1
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Yang H, Zhou Y, Li P, Liu E, Sun P, Ao Y, Liu R, Gao H, Xu Z, Yang P, Wang X, Gao G, Zhang Q, Xiong L, He Y. Genetic Analysis and Fine Mapping of QTLs for Stigma Exsertion Rate in Rice. RICE (NEW YORK, N.Y.) 2024; 17:74. [PMID: 39695018 DOI: 10.1186/s12284-024-00752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Stigma exsertion rate (SER) is a crucial trait that influences the seed production of hybrid rice by determining the outcrossing ability of male sterile lines (MSLs). However, the molecular genetic mechanisms underlying SER are still poorly understood. In this study, we identified 14 quantitative trait loci (QTLs) using a recombinant inbred line (RIL) population derived from B805D-MR-16-8-3 (B805D) and Hua6S. Two major QTLs, qSE1 and qSE9, were validated for their effects in the residual heterozygous line (RHL) background. The RHL carrying homozygous qSE1 region from Hua6S increased dual stigma exsertion rate (DSE) by 14.67% and 15.04%, and increased total stigma exsertion rate (TSE) by 11.73% and 13.04%, in F10 and F11 progeny, respectively. Conversely, the RHL carrying homozygous qSE9 region from B805D showed a substantial increase of 22.72% and 14.45% in single stigma exsertion rate (SSE), an increase of 13.46% and 8.30% in TSE, and an increase in percentage of spikelets with exserted stigma (PSE) by 24.82% and 15.57%, respectively, in F10 and F11 progeny. Furthermore, examination of floral organ traits revealed that both the Hua6S allele of qSE1 and the B805D allele of qSE9 increased pistil size to improve SER, but they had contrasting effects on spikelet shape. Subsequently, qSE1 and qSE9 were fine-mapped to intervals of 246.5 kb and 341.4 kb, respectively. A combination of sequencing, expression and haplotype analysis revealed that a single nucleotide variation (T to C) in the 5'UTR region of LOC_Os01g72020 (OsBOP1) was likely to be the functional variation for qSE1. Collectively, our work has laid a foundation for cloning the genes responsible for SER, and demonstrated that the Hua6S allele of qSE1 and the B805D allele of qSE9 can effectively increase SER, which could make important contributions to the genetic improvement of MSLs aimed at improving hybrid seed production.
Collapse
Affiliation(s)
- Hanyuan Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yin Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Enyu Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiting Ao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhou Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zherui Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
4
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion generated from long-read sequencing. Pain 2024; 165:2468-2481. [PMID: 38809314 PMCID: PMC11511651 DOI: 10.1097/j.pain.0000000000003255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 05/30/2024]
Abstract
ABSTRACT Splicing is a posttranscriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long-read sequencing to document isoform expression in the human dorsal root ganglia from 3 organ donors and validated in silico by confirming expression in short-read sequencing from 3 independent organ donors. Nineteen thousand five hundred forty-seven isoforms of protein-coding genes were detected and validated. We identified 763 isoforms with at least one previously undescribed splice junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3 , MRGPRX1 , and HNRNPK , were identified. In the novel isoforms of ASIC3 , a region comprising approximately 35% of the 5'UTR was excised. By contrast, a novel splice junction was used in isoforms of MRGPRX1 to include an additional exon upstream of the start codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified, which used previously unannotated splice sites to both excise exon 14 and include a sequence in the 3' end of exon 13. This novel insertion is predicted to introduce a tyrosine phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the human dorsal root ganglia obtained using long-read sequencing.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
5
|
Shahandeh MP, Abuin L, Lescuyer De Decker L, Cergneux J, Koch R, Nagoshi E, Benton R. Circadian plasticity evolves through regulatory changes in a neuropeptide gene. Nature 2024; 635:951-959. [PMID: 39415010 PMCID: PMC11602725 DOI: 10.1038/s41586-024-08056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Many organisms, including cosmopolitan drosophilids, show circadian plasticity, varying their activity with changing dawn-dusk intervals1. How this behaviour evolves is unclear. Here we compare Drosophila melanogaster with Drosophila sechellia, an equatorial, ecological specialist that experiences minimal photoperiod variation, to investigate the mechanistic basis of circadian plasticity evolution2. D. sechellia has lost the ability to delay its evening activity peak time under long photoperiods. Screening of circadian mutants in D. melanogaster/D. sechellia hybrids identifies a contribution of the neuropeptide pigment-dispersing factor (Pdf) to this loss. Pdf exhibits species-specific temporal expression, due in part to cis-regulatory divergence. RNA interference and rescue experiments in D. melanogaster using species-specific Pdf regulatory sequences demonstrate that modulation of this neuropeptide's expression affects the degree of behavioural plasticity. The Pdf regulatory region exhibits signals of selection in D. sechellia and across populations of D. melanogaster from different latitudes. We provide evidence that plasticity confers a selective advantage for D. melanogaster at elevated latitude, whereas D. sechellia probably suffers fitness costs through reduced copulation success outside its range. Our findings highlight this neuropeptide gene as a hotspot locus for circadian plasticity evolution that might have contributed to both D. melanogaster's global distribution and D. sechellia's specialization.
Collapse
Affiliation(s)
- Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, Hofstra University, Hempstead, NY, USA.
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lou Lescuyer De Decker
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Cergneux
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution & Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution & Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
8
|
García A, Maldonado G, Hernández G. Translational control of papillomavirus mRNAs in the spotlight. Trends Cell Biol 2024; 34:703-706. [PMID: 39069439 DOI: 10.1016/j.tcb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
High-risk human papillomaviruses (HPVs) cause most cases of cervical cancer, a disease with an increasing impact worldwide. Recent studies have shown that the synthesis of viral oncoproteins is strongly subject to translational control. Thus, targeting the protein synthesis machinery might open novel avenues to develop innovative therapies aiming to improve patients' survival.
Collapse
Affiliation(s)
- Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Giovanna Maldonado
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico; School of Medicine and Health Sciences, Tecnológico de Monterrey, C.P. 14380-Mexico City, Mexico.
| |
Collapse
|
9
|
Gomes FDC, Galhardo DDR, Navegante ACG, dos Santos GS, Dias HAAL, Dias Júnior JRL, Pierre ME, Luz MO, de Melo Neto JS. Bioinformatics analysis to identify the relationship between human papillomavirus-associated cervical cancer, toll-like receptors and exomes: A genetic epidemiology study. PLoS One 2024; 19:e0305760. [PMID: 39208235 PMCID: PMC11361573 DOI: 10.1371/journal.pone.0305760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Genetic variants may influence Toll-like receptor (TLR) signaling in the immune response to human papillomavirus (HPV) infection and lead to cervical cancer. In this study, we investigated the pattern of TLR expression in the transcriptome of HPV-positive and HPV-negative cervical cancer samples and looked for variants potentially related to TLR gene alterations in exomes from different populations. MATERIALS AND METHODS A cervical tissue sample from 28 women, which was obtained from the Gene Expression Omnibus database, was used to examine TLR gene expression. Subsequently, the transcripts related to the TLRs that showed significant gene expression were queried in the Genome Aggregation Database to search for variants in more than 5,728 exomes from different ethnicities. RESULTS Cancer and HPV were found to be associated (p<0.0001). TLR1(p = 0.001), TLR3(p = 0.004), TLR4(221060_s_at)(p = 0.001), TLR7(p = 0.001;p = 0.047), TLR8(p = 0.002) and TLR10(p = 0.008) were negatively regulated, while TLR4(1552798_at)(p<0.0001) and TLR6(p = 0.019) were positively regulated in HPV-positive patients (p<0.05). The clinical significance of the variants was statistically significant for TLR1, TLR3, TLR6 and TLR8 in association with ethnicity. Genetic variants in different TLRs have been found in various ethnic populations. Variants of the TLR gene were of the following types: TLR1(5_prime_UTR), TLR4(start_lost), TLR8(synonymous;missense) and TLR10(3_prime_UTR). The "missense" variant was found to have a risk of its clinical significance being pathogenic in South Asian populations (OR = 56,820[95%CI:40,206,80,299]). CONCLUSION The results of this study suggest that the variants found in the transcriptomes of different populations may lead to impairment of the functional aspect of TLRs that show significant gene expression in cervical cancer samples caused by HPV.
Collapse
Affiliation(s)
- Fabiana de Campos Gomes
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
- Faculty of Medicine CERES (FACERES), São José do Rio Preto, São Paulo, Brazil
| | - Deizyane dos Reis Galhardo
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - Gabriela Sepêda dos Santos
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - José Ribamar Leal Dias Júnior
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Marie Esther Pierre
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Marlucia Oliveira Luz
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - João Simão de Melo Neto
- Postgraduate Program in Collective Health in the Amazon (PPGSCA), Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
10
|
Bai L, Zhou H, Tao J, Hickford JGH. Effects of KRTAP20-1 Gene Variation on Wool Traits in Chinese Tan Sheep. Genes (Basel) 2024; 15:1060. [PMID: 39202420 PMCID: PMC11353292 DOI: 10.3390/genes15081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Chinese Tan sheep lambs are recognised for having tight 'spring-like' curly wool when young, but this phenotype disappears with age. This wool consists of shorter, fine wool fibres (which are usually unmedullated) and heterotypic hair fibres (which are frequently medullated), which are referred to as 'halo hair'. Both the wool and hair fibres consist of α-keratin proteins embedded in a keratin-associated protein (KAP) matrix. Of these KAPs, the KAP20-1 gene (designated KRTAP20-1) and its effect on four fibre traits (mean fibre curvature, mean fibre diameter, fibre diameter standard deviation, and coefficient of variation of fibre diameter) of Tan lambs was studied. Seven previously identified KRTAP20-1 variants (A, B, D, E, F, G, and H) of KRTAP20-1 were revealed, but the previously identified variant C was not present. Of the seven variants detected, only two (A and G) were common and present at frequencies greater than 5%, and the effect of these on the fibre traits of the finer wool fibres was assessed. It was found that variant G was associated with an increased mean fibre curvature in these wool fibres. This suggests that KRTAP20-1 might possibly be expressed differentially in the two fibre types, which may be of future value in breeding.
Collapse
Affiliation(s)
- Lingrong Bai
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jinzhong Tao
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jon G. H. Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
11
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
12
|
Pozojevic J, Sivaprasad R, Laß J, Haarich F, Trinh J, Kakar N, Schulz K, Händler K, Verrijn Stuart AA, Giltay JC, van Gassen KL, Caliebe A, Holterhus PM, Spielmann M, Hornig NC. LINE1-mediated epigenetic repression of androgen receptor transcription causes androgen insensitivity syndrome. Sci Rep 2024; 14:16302. [PMID: 39009627 PMCID: PMC11251026 DOI: 10.1038/s41598-024-65439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Androgen insensitivity syndrome (AIS) is a difference of sex development (DSD) characterized by different degrees of undervirilization in individuals with a 46,XY karyotype despite normal to high gonadal testosterone production. Classically, AIS is explained by hemizygous mutations in the X-chromosomal androgen receptor (AR) gene. Nevertheless, the majority of individuals with clinically diagnosed AIS do not carry an AR gene mutation. Here, we present a patient with a 46,XY karyotype, born with undervirilized genitalia, age-appropriate testosterone levels and no uterus, characteristic for AIS. Diagnostic whole exome sequencing (WES) showed a maternally inherited LINE1 (L1) retrotransposon insertion in the 5' untranslated region (5'UTR) of the AR gene. Long-read nanopore sequencing confirmed this as an insertion of a truncated L1 element of ≈ 2.7 kb and showed an increased DNA methylation at the L1 insertion site in patient-derived genital skin fibroblasts (GSFs) compared to healthy controls. The insertion coincided with reduced AR transcript and protein levels in patient-derived GSFs confirming the clinical diagnosis AIS. Our results underline the relevance of retrotransposons in human disease, and expand the growing list of human diseases associated with them.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Radhika Sivaprasad
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Joshua Laß
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Franziska Haarich
- Institute of Cardiogenetics, University of Lübeck and German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Naseebullah Kakar
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Kristin Schulz
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kristian Händler
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annemarie A Verrijn Stuart
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacques C Giltay
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Almuth Caliebe
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Paul-Martin Holterhus
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Nadine C Hornig
- Institute of Human Genetics, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
13
|
van der Veer BK, Chen L, Tsaniras SC, Brangers W, Chen Q, Schroiff M, Custers C, Kwak HH, Khoueiry R, Cabrera R, Gross SS, Finnell RH, Lei Y, Koh KP. Epigenetic regulation by TET1 in gene-environmental interactions influencing susceptibility to congenital malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581196. [PMID: 39026762 PMCID: PMC11257484 DOI: 10.1101/2024.02.21.581196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The etiology of neural tube defects (NTDs) involves complex gene-environmental interactions. Folic acid (FA) prevents NTDs, but the mechanisms remain poorly understood and at least 30% of human NTDs resist the beneficial effects of FA supplementation. Here, we identify the DNA demethylase TET1 as a nexus of folate-dependent one-carbon metabolism and genetic risk factors post-neural tube closure. We determine that cranial NTDs in Tet1 -/- embryos occur at two to three times higher penetrance in genetically heterogeneous than in homogeneous genetic backgrounds, suggesting a strong impact of genetic modifiers on phenotypic expression. Quantitative trait locus mapping identified a strong NTD risk locus in the 129S6 strain, which harbors missense and modifier variants at genes implicated in intracellular endocytic trafficking and developmental signaling. NTDs across Tet1 -/- strains are resistant to FA supplementation. However, both excess and depleted maternal FA diets modify the impact of Tet1 loss on offspring DNA methylation primarily at neurodevelopmental loci. FA deficiency reveals susceptibility to NTD and other structural brain defects due to haploinsufficiency of Tet1. In contrast, excess FA in Tet1 -/- embryos drives promoter DNA hypermethylation and reduced expression of multiple membrane solute transporters, including a FA transporter, accompanied by loss of phospholipid metabolites. Overall, our study unravels interactions between modified maternal FA status, Tet1 gene dosage and genetic backgrounds that impact neurotransmitter functions, cellular methylation and individual susceptibilities to congenital malformations, further implicating that epigenetic dysregulation may underlie NTDs resistant to FA supplementation.
Collapse
Affiliation(s)
- Bernard K. van der Veer
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Lehua Chen
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Spyridon Champeris Tsaniras
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Wannes Brangers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariana Schroiff
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Colin Custers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Harm H.M. Kwak
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Robert Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Kian Peng Koh
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, Carlin AF, Heinz S, Benner C. Position-dependent function of human sequence-specific transcription factors. Nature 2024; 631:891-898. [PMID: 39020164 PMCID: PMC11269187 DOI: 10.1038/s41586-024-07662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Patterns of transcriptional activity are encoded in our genome through regulatory elements such as promoters or enhancers that, paradoxically, contain similar assortments of sequence-specific transcription factor (TF) binding sites1-3. Knowledge of how these sequence motifs encode multiple, often overlapping, gene expression programs is central to understanding gene regulation and how mutations in non-coding DNA manifest in disease4,5. Here, by studying gene regulation from the perspective of individual transcription start sites (TSSs), using natural genetic variation, perturbation of endogenous TF protein levels and massively parallel analysis of natural and synthetic regulatory elements, we show that the effect of TF binding on transcription initiation is position dependent. Analysing TF-binding-site occurrences relative to the TSS, we identified several motifs with highly preferential positioning. We show that these patterns are a combination of a TF's distinct functional profiles-many TFs, including canonical activators such as NRF1, NFY and Sp1, activate or repress transcription initiation depending on their precise position relative to the TSS. As such, TFs and their spacing collectively guide the site and frequency of transcription initiation. More broadly, these findings reveal how similar assortments of TF binding sites can generate distinct gene regulatory outcomes depending on their spatial configuration and how DNA sequence polymorphisms may contribute to transcription variation and disease and underscore a critical role for TSS data in decoding the regulatory information of our genome.
Collapse
Affiliation(s)
- Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Max Chang
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jialei Xie
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
15
|
Ouyang L, Wang J, Zhu H, Wu Y, Wei L. Integration of Epigenome and Lactylome Reveals the Regulation of Lipid Production in Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13785-13800. [PMID: 38842303 PMCID: PMC11191683 DOI: 10.1021/acs.jafc.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Lysine lactylation (Kla) is a kind of novel post-translational modification (PTM) that participates in gene expression and various metabolic processes. Nannochloropsis has a remarkable capacity for triacylglycerol (TAG) production under nitrogen stress. To elucidate the involvement of lactylation in lipid synthesis, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) and mRNA-seq analyses to monitor lactylation modifications and transcriptome alterations in Nannochloropsis oceanica. In all, 2057 genes showed considerable variation between nitrogen deprivation (ND) and nitrogen repletion (NR) conditions. Moreover, a total of 5375 differential Kla peaks were identified, including 5331 gain peaks and 44 loss peaks under ND vs NR. The differential Kla peaks were primarily distributed in the promoter (≤1 kb) (71.07%), 5'UTR (22.64%), and exon (4.25%). Integrative analysis of ChIP-seq, transcriptome, and previous proteome and lactylome data elucidates the potential mechanism by which lactylation promotes lipid accumulation under ND. Lactylation facilitates autophagy and protein degradation, leading to the recycling of carbon into the tricarboxylic acid (TCA) cycle, thereby providing carbon precursors for lipid synthesis. Additionally, lactylation induces the redirection of carbon from membrane lipids to TAG by upregulating lipases and enhancing the TCA cycle and β-oxidation pathways. This research offers a new perspective for the investigation of lipid biosynthesis in Nannochloropsis.
Collapse
Affiliation(s)
- Lingyu Ouyang
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Jiao Wang
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Han Zhu
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Yikai Wu
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Li Wei
- Ministry
of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory
of Tropical Animal and Plant Ecology of Hainan Province, College of
Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan
Observation and Research Station of Dongzhaigang Mangrove Wetland
Ecosystem, Haikou 571129, China
- International
Science and Technology Cooperation Laboratory for Marine Microalgae
Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
16
|
Fu Z, Yuan Y. TNFAIP2 as an emerging therapeutic target in cancer therapy and its underlying mechanisms. Pharmacol Res 2024; 204:107199. [PMID: 38688431 DOI: 10.1016/j.phrs.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
TNFα-induced protein 2 (TNFAIP2), upregulated under TNFα stimulation, was initially thought to participate in angiogenesis. Still, more and more studies have found that TNFAIP2 plays multiple roles in various physiological and pathological scenarios. The representative functions of TNFAIP2 include motivating the inflammatory response, promoting angiogenesis, facilitating cell proliferation, adhesion, migration, and inducing tunnel nanotube formation. The expression of TNFAIP2 is abnormal in most cancers and can enhance drug resistance in cancer cells. The increasingly recognized significance of TNFAIP2 has been attracting growing attention in recent years. This review focuses on elucidating the relationship between TNFAIP2 and oncogenesis, as well as the latest research advancements in the pharmacological targeting of TNFAIP2, aiming to guide forthcoming endeavors in developing pharmacological agents targeted at modulating TNFAIP2.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
17
|
Kulakova AV, Shchennikova AV, Kochieva EZ. Potato Solanum tuberosum L. Phytoene Synthase Genes (StPSY1, StPSY2, and StPSY3) Are Involved in the Plant Response to Cold Stress. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 516:21-26. [PMID: 38538824 DOI: 10.1134/s0012496624700935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 05/26/2024]
Abstract
The structure and phylogeny of the Solanum tuberosum L. phytoene synthase genes StPSY1, StPSY2, and StPSY3 were characterized. Their expression was studied in potato seedlings exposed to cold stress in the dark phase of the diurnal cycle to simulate night cooling. All of the three genes were activated as the temperature decreased, and the greatest response was observed for StPSY1. StPSY3 was for the first time shown to respond to cold stress and photoperiod. A search for cis-regulatory elements was carried out in the promoter regions and 5'-UTRs of the StPSY genes, and the regulation of all three genes proved associated with the response to light. A high level of cold-induced activation of StPSY1 was tentatively attributed to the presence of cis elements associated with sensitivity to cold and ABA.
Collapse
Affiliation(s)
- A V Kulakova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology," Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
18
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
19
|
Bani-Wais DFN, Ad'hiah AH. The 5' untranslated region variant rs3811050 C/T of the interleukin-38 encoding gene is associated with susceptibility to rheumatoid arthritis in Iraqi women. Mol Biol Rep 2024; 51:589. [PMID: 38683405 DOI: 10.1007/s11033-024-09529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Interleukin (IL)-38, the latest member of the IL-1 cytokine family, is proposed to have a pathogenic role in rheumatoid arthritis (RA). It is encoded by the IL1F10 gene, which harbors single nucleotide polymorphisms (SNPs) that may predict the risk of autoimmune diseases. Among them are 5' untranslated region (UTR) SNPs, which play a key role in post-transcriptional control, but have not been studied in Iraqi RA patients. METHODS Two novel IL1F10 5'UTR SNPs (rs3811050 C/T and rs3811051 T/G) were explored in RA and control women (n = 120 and 110, respectively). SNPs were genotyped using TaqMan assay. An ELISA kit was used to measure serum IL-38 concentrations. RESULTS A reduced risk of RA was associated with rs3811050 T allele and CT genotype (corrected probability [pc] = 0.01 and < 0.001, respectively), while there was no significant association with rs3811051. Haplotype analysis demonstrated that C-T haplotype was associated with a 1.65-fold greater risk of RA, whereas a reduced risk was linked to T-G haplotype. IL-38 concentrations were higher in patients than in controls (p < 0.001). In addition, IL-38 showed acceptable performance in distinguishing between RA and control women (p < 0.001). When IL-38 concentrations were stratified according to SNP genotypes, no significant differences were found. CONCLUSIONS The rs3811050 variant was more likely to affect RA susceptibility in Iraqi women, and the T allele may play a role in reducing disease risk. IL-38 concentrations were elevated in RA patients, but were not affected by the rs3811050 and rs3811051 genotypes.
Collapse
Affiliation(s)
- Dhuha F N Bani-Wais
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Al-Karrada, Baghdad, 10070, Iraq.
| |
Collapse
|
20
|
You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR Engineering Enables Fine-Tuning of Multiple Genes within Operons to Balance Metabolic Flux in Bacillus subtilis. BIOLOGY 2024; 13:277. [PMID: 38666889 PMCID: PMC11047901 DOI: 10.3390/biology13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yifan Wang
- Department of Food Science and Technology, Texas A & M University, College Station, TX 77843, USA;
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
21
|
Rusev S, Thon P, Rahmel T, Ziehe D, Marko B, Nowak H, Ellger B, Limper U, Schwier E, Henzler D, Ehrentraut SF, Bergmann L, Unterberg M, Adamzik M, Koos B, Rump K. The Association between the rs3747406 Polymorphism in the Glucocorticoid-Induced Leucine Zipper Gene and Sepsis Survivals Depends on the SOFA Score. Int J Mol Sci 2024; 25:3871. [PMID: 38612684 PMCID: PMC11011808 DOI: 10.3390/ijms25073871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The variability in mortality in sepsis could be a consequence of genetic variability. The glucocorticoid system and the intermediate TSC22D3 gene product-glucocorticoid-induced leucine zipper-are clinically relevant in sepsis, which is why this study aimed to clarify whether TSC22D3 gene polymorphisms contribute to the variance in sepsis mortality. Blood samples for DNA extraction were obtained from 455 patients with a sepsis diagnosis according to the Sepsis-III criteria and from 73 control subjects. A SNP TaqMan assay was used to detect single-nucleotide polymorphisms (SNPs) in the TSC22D3 gene. Statistical and graphical analyses were performed using the SPSS Statistics and GraphPad Prism software. C-allele carriers of rs3747406 have a 2.07-fold higher mortality rate when the sequential organ failure assessment (SOFA) score is higher than eight. In a multivariate COX regression model, the SNP rs3747406 with a SOFA score ≥ 8 was found to be an independent risk factor for 30-day survival in sepsis. The HR was calculated to be 2.12, with a p-value of 0.011. The wild-type allele was present in four out of six SNPs in our cohort. The promoter of TSC22D3 was found to be highly conserved. However, we discovered that the C-allele of rs3747406 poses a risk for sepsis mortality for SOFA Scores higher than 6.
Collapse
Affiliation(s)
- Stefan Rusev
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Ulrich Limper
- Department of Anesthesiology and Operative Intensive Care Medicine, Cologne Merheim Medical School, University of Witten/Herdecke, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.)
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany;
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | | |
Collapse
|
22
|
Botkin JR, Farmer AD, Young ND, Curtin SJ. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance. BMC Genomics 2024; 25:204. [PMID: 38395768 PMCID: PMC10885650 DOI: 10.1186/s12864-024-10112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Medicago truncatula, model legume and alfalfa relative, has served as an essential resource for advancing our understanding of legume physiology, functional genetics, and crop improvement traits. Necrotrophic fungus, Ascochyta medicaginicola, the causal agent of spring black stem (SBS) and leaf spot is a devasting foliar disease of alfalfa affecting stand survival, yield, and forage quality. Host resistance to SBS disease is poorly understood, and control methods rely on cultural practices. Resistance has been observed in M. truncatula accession SA27063 (HM078) with two recessively inherited quantitative-trait loci (QTL), rnpm1 and rnpm2, previously reported. To shed light on host resistance, we carried out a de novo genome assembly of HM078. The genome, referred to as MtHM078 v1.0, is comprised of 23 contigs totaling 481.19 Mbp. Notably, this assembly contains a substantial amount of novel centromere-related repeat sequences due to deep long-read sequencing. Genome annotation resulted in 98.4% of BUSCO fabales proteins being complete. The assembly enabled sequence-level analysis of rnpm1 and rnpm2 for gene content, synteny, and structural variation between SBS-resistant accession SA27063 (HM078) and SBS-susceptible accession A17 (HM101). Fourteen candidate genes were identified, and some have been implicated in resistance to necrotrophic fungi. Especially interesting candidates include loss-of-function events in HM078 because they fit the inverse gene-for-gene model, where resistance is recessively inherited. In rnpm1, these include a loss-of-function in a disease resistance gene due to a premature stop codon, and a 10.85 kbp retrotransposon-like insertion disrupting a ubiquitin conjugating E2. In rnpm2, we identified a frameshift mutation causing a loss-of-function in a glycosidase, as well as a missense and frameshift mutation altering an F-box family protein. This study generated a high-quality genome of HM078 and has identified promising candidates, that once validated, could be further studied in alfalfa to enhance disease resistance.
Collapse
Affiliation(s)
- Jacob R Botkin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
23
|
Dueñas Rey A, Del Pozo Valero M, Bouckaert M, Wood KA, Van den Broeck F, Daich Varela M, Thomas HB, Van Heetvelde M, De Bruyne M, Van de Sompele S, Bauwens M, Lenaerts H, Mahieu Q, Josifova D, Rivolta C, O'Keefe RT, Ellingford J, Webster AR, Arno G, Ayuso C, De Zaeytijd J, Leroy BP, De Baere E, Coppieters F. Combining a prioritization strategy and functional studies nominates 5'UTR variants underlying inherited retinal disease. Genome Med 2024; 16:7. [PMID: 38184646 PMCID: PMC10771650 DOI: 10.1186/s13073-023-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.
Collapse
Affiliation(s)
- Alfredo Dueñas Rey
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Marta Del Pozo Valero
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Manon Bouckaert
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Katherine A Wood
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Filip Van den Broeck
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Stijn Van de Sompele
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Hanne Lenaerts
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Quinten Mahieu
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | | | - Carlo Rivolta
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Jamie Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
- Genomics England, London, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
- Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Zeng J, Song K, Wang J, Wen H, Zhou J, Ni T, Lu H, Yu Y. Characterization and optimization of 5´ untranslated region containing poly-adenine tracts in Kluyveromyces marxianus using machine-learning model. Microb Cell Fact 2024; 23:7. [PMID: 38172836 PMCID: PMC10763412 DOI: 10.1186/s12934-023-02271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.
Collapse
Affiliation(s)
- Junyuan Zeng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Kunfeng Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Haimei Wen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
25
|
Li J, Huang S, Shi L, Chen G, Liu X, Liu M, Guo G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun Inflamm Dis 2024; 12:e1129. [PMID: 38270295 PMCID: PMC10777888 DOI: 10.1002/iid3.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) are a group of RNAs that cannot synthesize proteins, but are critical in gene expression regulation. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), the two major family members, are intimately involved in controlling immune response, cell proliferation, apoptosis, differentiation and polarization, and cytokine secretion. Their interactions significantly influence lung inflammatory diseases and could be potential therapeutic targets. OBJECTIVES The review aims to elucidate the role of ncRNAs, especially the interactions between lncRNA and miRNA in lung diseases, including acute and chronic lung inflammatory diseases, as well as lung cancer. And provide novel insights into disease mechanisms and potential therapeutic methods. METHODS We conducted a comprehensive review of the latest studies on lncRNA and miRNA in lung inflammatory diseases. Our research involved searching through electronic databases like PubMed, Web of Science, and Scopus. RESULTS We explain the fundamental characteristics and functions of miRNA and lncRNA, their potential interaction mechanisms, and summarize the newly explorations on the role of lncRNA and miRNA interactions in lung inflammatory diseases. CONCLUSIONS Numerous lncRNAs and miRNAs have been found to partipicate in all stages of lung inflammatory diseases. While ncRNA-based therapies have been validated and developed, there remain challenges in developing more stable and effective drugs for clinical use.
Collapse
Affiliation(s)
- Jiaqi Li
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liangliang Shi
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guochang Chen
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
26
|
Belhassen I, Menassa R, Sakka S, Michel-Calemard L, Streichenberger N, Ayed DB, Bouattour N, Dammak M, Mhiri C. Mild limb girdle muscular dystrophy R9 phenotype caused by novel compound heterozygous FKRP gene mutation. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2023; 42:106-112. [PMID: 38406381 PMCID: PMC10883327 DOI: 10.36185/2532-1900-391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
Fukutin-related protein (FKRP) mutations cause a broad spectrum of muscular dystrophies, from a relatively mild limb-girdle muscular dystrophy type 9 (LGMDR9) to severe congenital muscular dystrophy (CMD). This study aims to report two siblings belonging to a non-consanguineous Tunisian family harboring a novel compound heterozygous FKRP variant and presenting a mild LGDMR9 phenotype. For mutation screening, massive parallel sequencing was performed, followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to validate the existence of the discovered variants. The absence of alpha-dystroglycan was determined by immunohistochemistry. Brain and thigh magnetic resonance imaging (MRI) were performed to detect thigh and brain abnormalities. The two siblings had a late age at onset and clinical examination showed that the pelvic girdles had a predominantly proximal and symmetrical distribution of weakness without cardiac or respiratory involvement. They both had a modified Gardner-Medwin Walton Scale mGMWS grade of 4 and a modified Rankin Scale (mRS) score of 1. The DNA sequencing revealed a novel deletion of exons 2 and 3 in one allele and a missense mutation c.1364C > A, which has been reported to be responsible for congenital muscular dystrophy and mental retardation on the second allele. The simultaneous presence of the two variations in the two cases suggests that the variants segregate with the pathophysiology.
Collapse
Affiliation(s)
- Ikhlass Belhassen
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Rita Menassa
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, France
| | - Salma Sakka
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Laurence Michel-Calemard
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, France
| | - Nathalie Streichenberger
- Centre de Pathologie et Neuropathologie Est, Hospices Civils de Lyon; Université Claude Bernard Lyon1, Lyon, France
| | - Dorra Ben Ayed
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Nadia Bouattour
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Mariem Dammak
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson Disease and Cerebrovascular Diseases (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
- Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
27
|
Silonov SA, Smirnov EY, Kuznetsova IM, Turoverov KK, Fonin AV. PML Body Biogenesis: A Delicate Balance of Interactions. Int J Mol Sci 2023; 24:16702. [PMID: 38069029 PMCID: PMC10705990 DOI: 10.3390/ijms242316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family-promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| | | | | | | | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
28
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion (DRG) generated from long read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564535. [PMID: 37961262 PMCID: PMC10634934 DOI: 10.1101/2023.10.28.564535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Splicing is a post-transcriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. Diversity in splicing in the mammalian nervous system is associated with neuronal development, synaptic function and plasticity, and is also associated with diseases of the nervous system ranging from neurodegeneration to chronic pain. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long read sequencing (LRS) to document isoform expression in the human dorsal root ganglia (hDRG) from 3 organ donors. Isoforms were validated in silico by confirming expression in hDRG short read sequencing (SRS) data from 3 independent organ donors. 19,547 isoforms of protein-coding genes were detected using LRS and validated with SRS and strict expression cutoffs. We identified 763 isoforms with at least one previously undescribed splice-junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3, MRGPRX1 and HNRNPK were identified. In the novel isoforms of ASIC3, a region comprising ~35% of the 5'UTR was excised. In contrast, a novel splice-junction was utilized in isoforms of MRGPRX1 to include an additional exon upstream of the start-codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified which utilized previously unannotated splice-sites to both excise exon 14 and include a sequence in the 5' end of exon 13. The insertion and deletion in the coding region was predicted to excise a serine-phosphorylation site favored by cdc2, and replace it with a tyrosine-phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the hDRG obtained using LRS. Using this work as a foundation, an important next step will be to use LRS on hDRG tissues recovered from people with a history of chronic pain. This should enable identification of new drug targets and a better understanding of chronic pain that may involve aberrant splicing events.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|