerative diseases, including Alzheimer's disease (AD), by favoring the dissemination of neurotoxic proteins within the brain. Interestingly, growing evidence supports the role of herpes simplex virus type 1 (HSV-1) infection in the pathogenesis of AD. Here, we investigated whether HSV-1 infection could promote the spread of phosphorylated tau (ptau) among neurons via EV. We analyzed the ptau species that were secreted via EV following HSV-1 infection in neuroblastoma cells and primary neurons, focusing particularly on T205, T181, and T217, the phosphorylation sites mainly associated with AD. Moreover, by overexpressing human tau tagged with GFP (htauGFP), we found that recipient tau knockout (KO) neurons uptook EV that are loaded with HSV-1-induced phtauGFP. Finally, we exploited an in vivo model of acute infection and assessed that cerebral HSV-1 infection promotes the release of ptau via EV in the brain of infected mice. Overall, our data suggest that, following HSV-1 infection, EV play a role in tau spreading within the brain, thus contributing to neurodegeneration.IMPORTANCEHerpes simplex virus type 1 (HSV-1) infection that reaches the brain has been repeatedly linked with the appearance of the pathognomonic markers of Alzheimer's disease (AD), including accumulation of amyloid beta and hyperphosphorylated tau proteins, and cognitive deficits. AD is a multifactorial neurodegenerative disease representing the most common form of dementia in the elderly, and no cure is currently available, thus prompting additional investigation on potential risk factors and pathological mechanisms. Here, we demonstrate that the virus exploits the extracellular vesicles (EV) to disseminate phosphorylated tau (ptau) among brain cells. Importantly, we provide evidence that the HSV-1-induced EV-bearing ptau can be undertaken by recipient neurons, thus likely contributing to misfolding and aggregation of native tau, as reported for other AD models. Hence, our data highlight a novel mechanism exploited by HSV-1 to propagate tau-related damage in the brain.
Collapse
Affiliation(s)
- V. Protto
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M. T. Miteva
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - F. Iannuzzi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M. E. Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - D. D. Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - R. Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - L. Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - A. Pietrantoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C. Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. T. Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - G. De Chiara
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
3
|
Muskan M, Abeysinghe P, Cecchin R, Branscome H, Morris KV, Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol Ther 2024; 32:2939-2949. [PMID: 38414242 PMCID: PMC11403218 DOI: 10.1016/j.ymthe.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.
Collapse
Affiliation(s)
- Muskan Muskan
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Pevindu Abeysinghe
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Riccardo Cecchin
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Heather Branscome
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA
| | - Kevin V Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Fatah Kashanchi
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA.
| |
Collapse
|
4
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2024:10.1007/s12013-024-01495-3. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
De Luca M, Musio B, Balestra F, Arrè V, Negro R, Depalo N, Rizzi F, Mastrogiacomo R, Panzetta G, Donghia R, Pesole PL, Coletta S, Piccinno E, Scalavino V, Serino G, Maqoud F, Russo F, Orlando A, Todisco S, Mastrorilli P, Curri ML, Gallo V, Giannelli G, Scavo MP. Role of Extracellular Vesicles in Crohn's Patients on Adalimumab Who Received COVID-19 Vaccination. Int J Mol Sci 2024; 25:8853. [PMID: 39201543 PMCID: PMC11355036 DOI: 10.3390/ijms25168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Collapse
Affiliation(s)
- Maria De Luca
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Francesco Balestra
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Viviana Scalavino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Pietro Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| |
Collapse
|
6
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
7
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
9
|
O’Hara BA, Lukacher AS, Garabian K, Kaiserman J, MacLure E, Ishikawa H, Schroten H, Haley SA, Atwood WJ. Highly restrictive and directional penetration of the blood cerebral spinal fluid barrier by JCPyV. PLoS Pathog 2024; 20:e1012335. [PMID: 39038049 PMCID: PMC11293668 DOI: 10.1371/journal.ppat.1012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Avraham S. Lukacher
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Kaitlin Garabian
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Kaiserman
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Evan MacLure
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | | | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Mannheim, Germany
| | - Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
13
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
14
|
Hillung J, Olmo-Uceda MJ, Muñoz-Sánchez JC, Elena SF. Accumulation Dynamics of Defective Genomes during Experimental Evolution of Two Betacoronaviruses. Viruses 2024; 16:644. [PMID: 38675984 PMCID: PMC11053736 DOI: 10.3390/v16040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - María J. Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Juan C. Muñoz-Sánchez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
15
|
Ishikawa T, Narita K, Matsuyama K, Masuda M. Dissemination of the Flavivirus Subgenomic Replicon Genome and Viral Proteins by Extracellular Vesicles. Viruses 2024; 16:524. [PMID: 38675867 PMCID: PMC11054737 DOI: 10.3390/v16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs) such as exosomes have been shown to play physiological roles in cell-to-cell communication by delivering various proteins and nucleic acids. In addition, several studies revealed that the EVs derived from the cells that are infected with certain viruses could transfer the full-length viral genomes, resulting in EVs-mediated virus propagation. However, the possibility cannot be excluded that the prepared EVs were contaminated with infectious viral particles. In this study, the cells that harbor subgenomic replicon derived from the Japanese encephalitis virus and dengue virus without producing any replication-competent viruses were employed as the EV donor. It was demonstrated that the EVs in the culture supernatants of those cells were able to transfer the replicon genome to other cells of various types. It was also shown that the EVs were incorporated by the recipient cells primarily through macropinocytosis after interaction with CD33 and Tim-1/Tim-4 on HeLa and K562 cells, respectively. Since the methods used in this study are free from contamination with infectious viral particles, it is unequivocally indicated that the flavivirus genome can be transferred by EVs from cell to cell, suggesting that this pathway, in addition to the classical receptor-mediated infection, may play some roles in the viral propagation and pathogenesis.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of Microbiology, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu 321-0293, Tochigi, Japan (M.M.)
| | - Kentaro Narita
- Department of Microbiology, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu 321-0293, Tochigi, Japan (M.M.)
| | - Kinichi Matsuyama
- Department of Pathology, Dokkyo Medical University Hospital, 880 Kita-kobayashi, Mibu 321-0293, Tochigi, Japan
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu 321-0293, Tochigi, Japan (M.M.)
| |
Collapse
|
16
|
Hejenkowska ED, Yavuz H, Swiatecka-Urban A. Beyond Borders of the Cell: How Extracellular Vesicles Shape COVID-19 for People with Cystic Fibrosis. Int J Mol Sci 2024; 25:3713. [PMID: 38612524 PMCID: PMC11012075 DOI: 10.3390/ijms25073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The interaction between extracellular vesicles (EVs) and SARS-CoV-2, the virus causing COVID-19, especially in people with cystic fibrosis (PwCF) is insufficiently studied. EVs are small membrane-bound particles involved in cell-cell communications in different physiological and pathological conditions, including inflammation and infection. The CF airway cells release EVs that differ from those released by healthy cells and may play an intriguing role in regulating the inflammatory response to SARS-CoV-2. On the one hand, EVs may activate neutrophils and exacerbate inflammation. On the other hand, EVs may block IL-6, a pro-inflammatory cytokine associated with severe COVID-19, and protect PwCF from adverse outcomes. EVs are regulated by TGF-β signaling, essential in different disease states, including COVID-19. Here, we review the knowledge, identify the gaps in understanding, and suggest future research directions to elucidate the role of EVs in PwCF during COVID-19.
Collapse
|
17
|
Spugnini EP, Condello M, Crispi S, Baldi A. Electroporation in Translational Medicine: From Veterinary Experience to Human Oncology. Cancers (Basel) 2024; 16:1067. [PMID: 38473422 DOI: 10.3390/cancers16051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Electroporation (EP) is a broadly accepted procedure that, through the application of electric pulses with appropriate amplitudes and waveforms, promotes the delivery of anticancer molecules in various oncology therapies. EP considerably boosts the absorptivity of targeted cells to anticancer molecules of different natures, thus upgrading their effectiveness. Its use in veterinary oncology has been widely explored, and some applications, such as electrochemotherapy (ECT), are currently approved as first-line treatments for several neoplastic conditions. Other applications include irreversible electroporation and EP-based cancer vaccines. In human oncology, EP is still mostly restricted to therapies for cutaneous tumors and the palliation of cutaneous and visceral metastases of malignant tumors. Fields where veterinary experience could help smooth the clinical transition to humans include intraoperative EP, interventional medicine and cancer vaccines. This article recapitulates the state of the art of EP in veterinary and human oncology, recounting the most relevant results to date.
Collapse
Affiliation(s)
| | | | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Alfonso Baldi
- Biopulse Srl, 00144 Rome, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
18
|
Hillung J, Lázaro JT, Muñoz-Sánchez JC, Olmo-Uceda MJ, Sardanyés J, Elena SF. Decay of HCoV-OC43 infectivity is lower in cell debris-containing media than in fresh culture media. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001092. [PMID: 38440329 PMCID: PMC10910279 DOI: 10.17912/micropub.biology.001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
In the quantitative description of viral dynamics within cell cultures and, more broadly, in modeling within-host viral infections, a question that commonly arises is whether the degradation of a fraction of the virus could be disregarded in comparison with the massive synthesis of new viral particles. Surprisingly, quantitative data on the synthesis and degradation rates of RNA viruses in cell cultures are scarce. In this study, we investigated the decay of the human betacoronavirus OC43 (HCoV-OC43) infectivity in cell culture lysates and in fresh media. Our findings revealed a significantly slower viral decay rate in the medium containing lysate cells compared to the fresh medium. This observation suggests that the presence of cellular debris from lysed cells may offer protection or stabilize virions, slowing down their degradation. Moreover, the growth rate of HCoV-OC43 infectivity is significantly higher than degradation as long as there are productive cells in the medium, suggesting that, as a first approximation, degradation can be neglected during early infection.
Collapse
Affiliation(s)
- Julia Hillung
- Evolutionary Systems Virology, Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC - Universitat de València, Paterna, 46980 València, Spain
| | - J. Tomás Lázaro
- Dynamical Systems and Computational Virology, CSIC Associated Unit CRM - I2SysBio, Spain
- Departament de Matemàtiques, Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain
- Institute of Mathematics, UPC - BarcelonaTech (IMTech), 08028 Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juan-Carlos Muñoz-Sánchez
- Evolutionary Systems Virology, Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC - Universitat de València, Paterna, 46980 València, Spain
| | - María-José Olmo-Uceda
- Evolutionary Systems Virology, Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC - Universitat de València, Paterna, 46980 València, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit CRM - I2SysBio, Spain
| | - Santiago F. Elena
- Evolutionary Systems Virology, Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC - Universitat de València, Paterna, 46980 València, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States
| |
Collapse
|
19
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
20
|
Chatterjee S, Kordbacheh R, Sin J. Extracellular Vesicles: A Novel Mode of Viral Propagation Exploited by Enveloped and Non-Enveloped Viruses. Microorganisms 2024; 12:274. [PMID: 38399678 PMCID: PMC10892846 DOI: 10.3390/microorganisms12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are small membrane-enclosed structures that have gained much attention from researchers across varying scientific fields in the past few decades. Cells secrete diverse types of EVs into the extracellular milieu which include exosomes, microvesicles, and apoptotic bodies. These EVs play a crucial role in facilitating intracellular communication via the transport of proteins, lipids, DNA, rRNA, and miRNAs. It is well known that a number of viruses hijack several cellular pathways involved in EV biogenesis to aid in their replication, assembly, and egress. On the other hand, EVs can also trigger host antiviral immune responses by carrying immunomodulatory molecules and viral antigens on their surface. Owing to this intricate relationship between EVs and viruses, intriguing studies have identified various EV-mediated viral infections and interrogated how EVs can alter overall viral spread and longevity. This review provides a comprehensive overview on the EV-virus relationship, and details various modes of EV-mediated viral spread in the context of clinically relevant enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Lane, Tuscaloosa, AL 35401, USA; (S.C.); (R.K.)
| |
Collapse
|
21
|
Daniels DE, Portelli IV, Au SKW, DeWitte-Orr SJ. Production, Isolation, and Detection of Poly IC in Extracellular Vesicles from U937 Cells. Methods Mol Biol 2024; 2813:235-244. [PMID: 38888782 DOI: 10.1007/978-1-0716-3890-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Double-stranded RNA is produced by viruses during their replicative cycle. It is a potent immune modulator and indicator of viral infection within the body. Extracellular vesicles (EVs) are lipid-bound particles released from cells homeostatically. Recent studies have shown that a commercially available dsRNA, poly inosinic: poly cytidylic acid (poly IC), can be detected within EVs. This finding opens the door for studying EVs as (1) carriers for dsRNA and (2) indicators of viral infection. To study dsRNA-containing EVs, we must have reliable methods for producing, isolating, and detecting them. This chapter uses U937, a pro-monocytic, human myeloid leukemia cell line, as the EV producer following poly IC treatment, and an immunoblot using an anti-dsRNA antibody (J2) for detection. Two methods for isolating the EVs and two methods for isolating the RNA from these EVs are described. Together, these methods effectively produce, isolate, and detect long dsRNA from EVs.
Collapse
Affiliation(s)
| | - Iliana V Portelli
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Sarah K W Au
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Stephanie J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
22
|
Cairoli V, Valle-Millares D, Terrón-Orellano MC, Luque D, Ryan P, Dominguez L, Martín-Carbonero L, De Los Santos I, De Matteo E, Ameigeiras B, Briz V, Casciato P, Preciado MV, Valva P, Fernández-Rodríguez A. MicroRNA signature from extracellular vesicles of HCV/HIV co-infected individuals differs from HCV mono-infected. J Mol Med (Berl) 2023; 101:1409-1420. [PMID: 37704856 PMCID: PMC10663177 DOI: 10.1007/s00109-023-02367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Hepatitis C virus (HCV) coinfection with human immunodeficiency virus (HIV) has a detrimental impact on disease progression. Increasing evidence points to extracellular vesicles (EVs) as important players of the host-viral cross-talk. The microRNAs (miRNAs), as essential components of EVs cargo, are key regulators of normal cellular processes and also promote viral replication, viral pathogenesis, and disease progression. We aimed to characterize the plasma-derived EVs miRNA signature of chronic HCV infected and HIV coinfected patients to unravel the molecular mechanisms of coinfection. EVs were purified and characterized from 50 plasma samples (21 HCV mono- and 29 HCV/HIV co-infected). EV-derived small RNAs were isolated and analyzed by massive sequencing. Known and de novo miRNAs were identified with miRDeep2. Significant differentially expressed (SDE) miRNA identification was performed with generalized linear models and their putative dysregulated biological pathways were evaluated. Study groups were similar for most clinical and epidemiological characteristics. No differences were observed in EVs size or concentration between groups. Therefore, HCV/HIV co-infection condition did not affect the concentration or size of EVs but produced a disturbance in plasma-derived EVs miRNA cargo. Thus, a total of 149 miRNAs were identified (143 known and 6 de novo) leading to 37 SDE miRNAs of which 15 were upregulated and 22 downregulated in HCV/HIV co-infected patients. SDE miRNAs regulate genes involved in inflammation, fibrosis, and cancer, modulating different biological pathways related to HCV and HIV pathogenesis. These findings may help to develop new generation biomarkers and treatment strategies, in addition to elucidate the mechanisms underlying virus-host interaction. KEY MESSAGES: HCV and HCV/HIV displayed similar plasma-EV size and concentration. EVs- derived miRNA profile was characterized by NGS. 37 SDE miRNAs between HCV and HCV/HIV were observed. SDE miRNAs regulate genes involved in inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
- Victoria Cairoli
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - María C Terrón-Orellano
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Daniel Luque
- Unit of Electron Microscopy Scientific and Technical Central Units (UCCT), Health Institute Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Infectious Diseases Department, Internal Medicine Department HIV/Hepatitis, Infanta Leonor University Hospital, 28031, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Lourdes Dominguez
- HIV Unit, Internal Medicine Department, Research Institute of the Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Luz Martín-Carbonero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, 28046, Madrid, Spain
| | - Ignacio De Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, La Princesa University Hospital, 28006, Madrid, Spain
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Beatriz Ameigeiras
- Liver Unit, Ramos Mejía Hospital, C1221ADC CABA, Buenos Aires, Argentina
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222, Majadahonda, Madrid, Spain
| | - Paola Casciato
- Liver Unit, Italian's Hospital of Buenos Aires, C1199 CABA, Buenos Aires, Argentina
| | - María Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children's Hospital, C1425EFD CABA, Buenos Aires, Argentina
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, Centro Nacional de Mirobiología, Instituto de Salud Carlos III (ISCIII), 28222, Majadahonda, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222, Madrid, Spain.
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda, Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
23
|
Serretiello E, Ballini A, Smimmo A, Acunzo M, Raimo M, Cantore S, Di Domenico M. Extracellular Vesicles as a Translational Approach for the Treatment of COVID-19 Disease: An Updated Overview. Viruses 2023; 15:1976. [PMID: 37896755 PMCID: PMC10611252 DOI: 10.3390/v15101976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in the years 2020-2022. With a high prevalence, an easy route of transmission, and a long incubation time, SARS-CoV-2 spread quickly and affected public health and socioeconomic conditions. Several points need to be elucidated about its mechanisms of infection, in particular, its capability to evade the immune system and escape from neutralizing antibodies. Extracellular vesicles (EVs) are phospholipid bilayer-delimited particles that are involved in cell-to-cell communication; they contain biological information such as miRNAs, proteins, nucleic acids, and viral components. Abundantly released from biological fluids, their dimensions are highly variable, which are used to divide them into exosomes (40 to 150 nm), microvesicles (40 to 10,000 nm), and apoptotic bodies (100-5000 nm). EVs are involved in many physiological and pathological processes. In this article, we report the latest evidence about EVs' roles in viral infections, focusing on the dual role of exosomes in promoting and inhibiting SARS-CoV-2 infection. The involvement of mesenchymal stromal/stem cells (MSCs) and MSC-derived EVs in COVID-19 treatment, such as the use of translational exosomes as a diagnostical/therapeutic approach, is also investigated. These elucidations could be useful to better direct the discovery of future diagnostical tools and new exosome-derived COVID-19 biomarkers, which can help achieve optimal therapeutic interventions and implement future vaccine strategies.
Collapse
Affiliation(s)
- Enrica Serretiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Annafrancesca Smimmo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Acunzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Mariarosaria Raimo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| |
Collapse
|
24
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2023; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
25
|
Tréton G, Sayer C, Schürz M, Jaritsch M, Müller A, Matea CT, Stanojlovic V, Melo-Benirschke H, Be C, Krembel C, Rodde S, Haffke M, Hintermann S, Marzinzik A, Ripoche S, Blöchl C, Hollerweger J, Auer D, Cabrele C, Huber CG, Hintersteiner M, Wagner T, Lingel A, Meisner-Kober N. Quantitative and functional characterisation of extracellular vesicles after passive loading with hydrophobic or cholesterol-tagged small molecules. J Control Release 2023; 361:694-716. [PMID: 37567507 DOI: 10.1016/j.jconrel.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.
Collapse
Affiliation(s)
- Gwenola Tréton
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Claudia Sayer
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Melanie Schürz
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Maria Jaritsch
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anna Müller
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Cristian-Tudor Matea
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Heloisa Melo-Benirschke
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Celine Be
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Caroline Krembel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Matthias Haffke
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Samuel Hintermann
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sébastien Ripoche
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Constantin Blöchl
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Julia Hollerweger
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Chiara Cabrele
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christian G Huber
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Trixie Wagner
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| | - Nicole Meisner-Kober
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
26
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
27
|
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023; 15:pharmaceutics15030974. [PMID: 36986835 PMCID: PMC10058531 DOI: 10.3390/pharmaceutics15030974] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) may represent a platform for the delivery of RNA-based vaccines, exploiting their natural membrane envelope to protect and deliver nucleic acids. Here, EVs extracted from orange (Citrus sinensis) juice (oEVs) were investigated as carriers for oral and intranasal SARS-CoV-2 mRNA vaccine. oEVs were efficiently loaded with different mRNA molecules (coding N, subunit 1 and full S proteins) and the mRNA was protected from degrading stress (including RNase and simulated gastric fluid), delivered to target cells and translated into protein. APC cells stimulated with oEVs loaded with mRNAs induced T lymphocyte activation in vitro. The immunization of mice with oEVs loaded with S1 mRNA via different routes of administration including intramuscular, oral and intranasal stimulated a humoral immune response with production of specific IgM and IgG blocking antibodies and a T cell immune response, as suggested by IFN-γ production by spleen lymphocytes stimulated with S peptide. Oral and intranasal administration also triggered the production of specific IgA, the mucosal barrier in the adaptive immune response. In conclusion, plant-derived EVs represent a useful platform for mRNA-based vaccines administered not only parentally but also orally and intranasally.
Collapse
Affiliation(s)
- Margherita A. C. Pomatto
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| | - Chiara Gai
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | | | | | - Maria Chiara Deregibus
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Grange
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giovanni Camussi
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| |
Collapse
|
28
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|