1
|
Scorza S, Brunetti V, Scarpellino G, Certini M, Gerbino A, Moccia F. Targeting the Ca 2+ signaling toolkit as an alternative strategy to mitigate SARS-CoV-2-induced cardiovascular adverse events. Vascul Pharmacol 2024; 158:107458. [PMID: 39701403 DOI: 10.1016/j.vph.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ signaling events are essential for maintaining cardiovascular health, regulating critical functions in both endothelial and cardiac cells. SARS-CoV-2 infection impinges this delicate balance, leading to severe cardiovascular complications. SARS-CoV-2 binds to the ACE2 receptor on endothelial and cardiomyocyte surfaces, triggering abnormal increases in intracellular Ca2+ levels that promote endothelial dysfunction, inflammation, and hypercoagulation. In endothelial cells, this dysregulation activates a pro-inflammatory state and compromises vascular integrity. In cardiomyocytes, SARS-CoV-2-induced Ca2+ imbalances contribute to arrhythmias and heart failure by promoting abnormal Ca2+ cycling and energy metabolism disruptions. Additionally, the cytokine storm associated with COVID-19 amplifies these effects by further altering Ca2+ handling, enhancing inflammatory responses, and promoting thrombosis. Targeting Ca2+ channels, particularly endolysosomal two-pore channels, represents a promising therapeutic approach to counteract SARS-CoV-2's effects on Ca2+ dynamics. Several FDA-approved drugs that modulate Ca2+ signaling could be repurposed to prevent viral entry and mitigate cardiovascular damage. Understanding these Ca2+-related mechanisms offers valuable insights for developing treatments to reduce cardiovascular risk in COVID-19 and potentially future viral infections impacting the cardiovascular system.
Collapse
Affiliation(s)
- Simona Scorza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
2
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Luo Z, Tang YY, Zhou L. Melatonin as an adjunctive therapy in cardiovascular disease management. Sci Prog 2024; 107:368504241299993. [PMID: 39574322 PMCID: PMC11585022 DOI: 10.1177/00368504241299993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is a neuroendocrine hormone secreted by the pineal gland. This pleiotropic indoleamine possesses amphiphilic properties, allowing it to penetrate most biological barriers and exert its effects at the subcellular level. Importantly, melatonin also plays a crucial role in regulating the body's response to circadian rhythms, adapting to internal and external environmental cues. Melatonin functions as a powerful antioxidant and free radical scavenger, protecting cells from oxidative damage. Its diverse physiological roles include maintaining the functional integrity of endothelial cells, thereby preventing atherosclerosis, a major contributor to cardiovascular disease. Additionally, melatonin exhibits antioxidant and free radical scavenging properties, potentially improving metabolic disorders. These combined effects suggest a unique adjunctive therapeutic potential for melatonin in treating cardiovascular diseases. This review aims to explore the mechanisms by which melatonin interacts with the cardiovascular system and investigates its potential use as an adjunctive therapeutic agent in managing cardiovascular disease.
Collapse
Affiliation(s)
- Zan Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Yuan Tang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiovascular Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Clinical Medicine, Hangzhou, China
| |
Collapse
|
4
|
Soda T, Negri S, Scarpellino G, Berra-Romani R, De Sarro G, Moccia F, Brunetti V. An automated planar patch-clamp approach to measure the membrane potential and resting membrane currents in a human cerebrovascular endothelial cell line. J Neurosci Methods 2024; 410:110248. [PMID: 39117152 DOI: 10.1016/j.jneumeth.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The conventional "whole-cell patch-clamp" recording technique is widely used to measure the resting membrane potential (VM) and to dissect the underlying membrane ionic conductances in isolated vascular endothelial cells. NEW METHOD Herein, we assessed whether the automated patch-clamp (APC) technology, which replaces the traditional patch-pipette with a planar substrate to permit researchers lacking formal training in electrophysiology to generate large amounts of data in a relatively short time, can be used to characterize the bioelectrical activity of vascular endothelial cells. We assessed whether the Port-a-Patch planar patch-clamp system, which is regarded as the smallest electrophysiological rig available on the market, can be used to measure the VM and resting membrane currents in the human cerebrovascular endothelial cell line, hCMEC/D3. COMPARISON WITH EXISTING METHODS We demonstrated that the Port-a-Patch planar patch-clamp system provides the same values of the resting VM as those provided by the conventional patch-clamp technique. Furthermore, the APC technology provides preliminary data demonstrating that the resting VM of hCMEC/D3 cells is primarily contributed by Cl- and Na+, as demonstrated with the patch-clamp technique for many other endothelial cell types. CONCLUSIONS The Port-a-Patch planar patch-clamp system can be successfully used to measure the resting VM and the underlying membrane ionic conductances in hCMEC/D3 cells. We envisage that this easy-to-use APC system could also be extremely useful for the investigation of the membrane currents that can be activated by chemical, thermal, optical, and mechanical stimuli in this cell line as well as in other types of isolated vascular endothelial cells.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | | | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy.
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
5
|
Manning D, Rivera EJ, Santana LF. The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 2024; 156:107393. [PMID: 38857638 DOI: 10.1016/j.vph.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Capillaries are the smallest blood vessels (<10 μm in diameter) in the body and their walls are lined by endothelial cells. These microvessels play a crucial role in nutrient and gas exchange between blood and tissues. Capillary endothelial cells also produce vasoactive molecules and initiate the electrical signals that underlie functional hyperemia and neurovascular coupling. Accordingly, capillary function and density are critical for all cell types to match blood flow to cellular activity. This begins with the process of angiogenesis, when new capillary blood vessels emerge from pre-existing vessels, and ends with rarefaction, the loss of these microvascular structures. This review explores the mechanisms behind these processes, emphasizing their roles in various microvascular diseases and their impact on surrounding cells in health and disease. We discuss recent work on the mechanisms controlling endothelial cell proliferation, migration, and tube formation that underlie angiogenesis under physiological and pathological conditions. The mechanisms underlying functional and anatomical rarefaction and the role of pericytes in this process are also discussed. Based on this work, a model is proposed in which the balance of angiogenic and rarefaction signaling pathways in a particular tissue match microvascular density to the metabolic demands of the surrounding cells. This negative feedback loop becomes disrupted during microvascular rarefaction: angiogenic mechanisms are blunted, reactive oxygen species accumulate, capillary function declines and eventually, capillaries disappear. This, we propose, forms the foundation of the reciprocal relationship between vascular density, blood flow, and metabolic needs and functionality of nearby cells.
Collapse
Affiliation(s)
- Declan Manning
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America.
| | - Ernesto J Rivera
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| |
Collapse
|
6
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
7
|
Wu KC, Leong IL, Leung YM. Ca 2+-sensing receptor-TRP channel-mediated Ca 2+ signaling: Functional diversity and pharmacological complexity. Eur J Pharmacol 2024; 977:176717. [PMID: 38857682 DOI: 10.1016/j.ejphar.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology, Chiayi, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Iat-Lon Leong
- Division of Cardiology, University Hospital, Macau University of Science and Technology, Macau
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Yuan T, Wang Y, Wang H, Lu Q, Zhang X, Li Z, Sun S. Suppressing ERp57 diminishes osteoclast activity and ameliorates ovariectomy-induced bone loss via the intervention in calcium oscillation and the calmodulin/calcineurin/Nfatc1 pathway. Heliyon 2024; 10:e35374. [PMID: 39170388 PMCID: PMC11336591 DOI: 10.1016/j.heliyon.2024.e35374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
9
|
Brunetti V, Berra-Romani R, Conca F, Soda T, Biella GR, Gerbino A, Moccia F, Scarpellino G. Lysosomal TRPML1 triggers global Ca 2+ signals and nitric oxide release in human cerebrovascular endothelial cells. Front Physiol 2024; 15:1426783. [PMID: 38974517 PMCID: PMC11224436 DOI: 10.3389/fphys.2024.1426783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Lysosomal Ca2+ signaling is emerging as a crucial regulator of endothelial Ca2+ dynamics. Ca2+ release from the acidic vesicles in response to extracellular stimulation is usually promoted via Two Pore Channels (TPCs) and is amplified by endoplasmic reticulum (ER)-embedded inositol-1,3,4-trisphosphate (InsP3) receptors and ryanodine receptors. Emerging evidence suggests that sub-cellular Ca2+ signals in vascular endothelial cells can also be generated by the Transient Receptor Potential Mucolipin 1 channel (TRPML1) channel, which controls vesicle trafficking, autophagy and gene expression. Herein, we adopted a multidisciplinary approach, including live cell imaging, pharmacological manipulation, and gene targeting, revealing that TRPML1 protein is expressed and triggers global Ca2+ signals in the human brain microvascular endothelial cell line, hCMEC/D3. The direct stimulation of TRPML1 with both the synthetic agonist, ML-SA1, and the endogenous ligand phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) induced a significant increase in [Ca2+]i, that was reduced by pharmacological blockade and genetic silencing of TRPML1. In addition, TRPML1-mediated lysosomal Ca2+ release was sustained both by lysosomal Ca2+ release and ER Ca2+- release through inositol-1,4,5-trisphophate receptors and store-operated Ca2+ entry. Notably, interfering with TRPML1-mediated lysosomal Ca2+ mobilization led to a decrease in the free ER Ca2+ concentration. Imaging of DAF-FM fluorescence revealed that TRPML1 stimulation could also induce a significant Ca2+-dependent increase in nitric oxide concentration. Finally, the pharmacological and genetic blockade of TRPML1 impaired ATP-induced intracellular Ca2+ release and NO production. These findings, therefore, shed novel light on the mechanisms whereby the lysosomal Ca2+ store can shape endothelial Ca2+ signaling and Ca2+-dependent functions in vascular endothelial cells.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, Padova, Italy
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Gerardo Rosario Biella
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
11
|
Qu M, Du L. Upregulation of TRPC1 protects against high glucose-induced HUVECs dysfunction by inhibiting oxidative stress. Biochem Biophys Res Commun 2024; 699:149560. [PMID: 38277724 DOI: 10.1016/j.bbrc.2024.149560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
-To explore the effect of TRPC1 on endothelial cell function damage under a high glucose environment and its downstream molecular mechanism, and provide new theory and strategy for improving diabetic endothelial cell function and promoting vascular injury repair. In vitro, we use high glucose to treat human umbilical vein endothelial cells (HUVECs) and upregulated TRPC1 with adenovirus infection. HUVECs were split into 4 groups: (i) NG Group: Treated with normal glucose; (ii) HG Group: Treated with high glucose; (iii) HG + adGFP Group: High glucose + the control adenovirus (adGFP); (iv) HG + adTRPC1 Group: High glucose + recombinant adenovirus encoding TRPC1. We found that high glucose significantly decreased the expression level of TRPC1 protein, and impaired the proliferation and migration of HUVECs, which could be reversed by overexpression of TRPC1. In addition, high glucose induced an increase in ROS and MDA and a decrease in SOD activity, whereas TRPC1 overexpression could inhibit the growth of oxidative stress level. These findings suggest that overexpression of TRPC1 prevents HUVECs proliferation and migration dysfunction induced by high glucose via inhibiting oxidative stress injuries.
Collapse
Affiliation(s)
- Mengting Qu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
12
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
13
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
15
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
16
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Yang K, Liu S, Yan H, Lu W, Shan X, Chen H, Bao C, Feng H, Liao J, Liang S, Xu L, Tang H, Yuan JXJ, Zhong N, Wang J. SARS-CoV-2 spike protein receptor-binding domain perturbates intracellular calcium homeostasis and impairs pulmonary vascular endothelial cells. Signal Transduct Target Ther 2023; 8:276. [PMID: 37452066 PMCID: PMC10349149 DOI: 10.1038/s41392-023-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Exposure to the spike protein or receptor-binding domain (S-RBD) of SARS-CoV-2 significantly influences endothelial cells and induces pulmonary vascular endotheliopathy. In this study, angiotensin-converting enzyme 2 humanized inbred (hACE2 Tg) mice and cultured pulmonary vascular endothelial cells were used to investigate how spike protein/S-RBD impacts pulmonary vascular endothelium. Results show that S-RBD leads to acute-to-prolonged induction of the intracellular free calcium concentration ([Ca2+]i) via acute activation of TRPV4, and prolonged upregulation of mechanosensitive channel Piezo1 and store-operated calcium channel (SOCC) key component Orai1 in cultured human pulmonary arterial endothelial cells (PAECs). In mechanism, S-RBD interacts with ACE2 to induce formation of clusters involving Orai1, Piezo1 and TRPC1, facilitate the channel activation of Piezo1 and SOCC, and lead to elevated apoptosis. These effects are blocked by Kobophenol A, which inhibits the binding between S-RBD and ACE2, or intracellular calcium chelator, BAPTA-AM. Blockade of Piezo1 and SOCC by GsMTx4 effectively protects the S-RBD-induced pulmonary microvascular endothelial damage in hACE2 Tg mice via normalizing the elevated [Ca2+]i. Comparing to prototypic strain, Omicron variants (BA.5.2 and XBB) of S-RBD induces significantly less severe cell apoptosis. Transcriptomic analysis indicates that prototypic S-RBD confers more severe acute impacts than Delta or Lambda S-RBD. In summary, this study provides compelling evidence that S-RBD could induce persistent pulmonary vascular endothelial damage by binding to ACE2 and triggering [Ca2+]i through upregulation of Piezo1 and Orai1. Targeted inhibition of ACE2-Piezo1/SOCC-[Ca2+]i axis proves a powerful strategy to treat S-RBD-induced pulmonary vascular diseases.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Han Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pathology, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Berra-Romani R, Brunetti V, Pellavio G, Soda T, Laforenza U, Scarpellino G, Moccia F. Allyl Isothiocianate Induces Ca 2+ Signals and Nitric Oxide Release by Inducing Reactive Oxygen Species Production in the Human Cerebrovascular Endothelial Cell Line hCMEC/D3. Cells 2023; 12:1732. [PMID: 37443764 PMCID: PMC10340171 DOI: 10.3390/cells12131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca2+-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca2+ response to AITC was shaped by both intra- and extracellular Ca2+ sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca2+-activated K+ channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca2+ signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca2+ entry (SOCE). Conversely, the Ca2+ response to AITC did not require Ca2+ mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca2+-ATPase (PMCA) activity, thereby attenuating Ca2+ removal across the plasma membrane and resulting in a sustained increase in [Ca2+]i. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|