1
|
Chattopadhyay D, Sinha M, Kapoor A, Kumar M, Singh K, Mathew-Steiner SS, Sen CK. Deficient functional wound closure as measured by elevated trans-epidermal water loss predicts chronic wound recurrence: An exploratory observational study. Sci Rep 2024; 14:23593. [PMID: 39384891 PMCID: PMC11464781 DOI: 10.1038/s41598-024-74426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
A single-center, prospective, observational pilot study was performed to evaluate wound healing endpoint and recurrence by measuring transepidermal water loss (TEWL) post-closure at the site of wound repair. Patients with clinically-defined chronic wounds (such as pressure ulcers, diabetic ulcers, and trauma wounds) who visited the Plastic Surgery outpatient department or were in-patients at the All India Institute of Medical Sciences, Rishikesh, India, and were referred for chronic wound management, were enrolled. Non-invasive point-of-care TEWL measurements were obtained, from closed wound-site and contralateral healthy skin site, starting from confirmation of closure (post-closure, V0) continuing every 2 weeks for a maximum of five visits or until the wound recurred. Statistical analyses of the data involved logistic regression and likelihood ratio chi-square tests to assess differences in TEWL at visit 0 (V0) between the closed wound site and reference skin, with the TEWL score as the sole predictor of recurrence. Of the 72 subjects that completed the study, 44 (61%) showed no recurrence and 28 (39%) had wounds that recurred over a period of 12 weeks. A significant association was found between the V0 (post-closure) TEWL score and the odds of wound recurrence, both in univariate analysis (OR [95%CI] = 1.26[1.14,1.42] (p < 0.001) and after adjusting for covariates in multivariable analysis (OR [95%CI] = 1.34[1.19,1.61] (p < 0.001). The likelihood ratio chi-square analysis demonstrated that the V0 TEWL score is a significant universal predictor of recurrence across all wound types studied. Cases of closed wounds with subsequent recurrence showed an overall higher post-closure V0 TEWL score, compared to those who did not have a wound recurrence, across visits. The TEWL score cut-off value predictive of recurrence was 24.1 g.m-2.h-1 (AUC = 0.967). The outcome of this pilot study on a wide range of chronic wounds leads to the hypothesis that post-closure TEWL at the site of wound healing is a reliable biomarker of wound recurrence. It also raises the question whether the clinical endpoint of wound closure should include re-establishment of skin barrier function as additional criterion. The current standard of care wound closure endpoint calls for re-epithelialization of the wound with no discharge for two consecutive weeks disregarding the functional parameter of restoration of skin barrier function at the wound-site.
Collapse
Affiliation(s)
| | - Mithun Sinha
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Akshay Kapoor
- All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manoj Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Economic Studies and Planning, Jawaharlal Nehru University, New Delhi, India
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chandan K Sen
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Xia S, Li J, Yuan H, Yan W. PIN1‑silencing mitigates keratinocyte proliferation and the inflammatory response in psoriasis by activating mitochondrial autophagy. Exp Ther Med 2024; 28:402. [PMID: 39234585 PMCID: PMC11372252 DOI: 10.3892/etm.2024.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 09/06/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) has been suggested to be a critical regulator in skin-related diseases. However, the role and molecular mechanism of PIN1 in psoriasis remain unclear. HaCaT cells were stimulated with five cytokines (M5) to induce psoriatic inflammation-like conditions. Reverse transcription-quantitative PCR and western blotting were performed to examine PIN1 expression in M5-induced HaCaT cells. A Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were employed to examine cell proliferation. Inflammatory factors were evaluated using ELISA kits and western blot analysis. Mitochondrial autophagy was examined by immunofluorescence staining, western blotting and a JC-1 assay. Western blot analysis was adopted to assess the levels of psoriasis marker proteins. PIN1 expression was markedly elevated in M5-induced HaCaT cells. Silencing of PIN1 inhibited M5-induced hyperproliferation and the inflammatory response, while it promoted mitochondrial autophagy in HaCaT cells. The addition of the mitochondrial autophagy inhibitor mitochondrial division inhibitor-1 reversed the effects of PIN1 interference on proliferation, the inflammatory response and mitochondrial autophagy in M5-induced HaCaT cells. The present study revealed that PIN1 inhibition protected HaCaT cells against M5-induced hyperproliferation and inflammatory injury through the activation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Jin Li
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Hongshan Yuan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Wenliang Yan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
3
|
Pretel-Lara C, Sanabria-de la Torre R, Arias-Santiago S, Montero-Vilchez T. Skin Barrier Function and Microtopography in Patients with Atopic Dermatitis. J Clin Med 2024; 13:5861. [PMID: 39407921 PMCID: PMC11477937 DOI: 10.3390/jcm13195861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease whose incidence is increasing. Skin barrier dysfunction plays an important role in this disease. It has been observed that AD patients have higher transepidermal water loss (TEWL) and lower stratum corneum hydration (SCH); however, there is little information about skin microtopography in this pathology. The objective of this study is to evaluate skin barrier dysfunction and structural changes in patients with AD. Methods: A cross-sectional study was conducted including patients with AD. Parameters of skin barrier function were measured (TEWL, temperature, erythema, pH, skin hydration, elasticity) and also other topographical parameters (scaliness, wrinkles, smoothness, surface, contrast, variance) in both healthy skin and flexural eczematous lesions. Results: A total of 32 patients with AD were included in the study. Flexural eczematous lesions had higher erythema (369.12 arbitrary unit (AU) vs. 223.89 AU, p < 0.001), higher TEWL (27.24 g/h/m2 vs. 13.51 g/h/m2, p < 0.001), lower SCH (20.3 AU vs. 31.88 AU, p < 0.001) and lower elasticity (0.56% vs. 0.65%, p = 0.05). Regarding topographic parameters, flexural eczematous lesions presented greater scaliness (5.57 SEsc vs. 0.29 SEsc, p = 0.02), greater smoothness (316.98 SEsm vs. 220.95 SEsm p < 0.001), more wrinkles (73.33 SEw vs. 62.15 SEw p = 0.03), greater surface area (836.14% vs. 696.31%. p < 0.001), greater contrast (2.02 AU vs. 1.31 AU p = 0.01), greater variance (6.22 AU vs. 4.96 AU p < 0.001) and a lower number of cells (105.5 vs. 132.5 p < 0.001) compared to unaffected healthy skin, reflecting a decrease in skin quality in AD patients. Conclusions: Both skin barrier function and skin topography are damaged in patients with AD, with differences between healthy skin and flexural eczema.
Collapse
Affiliation(s)
- Carlota Pretel-Lara
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18071 Granada, Spain
| | - Salvador Arias-Santiago
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Trinidad Montero-Vilchez
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
4
|
Khan Y, Todorov A, Torah R, Beeby S, Ardern-Jones MR. Skin sensing and wearable technology as tools to measure atopic dermatitis severity. SKIN HEALTH AND DISEASE 2024; 4:e449. [PMID: 39355726 PMCID: PMC11442081 DOI: 10.1002/ski2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024]
Abstract
Wearable medical technology encompasses a range of electronic devices that act as biosensors. Atopic dermatitis (AD) is the commonest inflammatory skin disease and represents an important area of need in which to leverage the power of wearable biosensor technology, especially as the impact of COVID-19 increases the likelihood of virtual consultations becoming an integrated part of clinical practice. The aim of this review is to systematically define the published evidence for the utility of wearable biosensors in assessment and management of atopic dermatitis (AD). A systematic literature search was conducted for publications from 1995 onwards for 'sensor' OR 'sensing' OR 'biosensor' OR 'biomarker'. Results were combined ('AND') with a search for 'wearable' OR 'actigraphy' OR 'Internet of things' OR 'microneedle' OR 'patch' OR 'e-textile' OR 'smart textile' and atopic dermatitis (MESH terms). Fifty seven abstracts were identified from the database search of which 39 were selected for detailed review. Broadly, wearable sensing systems in atopic dermatitis were split into three categories: wearable biosensor modules (actigraphy and smartwatches), clothing and integrated fabrics placed onto the epidermis and intradermal or subcutaneous sensors. The best evidence for correlation with AD disease severity was with actigraphy measurements of itch. However, newer approaches including sensing skin barrier function, inflammation and small molecule analysis as well as employing artificial intelligence offer more potential for advanced disease monitoring. Skin diseases, specifically AD, stand to benefit greatly from wearable technology, because of the ease of direct contact to the skin, the high prevalence of the disease and the large unmet need for better disease control in this group. However, important emphasis must be placed on validating the correlation of data from such technology with patient-reported outcomes. Wearable biosensors offer a huge potential to deliver better diagnostics, monitoring and treatment outcomes for patients.
Collapse
Affiliation(s)
- Yasmin Khan
- Clinical Experimental Sciences Faculty of Medicine University of Southampton Southampton UK
- Department of Dermatology Southampton General Hospital University Hospitals Southampton NHS Foundation Trust Southampton UK
| | - Alexandar Todorov
- School of Electronics and Computer Science University of Southampton Southampton UK
| | - Russel Torah
- School of Electronics and Computer Science University of Southampton Southampton UK
| | - Stephen Beeby
- School of Electronics and Computer Science University of Southampton Southampton UK
| | - Michael Roger Ardern-Jones
- Clinical Experimental Sciences Faculty of Medicine University of Southampton Southampton UK
- Department of Dermatology Southampton General Hospital University Hospitals Southampton NHS Foundation Trust Southampton UK
| |
Collapse
|
5
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
6
|
Rousel J, Mergen C, Bergmans ME, Klarenbeek NB, der Kolk TNV, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional Psoriasis is Associated With Alterations in the Stratum Corneum Ceramide Profile and Concomitant Decreases in Barrier Function. Exp Dermatol 2024; 33:e15185. [PMID: 39382258 DOI: 10.1111/exd.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Psoriasis is an inflammatory skin disease associated with an impaired skin barrier. The skin barrier function is dependent on the extracellular lipid matrix which surrounds the corneocytes in the stratum corneum. Ceramides comprise essential components of this matrix. Alterations in the stratum corneum ceramide profile have been directly linked to barrier dysfunction and might be an underlying factor of the barrier impairment in psoriasis. In this study, we investigated the ceramide profile and barrier function in psoriasis. Lesional and non-lesional skin of 26 patients and 10 healthy controls were analysed using in-depth ceramide lipidomics by liquid chromatography-mass spectrometry. Barrier function was assessed by measuring transepidermal water loss. Lesional skin showed a significant decrease in the abundance of total ceramides with significant alterations in the ceramide subclass composition compared to control and non-lesional skin. Additionally, the percentage of monounsaturated ceramides was significantly increased, and the average ceramide chain length significantly decreased in lesional skin. Altogether, this resulted in a markedly different profile compared to controls for lesional skin, but not for non-lesional skin. Importantly, the reduced barrier function in lesional psoriasis correlated to alterations in the ceramide profile, highlighting their interdependence. By assessing the parameters 2 weeks apart, we are able to highlight the reproducibility of these findings, which further affirms this connection. To conclude, we show that changes in the ceramide profile and barrier impairment are observed in, and limited to, lesional psoriatic skin. Their direct correlation provides a further mechanistic basis for the concomitantly observed impairment of barrier dysfunction.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Sanabria-de la Torre R, Montero-Vílchez T, García-Gavín J, Arias-Santiago S. Current Insights on Lipidomics in Dermatology: A Systematic Review. J Invest Dermatol 2024:S0022-202X(24)02099-2. [PMID: 39303909 DOI: 10.1016/j.jid.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Inflammatory dermatoses and lipid disturbances are interrelated, especially due to chronic inflammatory conditions. The study aimed to investigate recent findings about lipidomic and dermatologic diseases, as well as on the sampling techniques developed to study lipidomics in vivo and analytical and statistical approaches employed. A systematic review was designed using the search algorithm "(lipidomics) AND (skin OR dermatology OR stratum corneum OR sebum OR epidermis) following PRISMA guidelines. The literature search identified 1013 references and, finally, only 48 were selected, including a total of 2651 participants with a mean age of 34.13±16.28. The dermatological diseases evaluated were atopic dermatitis (AD), acne, psoriasis, hidradenitis suppurativa (HS) and other skin diseases. Sebutape® was the primary sampling technique for lipidomics research. Most of the studies performed untargeted profiling through liquid chromatography with tandem mass spectrometry (LC-MS/MS) statistically analyzed with Principal Component Analysis (PCA), Orthogonal Partial Least-Squares Discriminate Analysis (OPLS-DA), heatmap and volcano plot models. The most consulted databases were LIPIDMAPS® Structure Database (LMSD), MetaboAnalyst and Human Metabolome Database (HMDB). A large heterogeneity of lipidomic and lipid metabolism profiles was observed in patients with skin diseases. Skin lipidomic analysis is valuable in exploring skin disease and has ample translational potential.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, 18071 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain.
| | | | - Salvador Arias-Santiago
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain; Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Harauma A, Enomoto Y, Endo S, Hariya H, Moriguchi T. Omega-3 fatty acids mitigate skin damage caused by ultraviolet-B radiation. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102641. [PMID: 39299174 DOI: 10.1016/j.plefa.2024.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yui Enomoto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sayaka Endo
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Himeka Hariya
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
9
|
Huang K, Si Y, Guo C, Hu J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv Colloid Interface Sci 2024; 331:103236. [PMID: 38917594 DOI: 10.1016/j.cis.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China.
| |
Collapse
|
10
|
Ahn J, Nam YS. Assessing Barrier Function in Psoriasis and Cornification Models of Artificial Skin Using Non-Invasive Impedance Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400111. [PMID: 38995098 DOI: 10.1002/advs.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Reconstructed epidermal equivalents (REEs) consist of two distinct cell layers - the stratum corneum (SC) and the keratinocyte layer (KL). The interplay of these layers is particularly crucial in pruritic inflammatory disorders, like psoriasis, where a defective SC barrier is associated with immune dysregulation. However, independent evaluation of the skin barrier function of the SC and KL in REEs is highly challenging because of the lack of quantitative methodologies that do not disrupt the counter layer. Here, a non-invasive impedance spectroscopy technique is introduced for dissecting the distinct contributions of the SC and KL to overall skin barrier function without disrupting the structure. These findings, inferred from the impedance spectra, highlight the individual barrier resistances and maturation levels of each layer. Using an equivalent circuit model, a correlation between impedance parameters and specific skin layers, offering insights beyond traditional impedance methods that address full-thickness skin only is established. This approach successfully detects subtle changes, such as increased paracellular permeability due to mild irritants and the characterization of an immature SC in psoriatic models. This research has significant implications, paving the way for detailed mechanistic investigations and fostering the development of therapies for skin irritation and inflammatory disorders.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
DeVore SB, Schuetz M, Alvey L, Lujan H, Ochayon DE, Williams L, Chang WC, Filuta A, Ruff B, Kothari A, Hahn JM, Brandt E, Satish L, Roskin K, Herr AB, Biagini JM, Martin LJ, Cagdas D, Keles S, Milner JD, Supp DM, Khurana Hershey GK. Regulation of MYC by CARD14 in human epithelium is a determinant of epidermal homeostasis and disease. Cell Rep 2024; 43:114589. [PMID: 39110589 PMCID: PMC11469028 DOI: 10.1016/j.celrep.2024.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Caspase recruitment domain family member 14 (CARD14) and its variants are associated with both atopic dermatitis (AD) and psoriasis, but their mechanistic impact on skin barrier homeostasis is largely unknown. CARD14 is known to signal via NF-κB; however, CARD14-NF-κB signaling does not fully explain the heterogeneity of CARD14-driven disease. Here, we describe a direct interaction between CARD14 and MYC and show that CARD14 signals through MYC in keratinocytes to coordinate skin barrier homeostasis. CARD14 directly binds MYC and influences barrier formation in an MYC-dependent fashion, and this mechanism is undermined by disease-associated CARD14 variants. These studies establish a paradigm that CARD14 activation regulates skin barrier function by two distinct mechanisms, including activating NF-κB to bolster the antimicrobial (chemical) barrier and stimulating MYC to bolster the physical barrier. Finally, we show that CARD14-dependent MYC signaling occurs in other epithelia, expanding the impact of our findings beyond the skin.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew Schuetz
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lauren Alvey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Henry Lujan
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David E Ochayon
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey Williams
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wan Chi Chang
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alyssa Filuta
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brandy Ruff
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Arjun Kothari
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Eric Brandt
- Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Latha Satish
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jocelyn M Biagini
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ihsan Dogramaci Children's Hospital, Institutes of Child Health, Ankara 06230, Turkey
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya 42090, Turkey
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Scientific Staff, Shriners Children's Ohio, Dayton, OH 45404, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Asthma Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
12
|
Handeland K, Wakeman M, Burri L. Krill oil supplementation improves transepidermal water loss, hydration and elasticity of the skin in healthy adults: Results from two randomized, double-blind, placebo-controlled, dose-finding pilot studies. J Cosmet Dermatol 2024. [PMID: 39169540 DOI: 10.1111/jocd.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dietary marine omega-3 fatty acids and phospholipids have individually shown favorable effects on skin barrier function. Krill oil offers a combination of omega-3 in phospholipid form which might enhance the efficacy in supporting skin health. AIMS The aim was to investigate the impact of two different doses of krill oil on skin transepidermal water loss (TEWL) in healthy adults. Secondary outcomes were skin hydration, elasticity and the omega-3 index. METHODS Two randomized, double-blind, placebo-controlled, pilot studies were conducted in healthy adults with a baseline TEWL of >10 and ≤24.9 g/m2/h. In study 1, 51 participants consumed 1 g of krill oil or placebo daily. In study 2, 50 participants consumed 2 g of krill oil or placebo daily. The outcomes were assessed at baseline, 6 and 12 weeks. RESULTS The krill oil supplemented groups significantly increased their omega-3 index versus placebo in both studies. Furthermore, the krill oil groups in both studies showed statistically significant beneficial reductions in TEWL (from 14.47 ± 3.65 to 13.83 ± 3.78 in study 1 and from 14.25 ± 3.21 to 13.02 ± 2.76 in study 2) and increases in hydration and elasticity when compared to placebo. There were significant linear relationships between changes in the omega-3 index and changes in TEWL, hydration and elasticity in both studies. CONCLUSIONS Daily oral supplementation with 1 and 2 g of krill oil showed significant and dose-dependent improvements in skin TEWL, hydration, and elasticity compared to placebo that correlated with changes in the omega-3 index.
Collapse
Affiliation(s)
| | - Mike Wakeman
- Faculty of Health and Wellbeing, University of Sunderland, Sunderland, UK
| | - Lena Burri
- Aker BioMarine Human Ingredients AS, Lysaker, Norway
| |
Collapse
|
13
|
Jia YJ, Liu P, Zhang J, Hu FH, Yu HR, Tang W, Zhang WQ, Ge MW, Shen LT, Du W, Shen WQ, Xu H, Cai B, Zhang WB, Chen HL. Prevalence of anxiety, depression, sleeping problems, cognitive impairment, and suicidal ideation in people with autoimmune skin diseases. J Psychiatr Res 2024; 176:311-324. [PMID: 38917722 DOI: 10.1016/j.jpsychires.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/15/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Autoimmune skin diseases (ASDs) such as psoriasis and vitiligo, in addition to causing visible skin symptoms, are closely associated with psychological health issues. However, a comprehensive understanding of the prevalence of these psychological comorbidities in affected individuals is lacking. This study aims to identify the prevalence of anxiety, depression, sleeping problems, cognitive impairment, and suicidal ideation in people with ASDs. METHOD PubMed, MEDLINE, Web of Science, and Cochrane Library searches were conducted from 1993 to May 2024. Observational studies reporting prevalence data for anxiety, depression, sleeping problems, cognitive impairment, and suicidal ideation among people with ASDs were included in the analysis. The Newcastle-Ottawa scale was used to evaluate the quality of studies. RESULTS The study included 114 studies from 37 countries including 823,975 participants. The estimated pooled prevalence of anxiety in patients with ASDs was 33.3% (95% CI: 27.3-29.3%). The estimated pooled prevalence of depression was 33.7% (95% CI: 29.2-38.1%). The estimated pooled prevalence of sleeping problems was 45.0% (95% CI:31.6-58.4%). The estimated pooled prevalence of cognitive impairment and suicidal ideation was 30.8% (95% CI:15.0-46.7%) and 21.6% (95% CI:13.4-29.8%), respectively. The most common mental disorder in patients with systemic lupus erythematosus and psoriasis was sleeping problems at 55.9% (95% CI: 35.6-76.1%, I2 = 97%) and 39.0% (95% CI: 21.1-56.9%, I2 = 99%). CONCLUSION Among patients with ASDs, anxiety, depression, sleeping problems, cognitive impairment, and suicidal ideation were common. The most prevalent mental disorder among patients with systemic lupus erythematosus and psoriasis was sleeping problems. Those with ASDs may experience considerable psychological burdens, and integrated mental health support is necessary for their treatment.
Collapse
Affiliation(s)
- Yi-Jie Jia
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Peng Liu
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Jie Zhang
- Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Fei-Hong Hu
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Hai-Rong Yu
- Department of Nursing, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China
| | - Wen Tang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Wan-Qing Zhang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Meng-Wei Ge
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Lu-Ting Shen
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Wei Du
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Wang-Qin Shen
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China
| | - Hong Xu
- Center for Disease Control and Prevention of Nantong, Nantong, Jiangsu, PR China
| | - Bo Cai
- Center for Disease Control and Prevention of Nantong, Nantong, Jiangsu, PR China
| | - Wei-Bing Zhang
- Center for Disease Control and Prevention of Nantong, Nantong, Jiangsu, PR China.
| | - Hong-Lin Chen
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, PR China.
| |
Collapse
|
14
|
Ilarslan H, Lathrop WF, Dobkowski B, Hawkins SS, Scott J, Bajor J, Mayes AE. Effects of eczema calming lotion on the stratum corneum in atopic dermatitis: Corneodesmosin and intercellular lipid lamellae. Int J Cosmet Sci 2024; 46:516-525. [PMID: 39113306 DOI: 10.1111/ics.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Atopic dermatitis (AD) is characterized by compositional and structural changes to the skin at lesional sites. Alteration to the levels and organization of both protein and lipid components are associated with disease status and lead to impaired barrier and hydration. Corneodesmosin (CDSN) and the arrangement and length of the intercellular lipid lamellae (ICLL) are altered in disrupted skin states. The aim of this research was to profile the distribution of CDSN and the ICLL in the stratum corneum (SC) at lesional and non-lesional sites in AD-prone skin and to investigate the impact of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. METHODS An IRB-approved study was conducted with participants with active AD. From a small subset of participants, tape strips were collected from lesional and non-lesional sites on the arm, prior to and after twice daily application, over 4 weeks of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. Fluorescent antibody staining was used to investigate the distribution of CDSN. Transmission electron microscopy (TEM) was used to characterize the ICLL. RESULTS The distribution/coverage of CDSN was similar between lesional and non-lesional sites at baseline; application of the lotion resulted in a more defined honeycomb/peripheral distribution. Normalized ICLL (nICLL) was lower in baseline samples from lesional sites relative to non-lesional sites. Application of the lotion increased this parameter by the end of the study at all sites. CONCLUSION The eczema calming lotion containing petroleum jelly, fatty acids and colloidal oatmeal provided changes in corneodesmosomal proteins distribution and ICLL, consistent with improvements in corneocyte maturation and improved barrier function in the skin of individuals with atopic dermatitis.
Collapse
Affiliation(s)
- Hilal Ilarslan
- Unilever Research and Development, Trumbull, Connecticut, USA
| | | | - Brian Dobkowski
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Stacy S Hawkins
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Jane Scott
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - John Bajor
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Andrew E Mayes
- Unilever Research and Development, Colworth Science Park, Bedford, UK
| |
Collapse
|
15
|
Rousel J, Mergen C, Bergmans ME, Bruijnincx LJ, de Kam ML, Klarenbeek NB, Niemeyer-van der Kolk T, van Doorn MBA, Bouwstra JA, Rissmann R. Guselkumab treatment normalizes the stratum corneum ceramide profile and alleviates barrier dysfunction in psoriasis: results of a randomized controlled trial. J Lipid Res 2024; 65:100591. [PMID: 38992724 PMCID: PMC11342092 DOI: 10.1016/j.jlr.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
The epidermal inflammation associated with psoriasis drives skin barrier perturbations. The skin barrier is primarily located in stratum corneum (SC). Its function depends on the SC lipid matrix of which ceramides constitute important components. Changes in the ceramide profile directly correlate to barrier function. In this study, we characterized the dynamics of the barrier function and ceramide profile of psoriatic skin during anti-Interleukin-23 therapy with guselkumab. We conducted a double-blind, randomized controlled trial in which 26 mild-to-severe plaque psoriasis patients were randomization 3:1-100 mg guselkumab or placebo for 16 weeks and barrier dynamics monitored throughout. Barrier function was measured by trans-epidermal water loss measurements. Untargeted ceramide profiling was performed using liquid chromatography-mass spectrometry after SC was harvested using tape-stripping. The barrier function and ceramide profile of lesional skin normalized to that of controls during treatment with guselkumab, but not placebo. This resulted in significant differences compared to placebo at the end of the treatment. Changes in the lesional ceramide profile during treatment correlated with barrier function and target lesion severity. Nonlesional skin remained similar throughout treatment. Guselkumab therapy restored the skin barrier in psoriasis. Concomitant correlations between skin barrier function, the ceramide profile, and disease severity demonstrate their interdependency.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands; Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Soto-Moreno A, Delgado-Moya N, Sánchez-Díaz M, Arias-Santiago S, Molina-Leyva A. Skin Homeostasis is Impaired in Hidradenitis Suppurativa Lesions: A Comparative Study. ACTAS DERMO-SIFILIOGRAFICAS 2024:S0001-7310(24)00598-2. [PMID: 39067573 DOI: 10.1016/j.ad.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a chronic skin disease whose impact on skin homeostasis has not been adequately studied at present. Knowledge about how skin function changes in these patients, and could be of interest not only to improve the topical management of the disease, but also as an objective measure of disease activity. The aim of this study was to compare skin homeostasis and the epidermal barrier function in lesional and healthy skin areas of patients with HS. METHODS We conducted a cross-sectional study. Skin homeostasis and the epidermal barrier function of lesions were assessed in HS patients using validated tools. A healthy perilesional skin control was assigned to each lesion to compare skin homeostasis parameters. RESULTS A total of 43 patients were included: 22 nodules, 10 abscesses and 25 draining tunnels were measured. The male-to-female ratio was 20:23, and the mean age, 35.95 years (SD, 14.82). Increased transepidermal water loss (TEWL) and erythema were found in nodules, abscesses and draining tunnel vs healthy skin. A direct association was observed between inflammatory nodules TEWL and IHS4 stage. In draining tunnels, a direct association was observed between TEWL and smoking. A trend of increasing TEWL values was observed as a function of Hurley stage. CONCLUSION HS lesions exhibit epidermal barrier dysfunction that depends on the severity of inflammatory activity. These results could be useful to develop objective classification systems for the severity and degree of involvement of HS or help in the development of vehicles for specific drugs, antiseptics and dressings for the management of this disease.
Collapse
Affiliation(s)
- A Soto-Moreno
- Dermatology Unit, Hospital Universitario Virgen de las Nieves Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - N Delgado-Moya
- Dermatology Unit, Hospital Universitario Virgen de las Nieves Instituto de Investigación Biosanitaria IBS, Granada, Spain
| | - M Sánchez-Díaz
- Dermatology Unit, Hospital Universitario Virgen de las Nieves Instituto de Investigación Biosanitaria IBS, Granada, Spain; Hidradenitis Suppurativa Clinic, Dermatology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - S Arias-Santiago
- Hidradenitis Suppurativa Clinic, Dermatology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain; School of Medicine, University of Granada, Granada, Spain.
| | - A Molina-Leyva
- Hidradenitis Suppurativa Clinic, Dermatology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain; School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Morariu SH, Cotoi OS, Tiucă OM, Crișan M, Garaga L, Tiucă RA, Mariean CR, Buicu FC, Nicolescu AC. Epidermal Barrier Parameters in Psoriasis: Implications in Assessing Disease Severity. J Pers Med 2024; 14:728. [PMID: 39063982 PMCID: PMC11278309 DOI: 10.3390/jpm14070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Psoriasis is characterized by an aberrant immune response due to myeloid dendritic cells and T helper cells intertwining with keratinocyte hyperproliferation. Skin integrity alterations may predispose patients to physiological imbalances, such as xerosis, reduced elasticity, and increased friability. This study aims to assess the epidermal barrier dysfunction in chronic plaque psoriasis and gain a comprehensive view of the dynamic changes in the epidermal barrier during various topical therapies. Adult patients with chronic plaque psoriasis were enrolled in this observational study. For each patient, skin barrier parameters, stratum corneum hydration (SCH), transepidermal water loss (TEWL), elasticity, erythema, and melanin levels were measured in lesional and non-lesional skin. Two extensions of the initial study design, with subsequent epidermal barrier determinations, were made as follows: one in which patients with moderate psoriasis were treated with clobetasol propionate 0.5% and the second one in which mild psoriasis was treated with either clobetasol propionate 0.5% or clobetasol propionate 0.5% with 10% urea. TEWL and erythema were found to be higher in the sites affected by psoriatic lesions than the unaffected sites, while SCH and elasticity were decreased. Severe psoriasis presented with higher TEWL (p = 0.032), erythema (p = 0.002), and lower SCH (p < 0.001) compared with the mild and moderate forms. SCH significantly improved during clobetasol propionate 0.5% treatment (p = 0.015). Clobetasol propionate 0.5% with 10% urea was found to be superior to clobetasol propionate 0.5% in improving TEWL and SCH in psoriasis.
Collapse
Affiliation(s)
- Silviu-Horia Morariu
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Maria Crișan
- Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Liuba Garaga
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Robert Aurelian Tiucă
- Endocrinology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Claudia Raluca Mariean
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Corneliu Buicu
- Department of Public Health, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | | |
Collapse
|
18
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
19
|
Ubago-Rodríguez A, Quiñones-Vico MI, Sánchez-Díaz M, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vílchez T, Fernández-González A, Arias-Santiago S. Challenges in Psoriasis Research: A Systematic Review of Preclinical Models. Dermatology 2024; 240:620-652. [PMID: 38857576 DOI: 10.1159/000538993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease with variable clinical presentation, multifactorial etiology and an immunogenetic basis. Several studies demonstrate that it results from a dysregulated interaction between skin keratinocytes, immune cells, and the environment that leads to a persistent inflammatory process modulated by cytokines and T cells. The development of new treatment options requires increased understanding of pathogenesis. However, the successful implementation of effective drugs requires well-characterized and highly available preclinical models that allow researchers to quickly and reproducibly determine their safety and efficacy. METHODS A systematic search on PubMed and Scopus databases was performed and assessed to find appropriate articles about psoriasis models applying the key words previously defined. The PRISMA guidelines were employed. RESULTS A total of 45 original articles were selected that met the selection criteria. Among these, there are articles on in vivo, in vitro, and ex vivo models, with the in vitro model being the majority due to its ease of use. Within animal models, the most widely used in recent years are chemically induced models using a compound known as imiquimod. However, the rest of the animal models used throughout the disease's research were also discussed. On the other hand, in vitro models were divided into two and three dimensions. The latter were the most used due to their similarity to human skin. Lastly, the ex vivo models were discussed, although they were the least used due to their difficulty in obtaining them. CONCLUSIONS Therefore, this review summarizes the current preclinical models (in vivo, in vitro, and ex vivo), discussing how to develop them, their advantages, limitations, and applications. There are many challenges to improve the development of the different models. However, research in these in vitro model studies could reduce the use of animals. This is favored with the use of future technologies such as 3D bioprinting or organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain,
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain,
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain,
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain,
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sánchez-Díaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| |
Collapse
|
20
|
Zhao S, Luo Z, Wang Y, Gao X, Tao J, Cui Y, Chen A, Cai D, Ding Y, Gu H, Gu J, Ji C, Kang X, Lu Q, Lv C, Li M, Li W, Liu W, Li X, Li Y, Man X, Qiao J, Sun L, Shi Y, Wu W, Xia J, Xiao R, Yang B, Kuang Y, Chen Z, Fang J, Kang J, Yang M, Zhang M, Su J, Zhang X, Chen X. Expert Consensus on Big Data Collection of Skin and Appendage Disease Phenotypes in Chinese. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:269-292. [PMID: 39398426 PMCID: PMC11466921 DOI: 10.1007/s43657-023-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 10/15/2024]
Abstract
The collection of big data on skin and appendage phenotypes has revolutionized the field of personalized diagnosis and treatment by enabling the evaluation of individual characteristics and early detection of abnormalities. To establish a standardized system for collecting and measuring big data on phenotypes, a systematic categorization of measurement entries has been undertaken, accompanied by recommendations on measurement entries, environmental equipment requirements, and collection processes, tailored to the needs of different usage scenarios. Specific collection sites have also been recommended based on different index characteristics. A multi-center, multi-regional collaboration has been initiated to collect big date on phenotypes of healthy and diseased skin in the Chinese population. This data will be correlated with patient disease information, exploring the factors influencing skin phenotype, analyzing the phenotypic data features that can predict prognosis, and ultimately promoting the exploration of the pathophysiology and pathogenesis of skin diseases and therapeutic approaches. Non-invasive skin measurement robots are also in development. This consensus aims to provide a reference for the study of phenomics and the standardization of phenotypic measurements of skin and appendages in China.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, 110001 China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430022 China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100000 China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Daxing Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250000 China
| | - Yan Ding
- Department of Dermatology, Hainan General Hospital, Haikou, 570102 China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, 210042 China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000 China
| | - Xiaojing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001 China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210000 China
| | - Chengzhi Lv
- Department of Dermatology, Dalian Skin Disease Hospital, Liaoning, 116021 China
| | - Min Li
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou, 215000 China
| | - Wei Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610000 China
| | - Wei Liu
- Department of Dermatology, General Hospital of Air Force, Beijing, 100000 China
| | - Xia Li
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000 China
| | - Xiaoyong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000 China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443 China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200443 China
| | - Jianxin Xia
- Department of Dermatology, The Second Affiliated Hospital of JiLin University, Changchun, 130000 China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Zeyu Chen
- School of Materials Science and Engineering, Central South University, Changsha, 410083 China
| | - Jingyue Fang
- School of Physics and Electronics, Central South University, Changsha, 410083 China
| | - Jian Kang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, 410083 China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
| | - Mi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| | - Xuejun Zhang
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou, 215000 China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410083 China
| |
Collapse
|
21
|
Gómez-Farto A, Jiménez-Escobar AL, Pérez-González N, Castán H, Clares B, Arias-Santiago S, Montero-Vílchez T. Development of an Emulgel for the Effective Treatment of Atopic Dermatitis: Biocompatibility and Clinical Investigation. Gels 2024; 10:370. [PMID: 38920917 PMCID: PMC11202525 DOI: 10.3390/gels10060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Atopic dermatitis (AD) is a common dermatological disease affecting both children and adults. No drug-free emulgel has been developed and studied in vitro and in vivo for the treatment of AD. The aim of this study was to develop and assess the efficacy of a topical emulgel containing hyaluronic acid, glycerol, Calendula officinalis, Aloe vera, polyphenols and EGF for the concomitant treatment in patients with AD aged over 14. Objective skin barrier function parameters were included, such as transepidermal water loss (TEWL), skin temperature, pH, stratum corneum hydration, skin elasticity and erythema. The subjective opinion of the patients was determined including acceptability, absorption, comfort of use and tolerability, as well as the degree of improvement in patients' quality of life. We observed an improvement in the subjective parameters studied and statistically significant differences in the objective parameters. Specifically, we found an improvement in TEWL (p = 0.006), erythema (p = 0.008) and hydration (p < 0.001), parameters indicating an improvement in the epidermal barrier. One hundred per cent of patients were satisfied with the product. Therefore, these results suggest that the product may contribute to the treatment of AD.
Collapse
Affiliation(s)
- Almudena Gómez-Farto
- Instituto de Investigación Biotecnológica, Farmacéutica y Medicamentos Huérfanos, S.L, 18016 Granada, Spain; (A.G.-F.); (A.L.J.-E.); (N.P.-G.); (H.C.)
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Ana Leticia Jiménez-Escobar
- Instituto de Investigación Biotecnológica, Farmacéutica y Medicamentos Huérfanos, S.L, 18016 Granada, Spain; (A.G.-F.); (A.L.J.-E.); (N.P.-G.); (H.C.)
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Noelia Pérez-González
- Instituto de Investigación Biotecnológica, Farmacéutica y Medicamentos Huérfanos, S.L, 18016 Granada, Spain; (A.G.-F.); (A.L.J.-E.); (N.P.-G.); (H.C.)
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Herminia Castán
- Instituto de Investigación Biotecnológica, Farmacéutica y Medicamentos Huérfanos, S.L, 18016 Granada, Spain; (A.G.-F.); (A.L.J.-E.); (N.P.-G.); (H.C.)
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Beatriz Clares
- Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; (S.A.-S.); (T.M.-V.)
| | - Salvador Arias-Santiago
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; (S.A.-S.); (T.M.-V.)
- Department of Dermatology, Granada School of Medicine, Granada University, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; (S.A.-S.); (T.M.-V.)
- Department of Dermatology, Granada School of Medicine, Granada University, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| |
Collapse
|
22
|
Montero-Vilchez T, Rodriguez-Pozo JA, Cuenca-Barrales C, Sanabria-de-la-Torre R, Torres-de-Pinedo JM, Arias-Santiago S. Stratum Corneum Hydration As a Potential Marker of Response to Dupilumab in Atopic Dermatitis®: A Prospective Observational Study. Dermatitis 2024; 35:250-257. [PMID: 37695812 DOI: 10.1089/derm.2023.0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Background: Dupilumab is an effective treatment for atopic Dermatitis® (AD) and it also restores skin barrier function. Nevertheless, early changes in epidermal barrier parameters related to sustained treatment response or treatment failure are not known. So, the objective of this study is to evaluate whether changes in skin barrier function after 16 weeks dupilumab treatment could predict sustained treatment response or treatment failure. Materials and Methods: A prospective observational study was conducted that included patients with AD starting dupilumab. Clinical scores, patient-reported outcome measures (PROMs), and skin barrier function parameters were assessed at baseline and after 16 weeks treatment. Patients were followed until they failed to dupilumab or until the end of the study period. Participants were divided into 2 groups: patients with treatment failure and those with sustained treatment response. Results: In total, 32 patients with AD were included in the study, with a mean age of 28.03 years (standard deviation 10.65), being 20 (60.6%) females. In total, 22 (66.7%) patients sustained dupilumab response during the study period and only 10 (33.3%) failed to treatment. After 16 weeks treatment, clinical scores were improved in both groups. Patients with sustained treatment response increased stratum corneum hydration (SCH) on noninvolved skin (34.25 arbitrary units [AU] vs 44.90AU, P = 0.001) and on eczematous lesions (20.71 AU vs 40.94 AU, P < 0.001) and also decreased transepidermal water loss (TEWL) on eczematous lesions (28.22 g/[m2·h] vs 14.83 g/[m2·h], P = 0.002). Patients with treatment failure did not change TEWL or SCH. SCH after 16 weeks treatment on noninvolved skin (odds ratio [OR] = 0.83, P = 0.018) and SCH after 16 weeks treatment on eczematous lesions (OR = 0.86, P = 0.028) were related to dupilumab failure. Conclusion: SCH could be used as a predictive biomarker of dupilumab response in patients with AD.
Collapse
Affiliation(s)
- Trinidad Montero-Vilchez
- From the Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Carlos Cuenca-Barrales
- From the Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Raquel Sanabria-de-la-Torre
- From the Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Salvador Arias-Santiago
- From the Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Dermatology Department, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Filatov V, Sokolova A, Savitskaya N, Olkhovskaya M, Varava A, Ilin E, Patronova E. Synergetic Effects of Aloe Vera Extract with Trimethylglycine for Targeted Aquaporin 3 Regulation and Long-Term Skin Hydration. Molecules 2024; 29:1540. [PMID: 38611819 PMCID: PMC11013907 DOI: 10.3390/molecules29071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused on a novel combination based on Aloe barbadensis leaf extract and trimethylglycine for targeted AQP3 regulation in skin keratinocytes and deep skin moisturization. Firstly, a dose-finding cytotoxicity assay of the selected substances was performed with a 2,5-diphenyl-2H-tetrazolium bromide (MTT) indicator on HaCaT cells. The substances' ability to increase the amount of AQP3 in keratinocytes was evaluated in a keratinocyte cell culture by means of ELISA. Additionally, the deep skin hydration effect was confirmed in clinical research with healthy volunteers. According to the results, the maximum tolerated doses providing viability at 70% (MTDs) values for Aloe barbadensis leaf extract and trimethylglycine were 24.50% and 39.00%, respectively. Following the research and development, a complex based on Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio exhibited a good cytotoxicity profile, with an MTDs value of 37.90%. Furthermore, it was shown that the combination had a clear synergetic effect and significantly increased AQP3 by up to 380% compared to the negative control and glyceryl glucoside (p < 0.001). It was clinically confirmed that the developed shower gel containing Aloe barbadensis leaf extract and trimethylglycine safely improved skin hydration after one use and over 28 days. Thus, this novel plant-based combination has promising potential for AQP3 regulation in the skin epidermis and a role in the development of dermatological drugs for the treatment of skin xerosis and atopic-related conditions.
Collapse
Affiliation(s)
- Viktor Filatov
- Science Center, SkyLab AG, 1066 Lausanne, Switzerland (N.S.); (E.P.)
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna Sokolova
- Science Center, SkyLab AG, 1066 Lausanne, Switzerland (N.S.); (E.P.)
| | | | | | - Andrey Varava
- Science Center, SkyLab AG, 1066 Lausanne, Switzerland (N.S.); (E.P.)
| | - Egor Ilin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | | |
Collapse
|
24
|
Yoo S, Kim J, Jeong ET, Hwang SJ, Kang N, Lee J. Penetration rates into the stratum corneum layer: A novel quantitative indicator for assessing skin barrier function. Skin Res Technol 2024; 30:e13655. [PMID: 38481085 PMCID: PMC10938031 DOI: 10.1111/srt.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The stratum corneum (SC), the outermost layer of the skin epidermis, acts as an effective bi-directional barrier, preventing water loss (inside-outside barrier) and entry of foreign substances (outside-inside barrier). Although transepidermal water loss (TEWL) is a widely-used measure of barrier function, it represents only inside-outside protection. Therefore, we aimed to establish a non-invasive method for quantitative evaluation of the outside-inside barrier function and visually present a skin barrier model. MATERIALS AND METHODS Skin barrier damage was induced by applying a closed patch of 1% sodium dodecyl sulfate to the forearms of eight participants; they were instructed to apply a barrier cream on a designated damaged area twice daily for 5 days. The SC barrier was evaluated by measuring TEWL and fluorescein sodium salt penetration rate before, immediately after, and 5 days after damage. The penetration rate was assessed using tape-stripping (TS) technique and fluorescence microscopy. RESULTS The rates of fluorescein sodium salt penetration into the lower layers of SC differed significantly based on the degree of skin barrier damage. The correlation between penetration rate and TEWL was weak after two rounds of TS and became stronger after subsequent rounds. Five days after skin barrier damage, the penetration rate of all layers differed significantly between areas with and without the barrier cream application. CONCLUSION Our findings demonstrated that the penetration rate was dependent on skin barrier conditions. The penetration rate and corresponding fluorescence images are suitable quantitative indicators that can visually represent skin barrier conditions.
Collapse
Affiliation(s)
- Suji Yoo
- R&D CenterLG H&H Co., Ltd.SeoulSouth Korea
| | | | | | | | | | | |
Collapse
|
25
|
van Osdol WW, Novakovic J, Le Merdy M, Tsakalozou E, Ghosh P, Spires J, Lukacova V. Predicting Human Dermal Drug Concentrations Using PBPK Modeling and Simulation: Clobetasol Propionate Case Study. AAPS PharmSciTech 2024; 25:39. [PMID: 38366149 DOI: 10.1208/s12249-024-02740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024] Open
Abstract
Quantitative in silico tools may be leveraged to mechanistically predict the dermato-pharmacokinetics of compounds delivered from topical and transdermal formulations by integrating systems of rate equations that describe permeation through the formulation and layers of skin and pilo-sebaceous unit, and exchange with systemic circulation via local blood flow. Delivery of clobetasol-17 propionate (CP) from DermovateTM cream was simulated using the Transdermal Compartmental Absorption & Transit (TCATTM) Model in GastroPlus®. The cream was treated as an oil-in-water emulsion, with model input parameters estimated from publicly available information and quantitative structure-permeation relationships. From the ranges of values available for model input parameters, a set of parameters was selected by comparing model outputs to CP dermis concentration-time profiles measured by dermal open-flow microperfusion (Bodenlenz et al. Pharm Res. 33(9):2229-38, 2016). Predictions of unbound dermis CP concentrations were reasonably accurate with respect to time and skin depth. Parameter sensitivity analyses revealed considerable dependence of dermis CP concentration profiles on drug solubility in the emulsion, relatively less dependence on dispersed phase volume fraction and CP effective diffusivity in the continuous phase of the emulsion, and negligible dependence on dispersed phase droplet size. Effects of evaporative water loss from the cream and corticosteroid-induced vasoconstriction were also assessed. This work illustrates the applicability of computational modeling to predict sensitivity of dermato-pharmacokinetics to changes in thermodynamic and transport properties of a compound in a topical formulation, particularly in relation to rate-limiting steps in skin permeation. Where these properties can be related to formulation composition and processing, such a computational approach may support the design of topically applied formulations.
Collapse
Affiliation(s)
- William W van Osdol
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Jasmina Novakovic
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Maxime Le Merdy
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Eleftheria Tsakalozou
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Priyanka Ghosh
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Jessica Spires
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA.
| | - Viera Lukacova
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| |
Collapse
|
26
|
Guo M, Su J, Zheng S, Chen B. Sleep in psoriasis: A meta-analysis. J Psychosom Res 2024; 176:111543. [PMID: 37956475 DOI: 10.1016/j.jpsychores.2023.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Currently, there are discrepant results regarding the quantitative effect of psoriasis on sleep, which may, in part, be attributed to the use of non-standardised questionnaires. METHODS The PubMed/Medline, Embase, and Cochrane databases were searched for cross-sectional, case-control or cohort studies that recruited patients with psoriasis and healthy controls and reported data regarding Pittsburgh Sleep Quality Index (PSQI) and the prevalence of sleep disturbance (SD) based on the PSQI, published from inception up to January 2023. Secondary outcomes included scores for the Insomnia Severity Index (ISI), Beck Depression Inventory (BDI), and Epworth Sleepiness Scale (ESS), and risk for restless legs syndrome (RLS). Meta-analyses using random-effects models were used for statistical analyses. RESULTS Fifteen studies including 1274 patients with psoriasis and 775 controls were analysed. A higher PSQI (weighted mean difference [WMD] = 3.397, P < 0.001, I2 = 84.2%) and a higher risk for SD (odds ratio [OR] = 6.640, P < 0.001, I2 = 67.5%) were observed in patients with psoriasis compared with controls. Subgroup analyses revealed a greater difference in PSQI score and/or risk for SD between patients with psoriasis and controls in subgroups of psoriatic arthritis, moderate-to-severe psoriasis, shorter psoriasis duration, and younger age. Moreover, patients with psoriasis exhibited higher ISI (WMD = 2.709, P < 0.001) and BDI scores (WMD = 4.565, P = 0.001), and risk for RLS (OR = 4.689, P = 0.01). However, there was no significant difference in ESS scores (WMD = -0.229, P = 0.77) compared with controls. CONCLUSION Psoriasis was associated with poor sleep quality and higher risk for SD, especially among patients with psoriatic arthritis, severe psoriasis, shorter duration of psoriasis, and younger age. Patients with psoriasis were also more likely to experience insomnia, RLS, and depression.
Collapse
Affiliation(s)
- Miaolan Guo
- Department of Nursing, Shantou University Medical College, Shantou 515000, China
| | - Jing Su
- Department of Nursing, Shantou University Medical College, Shantou 515000, China
| | - Shaoyan Zheng
- Academic Affairs Office, Shantou University Medical College, Shantou 515000, China
| | - Baixin Chen
- Department of Sleep Medicine, Shantou University Mental Health Center, Shantou University Medical College, Shantou 515000, China; Sleep Medicine Center, Shantou University Medical College, Shantou 515000, China; Shantou University Medical College-Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou 515000, China.
| |
Collapse
|
27
|
Hui-Beckman JW, Goleva E, Leung DYM, Kim BE. The impact of temperature on the skin barrier and atopic dermatitis. Ann Allergy Asthma Immunol 2023; 131:713-719. [PMID: 37595740 DOI: 10.1016/j.anai.2023.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Climate change is a global threat to public health and causes or worsens various diseases including atopic dermatitis (AD), allergic, infectious, cardiovascular diseases, physical injuries, and mental disorders. The incidence of allergy, such as AD, has increased over the past several decades, and environmental factors such as climate change have been implicated as a potential mechanism. A substantial amount of literature has been published on the impact of climate factors, including cold and hot temperatures, on the skin barrier and AD. Studies in several countries have found a greater incidence of AD in children born in the colder seasons of fall and winter. The effect of cold and warm temperatures on itch, skin flares, increased outpatient visits, skin barrier dysfunction, development of AD, and asthma exacerbations have been reported. Understanding mechanisms by which changes in temperature influence allergies is critical to the development of measures for the prevention and treatment of allergic disorders, such as AD and asthma. Low and high temperatures induce the production of proinflammatory cytokines and lipid mediators such as interleukin-1β, thymic stromal lymphopoietin, and prostaglandin E2, and cause itch and flares by activation of TRPVs such as TRPV1, TRPV3, and TRPV4. TRPV antagonists may attenuate temperature-mediated itch, skin barrier dysfunction, and exacerbation of AD.
Collapse
Affiliation(s)
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| |
Collapse
|
28
|
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells 2023; 12:2745. [PMID: 38067173 PMCID: PMC10706187 DOI: 10.3390/cells12232745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions.
Collapse
Affiliation(s)
- Paola Baker
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Christina Huang
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rakan Radi
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Samara B. Moll
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Emmanuela Jules
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.B.); (C.H.); (R.R.); (S.B.M.); (E.J.)
| | - Jack L. Arbiser
- Metroderm/United Derm Partners, 875 Johnson Ferry Road, Atlanta, GA 30342, USA
| |
Collapse
|
29
|
Huang F, Zhang Y, Guo J, Pan H, Liao Z, Yang B, Lu P. Characterization of Epidermal Function in Individuals with Primary Cutaneous Amyloidosis. Clin Cosmet Investig Dermatol 2023; 16:3193-3200. [PMID: 37953856 PMCID: PMC10637218 DOI: 10.2147/ccid.s426209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Purpose To compare epidermal biophysical properties, indicators of epidermal function, in individuals with and without primary cutaneous amyloidosis (PCA). Patients and Methods This study incorporated 189 patients with PCA and 166 healthy individuals. The GPSkin Barrier was employed to measure transepidermal water loss (TEWL) rates and hydration levels of the stratum corneum. The Sebumeter and the Skin pH Meter were utilized to determine the skin surface's sebum content and pH, respectively. The severity of pruritus in participants was evaluated using the visual analog scale (VAS). Results Compared to the control group without PCA, individuals with PCA displayed a notable increase in skin surface pH and TEWL and a decrease in the hydration levels of the stratum corneum (p<0.0001 for all parameters). Additionally, the sebum content was markedly lower in those with PCA than in the controls (p<0.0001). Of particular note, both TEWL and skin surface pH at the lesion sites on the back and the shin were more elevated in lichenoid amyloidosis (LA) and in macular amyloidosis (MA), whereas hydration levels of the stratum corneum and sebum levels were diminished in LA compared to MA (p<0.05). In conclusion, both hydration levels of the stratum corneum and sebum content exhibited an inverse relationship with pruritus severity, whereas TEWL and skin surface pH demonstrated a positive correlation with pruritus intensity. Conclusion The function of the epidermis is compromised in individuals diagnosed with PCA. However, the mechanisms underlying these changes await further investigation.
Collapse
Affiliation(s)
- Fujuan Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuling Zhang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Junyi Guo
- Department of Dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, People’s Republic of China
| | - Hongju Pan
- Guangdong Provincial Engineering Technology Research and Development Center for External Drugs, Foshan, People’s Republic of China
| | - Zhigang Liao
- Guangdong Provincial Engineering Technology Research and Development Center for External Drugs, Foshan, People’s Republic of China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Ping Lu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
30
|
Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Wójciak M, Sowa I. Evaluation of the Biological Activity of Hydrogel with Cornus mas L. Extract and Its Potential Use in Dermatology and Cosmetology. Molecules 2023; 28:7384. [PMID: 37959803 PMCID: PMC10648276 DOI: 10.3390/molecules28217384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Due to the growing popularity of herbal extract-loaded hydrogels, this study assessed the biological activity of extracts and hydrogels containing three types (water (WE), water-ethanol (EE) and water-glycerin (GE)) of Cornus mas L. (dogwood) extracts. The content of biologically active compounds in the extracts was assessed using the UPLC-DAD-MS technique. Antioxidant properties were assessed by using DPPH and ABTS radicals and measuring the intracellular level of reactive oxygen species. Alamar Blue and Neutral Red tests were used to measure the cytotoxicity of the tested samples on skin cells-fibroblasts and keratinocytes. Cell migration and the anti-aging activity of the tested extracts and hydrogels were assessed. Transepidermal water loss and skin hydration after applying the hydrogels to the skin were also determined. A chromatographic analysis revealed that the extracts contained polyphenols, including gallic, caftaric, protocatechuic, chlorogenic, ellagic and p-coumaroylquinic acids, as well as iridoids, with loganic acid as the predominant component. Additionally, they contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside and quinic acid. The obtained results show that the tested extracts and hydrogels had strong antioxidant properties and had a positive effect on the viability of skin cells in vitro. Additionally, it was shown that they stimulated the migration of these cells and had the ability to inhibit the activity of collagenase and elastase. Moreover, the tested hydrogels increased skin hydration and prevented transepidermal water loss. The obtained results indicate that the developed hydrogels may be effective delivery systems for phytochemicals contained in dogwood extracts.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
31
|
Tran NLH, Ly NTM, Trinh HKT, Le MK, Vo NVT, Pham DL. Prediction of Food Sensitization in Children with Atopic Dermatitis Based on Disease Severity and Epidermal Layer Impairment. Int Arch Allergy Immunol 2023; 185:43-55. [PMID: 37899044 DOI: 10.1159/000533492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/05/2023] [Indexed: 10/31/2023] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is characterized by an impaired epidermal barrier, which could be associated with sensitization to food allergens (FAs) and/or inhaled allergens and contribute to the severity of AD. However, no clinical guidance has been established for evaluations of food sensitization (FS) in AD patients. This study investigated how AD severity and epidermal barrier impairment are associated with FS and factors that can predict FS in children with AD. METHODS This cross-sectional study included 100 children (12-60 months) diagnosed with AD. AD severity was determined using the Scoring Atopic Dermatitis (SCORAD) index. FS was evaluated by measuring serum-specific IgE antibodies against 31 FAs using an immunoblotting method. Epidermal barrier impairment was assessed by measuring transepidermal water loss (TEWL) and stratum corneum hydration (SCH) levels. RESULTS 90% of participants were sensitized to at least one tested FA, with cow's milk, egg white, beef, almond, egg yolk, and peanut being the most common. Children with moderate-severe AD had lower SCH levels than those with mild AD. Children with AD who were sensitized to >10 FAs had significantly higher TEWL and lower SCH levels, compared with those sensitized to 1-4 FAs and 5-10 FAs. The SCORAD score and SCH level in lesional skin provided moderately predictive value for sensitization to FAs in children with AD. CONCLUSION FS is common in children with AD and closely associate with AD severity as well as epidermal barrier impairment. Evaluations of FS should be considered for children with moderate to severe AD and/or low SCH levels.
Collapse
Affiliation(s)
- Nguyen Le Huong Tran
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam,
- The University of Da Nang - School of Medicine and Pharmacy, Da Nang, Vietnam,
| | - Nhung Thi My Ly
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Kim Tu Trinh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Kieu Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Niem Van Thanh Vo
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duy Le Pham
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Zolotas M, Schleusener J, Lademann J, Meinke MC, Kokolakis G, Darvin ME. Altered structure indicating reduced barrier function of lesional compared to non-lesional psoriatic skin-A non-invasive in vivo study of the human stratum corneum with confocal Raman micro-spectroscopy. Exp Dermatol 2023; 32:1763-1773. [PMID: 37540053 DOI: 10.1111/exd.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/23/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023]
Abstract
Psoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC. We compared on molecular level lesional psoriatic skin (LPS) with non-lesional psoriatic skin (nLPS) from 19 patients non-invasively in vivo, using confocal Raman micro-spectroscopy. By analysing the corresponding Raman spectra, we determined SBF-defining parameters of the SC depth-dependently. Our results revealed a lower total lipid concentration, a shift of lamellar lipid organisation towards more gauche-conformers and an increase of the less dense hexagonal lateral packing of the intercellular lipids in LPS. Furthermore, we observed lower natural moisturising factor concentration, lower total water as well as a strong tendency towards less strongly bound and more weakly bound water molecules in LPS. Finally, we detected a less stable secondary keratin structure with increased β-sheets, in contrast to the tertiary structure, showing a higher degree of folded keratin in LPS. These findings clearly suggest structural differences indicating a reduced SBF in LPS, and are discussed in juxtaposition to preceding outcomes for psoriatic and healthy skin. Understanding the alterations of the psoriatic SC provides insights into the exact pathophysiology of psoriasis and paves the way for optimal future treatments.
Collapse
Affiliation(s)
- Michael Zolotas
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Zolotas M, Schleusener J, Lademann J, Meinke MC, Kokolakis G, Darvin ME. Atopic Dermatitis: Molecular Alterations between Lesional and Non-Lesional Skin Determined Noninvasively by In Vivo Confocal Raman Microspectroscopy. Int J Mol Sci 2023; 24:14636. [PMID: 37834083 PMCID: PMC10572245 DOI: 10.3390/ijms241914636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Atopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness. Therefore, we recruited 21 AD patients (9 female, 12 male) and compared the lesional (LAS) with non-lesional atopic skin (nLAS) in vivo with confocal Raman microspectroscopy. Our results demonstrated decreased total intercellular lipid and carotenoid concentrations, as well as a shift towards decreased orthorhombic lateral lipid organisation in LAS. Further, we observed a lower concentration of natural moisturising factor (NMF) and a trend towards increased strongly bound and decreased weakly bound water in LAS. Finally, LAS showed an altered secondary and tertiary keratin structure, demonstrating a more folded keratin state than nLAS. The obtained results are discussed in comparison with healthy skin and yield detailed insights into the atopic SC structure. LAS clearly shows molecular alterations at certain SC depths compared with nLAS which imply a reduced SBF. A thorough understanding of these alterations provides useful information on the aetiology of AD and for the development/control of targeted topical therapies.
Collapse
Affiliation(s)
- Michael Zolotas
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
34
|
Imafuku K, Iwata H, Natsuga K, Okumura M, Kobayashi Y, Kitahata H, Kubo A, Nagayama M, Ujiie H. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates. Cell Prolif 2023; 56:e13441. [PMID: 36919255 PMCID: PMC10472521 DOI: 10.1111/cpr.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Zonula occludens-1 (ZO-1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO-1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO-1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO-1 distribution in squamous epithelia. We tried to verify the regulation of ZO-1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO-1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO-1 to the uppermost part of squamous epithelia. In contrast, ZO-1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO-1 distribution patterns. These findings demonstrate that ZO-1 distribution is affected by epithelial cell dynamics.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Makoto Okumura
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Yasuaki Kobayashi
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of ScienceChiba UniversityChibaJapan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal RelatedKobe University Graduate School of MedicineKobeJapan
- Department of DermatologyKeio University School of MedicineTokyoJapan
| | - Masaharu Nagayama
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
35
|
Altaş U, Altaş ZM, Ercan N, Özkars MY. The Effect of House Dust Sensitization on Skin Sebum and Moisture in Children with Allergic Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1483. [PMID: 37761444 PMCID: PMC10529035 DOI: 10.3390/children10091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
This study aimed to investigate the levels of skin moisture and sebum in children with a house dust allergy without skin symptoms. This was a case-control study involving children, aged 0-18 years, who were being followed up for an allergic airway disease in a pediatric allergy clinic. Age, gender, hemogram parameters, and IgE values were evaluated. The skin moisture and sebum percentages of the patients and control group were measured by a non-invasive bioimpedance method using a portable digital skin moisture and sebum measurement device on the cubital fossa. The median value of the skin moisture percentage in the house dust mite allergy-positive patient group was significantly lower than that in the house dust mite allergy-negative patients and the control group (p < 0.001). The house dust mite allergy-positive patient group had the lowest skin sebum content. However, there was no statistical significance among the groups in terms of skin sebum percentage (p = 0.102). In the study, children with a house dust allergy were found to have lower levels of skin moisture and sebum. The regular use of moisturizers for children with a house dust allergy should be kept in mind as an effective solution to protect the skin barrier and reduce skin symptoms.
Collapse
Affiliation(s)
- Uğur Altaş
- Department of Pediatric Allergy and Immunology, Ümraniye Training and Research Hospital, University of Health Sciences, Ümraniye, 34764 Istanbul, Türkiye;
| | - Zeynep Meva Altaş
- Ümraniye District Health Directorate, Ümraniye, 34764 Istanbul, Türkiye;
| | - Nazlı Ercan
- Department of Pediatric Allergy and Immunology, Gülhane Education and Research Hospital, University of Health Sciences, Etlik, 06010 Ankara, Türkiye;
- Department of Pediatric Allergy and Immunology, Istinye University Faculty of Medicine, Zeytinburnu, 34010 Istanbul, Türkiye
| | - Mehmet Yaşar Özkars
- Department of Pediatric Allergy and Immunology, Ümraniye Training and Research Hospital, University of Health Sciences, Ümraniye, 34764 Istanbul, Türkiye;
| |
Collapse
|
36
|
Ahn YM, Shin S, Jang JH, Jung J. Bojungikgi-tang improves skin barrier function and immune response in atopic dermatitis mice fed a low aryl hydrocarbon receptor ligand diet. Chin Med 2023; 18:100. [PMID: 37573390 PMCID: PMC10423424 DOI: 10.1186/s13020-023-00806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a transcription factor that plays a crucial role in regulating the immune system and maintaining skin barrier function. AhR signaling is pivotal in the pathogenesis of inflammatory diseases such as atopic dermatitis (AD), and the absence of AhR ligands further contributes to the progression or worsening of AD symptoms. METHODS AD was induced with 2,4-dinitrochlorobenzene (DNCB), and Bojungikgi-tang (BJIKT) was administered orally daily for 10 weeks. Serum IgE, splenocyte IL-4, and IFN-γ levels, skin barrier genes, and AhR target gene expressions were analyzed using RNA-sequencing analysis. Spleen tissues were extracted for fluorescence-activated cell sorting (FACS) analysis to analyze the effect of BJIKT on immune responses. A correlation analysis was conducted to analyze the correlation between immune markers and skin barrier genes and AhR target genes. RESULTS BJIKT effectively improved AD symptoms in AD mice fed a low AhR ligand diet by reducing neutrophil and eosinophil counts, lowering IgE levels in the blood, and decreasing IL-4 and IFN-γ levels in the splenocytes. Additionally, BJIKT significantly reduced epithelial skin thickness and transepidermal water loss (TEWL) values and reversed the decreased expression of skin barrier genes. BJIKT also considerably altered the expression of AhR target genes, including Ahr, Ahrr, cytochrome P450 1A1 (CYP1A1), and CYP1B1. Furthermore, AhR target pathway genes were negatively correlated with immune cell subtypes, including CD4 + and CD8 + T cells and macrophages (CD11b + F4/80 +) at the systemic level. CONCLUSIONS BJIKT can regulate AhR activation and may help reduce inflammation in AD by regulating the expression of skin barrier genes and immune responses.
Collapse
Affiliation(s)
- You Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Ji-Hye Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
37
|
Chang QX, Lyu JL, Wu PY, Wen KC, Chang CC, Chiang HM. Coffea arabica Extract Attenuates Atopic Dermatitis-like Skin Lesions by Regulating NLRP3 Inflammasome Expression and Skin Barrier Functions. Int J Mol Sci 2023; 24:12367. [PMID: 37569742 PMCID: PMC10418848 DOI: 10.3390/ijms241512367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Atopic dermatitis (AD) is a common skin disease worldwide. The major causes of AD are skin barrier defects, immune dysfunction, and oxidative stress. In this study, we investigated the anti-oxidation and anti-inflammation effects of Coffea arabica extract (CAE) and its regulation of the skin barrier and immune functions in AD. In vitro experiments revealed that CAE decreased the reactive oxygen species levels and inhibited the translocation of nuclear factor-κB (NF-κB), further reducing the secretion of interleukin (IL)-1β and IL-6 induced by interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α). Moreover, CAE decreased IFN-γ/TNF-α-induced NLR family pyrin domain-containing 3 (NLRP3), caspase-1, high-mobility group box 1 (HMGB1), and receptor for advanced glycation end products (RAGE) expression levels. It also restored the protein levels of skin barrier function-related markers including filaggrin and claudin-1. In vivo experiments revealed that CAE not only reduced the redness of the backs of mice caused by 2,4-dinitrochlorobenzene (DNCB) but also reduced the levels of pro-inflammatory factors in their skin. CAE also reduced transepidermal water loss (TEWL) and immune cell infiltration in DNCB-treated mice. Overall, CAE exerted anti-oxidation and anti-inflammation effects and ameliorated skin barrier dysfunction, suggesting its potential as an active ingredient for AD treatment.
Collapse
Affiliation(s)
- Qiao-Xin Chang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (Q.-X.C.); (J.-L.L.); (K.-C.W.); (C.-C.C.)
| | - Jia-Ling Lyu
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (Q.-X.C.); (J.-L.L.); (K.-C.W.); (C.-C.C.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404, Taiwan;
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (Q.-X.C.); (J.-L.L.); (K.-C.W.); (C.-C.C.)
| | - Chang-Cheng Chang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (Q.-X.C.); (J.-L.L.); (K.-C.W.); (C.-C.C.)
- School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (Q.-X.C.); (J.-L.L.); (K.-C.W.); (C.-C.C.)
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| |
Collapse
|
38
|
Bolko Seljak K, Sterle Zorec B, Gosenca Matjaž M. Nanocellulose-Based Film-Forming Hydrogels for Improved Outcomes in Atopic Skin. Pharmaceutics 2023; 15:1918. [PMID: 37514104 PMCID: PMC10384567 DOI: 10.3390/pharmaceutics15071918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by impaired skin barrier function. Amongst the various dermal formulations that are being used and/or investigated for AD treatment, one of the advanced approaches is the use of hydrogels as film-forming systems that are applied directly to the skin and have the added value of providing a physical barrier, which is lacking in atopic skin. Novel film-forming hydrogels based on two different nanocrystalline celluloses (NCCs) in combination with one of two natural polymers (alginate or pectin) were developed for incorporation of betamethasone dipropionate (BDP). Initially, the low water solubility of BDP was resolved by prior dissolution in a self-microemulsifying drug delivery system (SMEDDS). The mixture of Kolliphor® EL/Capryol® 90 in a ratio of 8/2 was chosen on the merit of its high BDP-saturated solubility and no BDP precipitation upon water dilution, enabling BDP to remain dissolved after incorporation into hydrogels. The solvent evaporation method was used to prepare the films, and their high water retention capacity was confirmed in vitro on artificial membranes and pig ear skin. The presented results thus confirm NCC-based film-forming hydrogels as a very promising drug delivery system for AD treatment.
Collapse
Affiliation(s)
- Katarina Bolko Seljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Sterle Zorec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
39
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
40
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Squittieri R, Baldino L, Reverchon E. Production of Antioxidant Transfersomes by a Supercritical CO 2 Assisted Process for Transdermal Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1812. [PMID: 37368242 DOI: 10.3390/nano13121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 and 3000 mg), kinds of edge activators (Span® 80 and Tween® 80), and phosphatidylcholine to edge activator weight ratio (95:5, 90:10, 80:20) were tested. Formulations prepared using Span® 80 and phosphatidylcholine at an 80:20 weight ratio produced stable transfersomes (-30.4 ± 2.4 mV ζ-potential) that were characterized by a mean diameter of 138 ± 55 nm. A prolonged ascorbic acid release of up to 5 h was recorded when the largest amount of phosphatidylcholine (3000 mg) was used. Moreover, a 96% ascorbic acid encapsulation efficiency and a quasi-100% DPPH radical scavenging activity of transfersomes were measured after supercritical processing.
Collapse
Affiliation(s)
- Raffaella Squittieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Center for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Research Center for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
42
|
Zhang Y, Le Y, Guo J, Wu F, Li Q, Lu P. Barrier function and ultrastructure characteristics of epidermis in patients with primary cutaneous amyloidosis. J Dermatol 2023. [PMID: 37157942 DOI: 10.1111/1346-8138.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Previous studies on primary cutaneous amyloidosis (PCA) have mainly focused on exploring genetic mutation and components of amyloid in patients with PCA. However, studies on skin barrier function in PCA patients are scarce. Here, we detected the skin barrier function in PCA patients and healthy people by using noninvasive techniques and characterized ultrastructural features of PCA lesions compared with healthy people using transmission electron microscopy (TEM). The expression of proteins related to skin barrier function was examined by immunohistochemistry staining. A total of 191 patients with clinically diagnosed PCA and 168 healthy individuals were enrolled in the study. Our analysis revealed that all investigated lesion areas displayed higher transepidermal water loss and pH values, and lower Sebum levels and stratum corneum hydration levels in PCA patients compared with the same site area in healthy individuals. The TEM results showed that the intercellular spaces between the basal cells were enlarged and the number of hemidesmosomes decreased in PCA lesions. Immunohistochemical staining showed that the expression of integrin α6 and E-cadherin in PCA patients was less than that in healthy controls, while no differences in the expression of loricrin and filaggrin were observed. Our study revealed that individuals with PCA displayed skin barrier dysfunction, which may be related to alterations in epidermal ultrastructure and a decrease in the skin barrier-related protein E-cadherin. However, the molecular mechanisms underlying skin barrier dysfunction in PCA remain to be elucidated.
Collapse
Affiliation(s)
- Yuling Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Ya Le
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Guo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fangfang Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ping Lu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Todorov A, Torah R, Wagih M, Ardern-Jones MR, Beeby SP. Electromagnetic Sensing Techniques for Monitoring Atopic Dermatitis-Current Practices and Possible Advancements: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3935. [PMID: 37112275 PMCID: PMC10144024 DOI: 10.3390/s23083935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Atopic dermatitis (AD) is one of the most common skin disorders, affecting nearly one-fifth of children and adolescents worldwide, and currently, the only method of monitoring the condition is through an in-person visual examination by a clinician. This method of assessment poses an inherent risk of subjectivity and can be restrictive to patients who do not have access to or cannot visit hospitals. Advances in digital sensing technologies can serve as a foundation for the development of a new generation of e-health devices that provide accurate and empirical evaluation of the condition to patients worldwide. The goal of this review is to study the past, present, and future of AD monitoring. First, current medical practices such as biopsy, tape stripping and blood serum are discussed with their merits and demerits. Then, alternative digital methods of medical evaluation are highlighted with the focus on non-invasive monitoring using biomarkers of AD-TEWL, skin permittivity, elasticity, and pruritus. Finally, possible future technologies are showcased such as radio frequency reflectometry and optical spectroscopy along with a short discussion to provoke research into improving the current techniques and employing the new ones to develop an AD monitoring device, which could eventually facilitate medical diagnosis.
Collapse
Affiliation(s)
- Alexandar Todorov
- Centre of Flexible Electronics and E-Textiles, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| | - Russel Torah
- Centre of Flexible Electronics and E-Textiles, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| | - Mahmoud Wagih
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michael R. Ardern-Jones
- Clinical Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 1DU, UK;
| | - Steve P. Beeby
- Centre of Flexible Electronics and E-Textiles, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
44
|
Pérez-González N, Espinoza LC, Rincón M, Sosa L, Mallandrich M, Suñer-Carbó J, Bozal-de Febrer N, Calpena AC, Clares-Naveros B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023; 9:gels9040308. [PMID: 37102920 PMCID: PMC10138157 DOI: 10.3390/gels9040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Caspofungin is a drug that is used for fungal infections that are difficult to treat, including invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene membrane and ex vivo permeation into human skin was adopted. The tolerability properties were confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical studies confirmed that caspofungin was released following a one-phase exponential association model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both formulations were well-tolerated in the histological sections, as well as after their topical application in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis, while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to conventional antifungal agents.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | | | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
45
|
Kim TY, Park NJ, Jegal H, Paik JH, Choi S, Kim SN, Yang MH. Nymphoides peltata Root Extracts Improve Atopic Dermatitis by Regulating Skin Inflammatory and Anti-Oxidative Enzymes in 2,4-Dinitrochlorobenzene (DNCB)-Induced SKH-1 Hairless Mice. Antioxidants (Basel) 2023; 12:antiox12040873. [PMID: 37107248 PMCID: PMC10135162 DOI: 10.3390/antiox12040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Nymphoides peltata is widely used pharmacologically in Traditional Chinese Medicine and Ayurvedic medicine as a diuretic, antipyretic, or choleretic and to treat ulcers, snakebites, and edema. Previous studies have shown that phytochemicals from N. peltata have physiological activities such as anti-inflammatory, anti-tumor, and anti-wrinkle properties. Nevertheless, research on the anti-atopic dermatitis (AD) effect of N. peltata extract is limited. This study was undertaken to assess the in vitro and in vivo anti-atopic and antioxidant activities of a 95% EtOH extract of N. peltata roots (NPR). PI-induced RBL-2H3 cells and two typical hapten mice (oxazolone-induced BALB/c mice and 2,4-dinitrochlorobenzene (DNCB)-induced SKH-1 hairless mice) were used to investigate the effect of NPR extract on AD. The expressions of AD-related inflammatory cytokines, skin-related genes, and antioxidant enzymes were analyzed by ELISA, immunoblotting, and immunofluorescence, and skin hydration was measured using Aquaflux AF103 and SKIN-O-MAT instruments. The chemical composition of NPR extract was analyzed using an HPLC-PDA system. In this study, NPR extracts were shown to most efficiently inhibit IL-4 in PI-induced RBL-2H3 cells and AD-like skin symptoms in oxazolone-BALB/c mice compared to its whole and aerial extracts. NPR extract markedly reduced DNCB-induced increases in mast cells, epidermal thickness, IL-4 and IgE expressions, and atopic-like symptoms in SKH-1 hairless mice. In addition, NPR extract suppressed DNCB-induced changes in the expressions of skin-related genes and skin hydration and activated the Nrf2/HO-1 pathway. Three phenolic acids (chlorogenic acid, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid) were identified by HPLC-PDA in NPR extract. The study shows that NPR extract exhibits anti-atopic activities by inhibiting inflammatory and oxidative stress and improving skin barrier functions, and indicates that NPR extract has potential therapeutic use for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyun Jegal
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
46
|
Abstract
Significance: Healthy skin provides a barrier to contaminants. Breaches in skin integrity are often encountered in the patient health care journey, owing to intrinsic health issues or to various procedures and medical devices used. The time has come to move clinical practice beyond mere awareness of medical adhesive-related skin injury and toward improved care and outcomes. Recent Advances: Methods developed in research settings allow quantitative assessments of skin damage based on the measurement of baseline skin properties. These properties become altered by stress and over time. Assessment methods typically used by the cosmetic industry to compare product performance could offer new possibilities to improve clinical practice by providing better information on the status of patient skin. This review summarizes available skin assessment methods as well as specific patient risks for skin damage. Critical Issues: Patients in health care settings may be at risk for skin damage owing to predisposing medical conditions, health status, medications taken, and procedures or devices used in their treatment. Skin injuries come as an additional burden to these medical circumstances and could be prevented. Technology should be leveraged to improve care, help maintain patient skin health, and better characterize functional wound closure. Future Directions: Skin testing methods developed to evaluate cosmetic products or assess damage caused by occupational exposure can provide detailed, quantitative information on the integrity of skin. Such methods have the potential to guide prevention and treatment efforts to improve the care of patients suffering from skin integrity issues while in the health care system.
Collapse
Affiliation(s)
- Stéphanie F. Bernatchez
- 3M Health Care, St. Paul, Minnesota, USA.,Correspondence: 3M Health Care, St. Paul, MN 55144-1000, USA
| | | |
Collapse
|
47
|
Shutova MS, Borowczyk J, Russo B, Sellami S, Drukala J, Wolnicki M, Brembilla NC, Kaya G, Ivanov AI, Boehncke WH. Inflammation modulates intercellular adhesion and mechanotransduction in human epidermis via ROCK2. iScience 2023; 26:106195. [PMID: 36890793 PMCID: PMC9986521 DOI: 10.1016/j.isci.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aberrant mechanotransduction and compromised epithelial barrier function are associated with numerous human pathologies including inflammatory skin disorders. However, the cytoskeletal mechanisms regulating inflammatory responses in the epidermis are not well understood. Here we addressed this question by inducing a psoriatic phenotype in human keratinocytes and reconstructed human epidermis using a cytokine stimulation model. We show that the inflammation upregulates the Rho-myosin II pathway and destabilizes adherens junctions (AJs) promoting YAP nuclear entry. The integrity of cell-cell adhesion but not the myosin II contractility per se is the determinative factor for the YAP regulation in epidermal keratinocytes. The inflammation-induced disruption of AJs, increased paracellular permeability, and YAP nuclear translocation are regulated by ROCK2, independently from myosin II activation. Using a specific inhibitor KD025, we show that ROCK2 executes its effects via cytoskeletal and transcription-dependent mechanisms to shape the inflammatory response in the epidermis.
Collapse
Affiliation(s)
- Maria S. Shutova
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julia Borowczyk
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Barbara Russo
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sihem Sellami
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Justyna Drukala
- Jagiellonian University, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Nicolo C. Brembilla
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gurkan Kaya
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wolf-Henning Boehncke
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
He S, Xie F, Su W, Luo H, Chen D, Cai J, Hong X. Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis. J Funct Biomater 2023; 14:jfb14030150. [PMID: 36976074 PMCID: PMC10058600 DOI: 10.3390/jfb14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000–1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal.
Collapse
Affiliation(s)
- Shengnan He
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Fang Xie
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wuyue Su
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (J.C.); (X.H.)
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: (J.C.); (X.H.)
| |
Collapse
|
49
|
Sundareswaran L, Nagendran P, Subramanian SK, Dharmalingam A, Mohuiddin SG. Assessment of Cutaneous Parameters and Sympathetic Skin Response as a Non-Invasive Complementary Diagnostic Tool in Psoriasis: An Exploratory Study. Indian J Dermatol 2023; 68:195-199. [PMID: 37275810 PMCID: PMC10238974 DOI: 10.4103/ijd.ijd_940_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Background Various diagnostic tools are used to assess cutaneous psoriasis, but most of it were subjective. Sympathetic skin response (SSR), skin PH and temperature objectively measure the skin barrier functions that could aid clinicians to evaluate accurately and predict skin disease incidence even before the onset of clinical symptoms. Aim and Objectives The study's objective was to assess the utility of cutaneous parameters (skin temperature and pH) and SSRs influencing psoriatic patients' diagnosis management and treatment compared to controls. Materials and Methods A total of 40 healthy participants and 40 psoriasis patients aged 18 to 65 years were recruited for this study. SSR, skin temperature and pH were assessed. The psoriasis disability index (PDI) was recorded from all the patients. Data analysis was carried out using SPSS version 20.0. Results The results shows significantly increased skin temperature, prolonged SSR latency (bilaterally) and decreased SSR amplitude (bilaterally) among patients affected with psoriasis compared to control subjects. There is a positive correlation between SSR latency with PDI and a negative correlation between SSR amplitude and PDI in psoriasis patients. Conclusion SSR reveals sympathetic sudomotor dysfunction and increased skin temperature in psoriasis. Furthermore, there is a link between increased SSR latency and PDI, which shows that local nervous system impairment significantly contributes to the inflammatory process in psoriasis. Thus, SSR can be used as a complementary tool for the early identification and assessment of epidermal barrier integrity in psoriasis patients, along with the clinician's standard protocols.
Collapse
Affiliation(s)
- L. Sundareswaran
- From the Department of Physiology, AIIMS, Guwahati, Assam, India
| | | | | | | | | |
Collapse
|
50
|
Shi J, Zeng Q, Wang P, Chang Q, Huang J, Wu M, Wang X, Wang H. A novel chlorin e6 derivative-mediated photodynamic therapy STBF-PDT reverses photoaging via the TGF-β pathway. Photodiagnosis Photodyn Ther 2023; 41:103321. [PMID: 36738905 DOI: 10.1016/j.pdpdt.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Photoaging is characterized by wrinkles in the skin and the deterioration of the skin barrier function, mainly caused by long-term exposure to ultraviolet (UV) radiation. Photodynamic therapy (PDT) has been shown to treat photoaging. The novel photosensitizer ShengTaiBuFen(STBF) is a derived substance of Chlorin e6(Ce6) that can exert photodynamic effects directly. In this study, we investigated the availability and the mechanism of STBF-PDT in the treatment of photoaging. METHODS Fluorophotometer was used to determine therapeutic parameters for in vivo experiments. Camera photographs, dermoscopy, HE and Masson staining, skin pH, trans epidermal water loss (TEWL), epidermal water content, and sebum testing were used together to evaluate the results of the treatment. Dark toxicity and therapeutic parameters for in vitro experiments were determined by CCK8 analysis. Scratch assay was used to identify the cell migration of STBF-PDT on HaCaT cells. qPCR and Western blot were used to evaluate the TGF-β/Smad signaling pathway in human dermal fibroblast (HDF) cells. RESULTS We investigated the optimal STBF concentration and time of incubation in vivo and in vitro experiments. STBF-PDT improved the skin phenotype of photoaged mice. The skin of photoaged mice treated with 80 J/cm2 STBF-PDT became smooth, while skin flakes were reduced. The epidermis of STBF-PDT-treated mice was thinner, and the cells were neatly arranged, with increased dermal collagen. In vitro, STBF-PDT promoted the migration of HaCaT cells below a light dose of 0.1 J/cm2. HDF cells co-cultured with HaCaT cells treated with low-dose STBF-PDT showed activation of the TGF-β pathway. CONCLUSION As a novel photosensitizer, STBF-mediated low-dose PDT could reverse photoaging via the TGF-β pathway.
Collapse
Affiliation(s)
- Jingjuan Shi
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|