1
|
Zhang F, Qi F, Han Y, Yang H, Wang Y, Wang G, Dong Y, Li H, Gao Y, Zhang H, Zhang T, Li L. Clinical and imaging features of co-existent pulmonary tuberculosis and lung cancer: a population-based matching study in China. BMC Cancer 2025; 25:89. [PMID: 39815214 PMCID: PMC11734471 DOI: 10.1186/s12885-024-13350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Co-existent pulmonary tuberculosis and lung cancer (PTB-LC) represent a unique disease entity often characterized by missed or delayed diagnosis. This study aimed to investigate the clinical and radiological features of patients diagnosed with PTB-LC. METHODS Patients diagnosed with active PTB-LC (APTB-LC), inactive PTB-LC (IAPTB), and LC alone without PTB between 2010 and 2022 at our institute were retrospectively collected and 1:1:1 matched based on gender, age, and time of admission. Symptoms and clinicopathological features were compared among the three groups of patients. Logistic regression was employed for risk factor analysis. RESULTS Compared to LC or IAPTB-LC, patients with APTB-LC exhibited higher proportions of weight loss (p < 0.001) and fever (p < 0.001) at the time of diagnosis. Additionally, radiological features such as nodules (p = 0.007), tree-in-bud (p < 0.001), cavitation (p < 0.001), and calcification (p < 0.001) were significantly more prevalent in APTB-LC patients compared to the other groups. Patients with APTB-LC were more susceptible to lymph node involvement (p < 0.001) and distant metastasis (p = 0.006) compared to those with IAPTB-LC or LC alone. Additionally, in comparison to LC alone, patients with IAPTB-LC exhibited more complex symptoms, imaging features, and lymph node metastases. Logistic regression results indicated that factors such as BMI, fever, patchy shadow, cavitation, neck or supraclavicular lymph node metastasis, and liver injury favor the diagnosis of APTB-LC over LC alone. The pre-diagnostic model exhibited robust performance, achieving area under the curve (AUC) values of 0.864 in the training set and 0.830 in the test set. CONCLUSION Our results indicate that PTB-LC is a distinct disease characterized by complex clinicopathological features and a more aggressive nature. Based on our findings, we recommend conducting TB-related tests for LC patients who exhibit relevant risk factors or are identified as high-risk cases according to the pre-diagnostic model.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P.R. China
| | - Fei Qi
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
| | - Yi Han
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
- Shaanxi University of Chinese Medicine, Xianyang, 712000, P.R. China
| | - Hongjie Yang
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
- Beijing Chaoyang Huanxing Cancer Hospital, Beijing, 101149, P.R. China
| | - Yishuo Wang
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yujie Dong
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis Thoracic Tumor Research Institute, Beijing, China
| | - Hongxia Li
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
| | - Yuan Gao
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
| | - Hongmei Zhang
- General Department, Capital Medical University, Beijing, 101149, P.R. China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China
| | - Tongmei Zhang
- General Department, Capital Medical University, Beijing, 101149, P.R. China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, P.R. China.
| | - Liang Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P.R. China.
| |
Collapse
|
2
|
Diefenbach-Elstob T, Tabrizi S, Rivest P, Benedetti A, Azoulay L, Schwartzman K, Greenaway C. Risk of TB disease in individuals with cancer. IJTLD OPEN 2025; 2:45-52. [PMID: 39802228 PMCID: PMC11724530 DOI: 10.5588/ijtldopen.24.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Cancer increases the risk of developing TB disease; however, there are limited data on the magnitude of risk by cancer type and timing after diagnosis of cancer in low TB incidence settings. METHODS We conducted a nested case-control study of persons in Quebec between 1993 and 2017, including people with TB disease and matched controls. Conditional logistic regression was used to estimate adjusted odds ratios (aORs) of developing TB among people with cancer overall, by sub-type, and by time from cancer to TB diagnosis. RESULTS There were 4,283 people with TB disease and 268,420 matched controls. The median age for people with TB disease and controls was respectively 46 years (IQR 30-67) and 36 years (24-47). Prior exposure to cancer was associated with TB disease (aOR 6.3, 95% CI 5.3-7.6). The risk of TB diagnosis was highest within 3 months of cancer diagnosis (aOR 26.6, 95% CI 19.6-36.2), with 60% of diagnoses of TB disease occurring within 6 months of cancer diagnosis. CONCLUSION Risk of TB varies over time and by cancer type. Screening and treatment should be considered for potentially preventable TB (diagnosed more than 6 months post-cancer), particularly in those with respiratory, haematologic, and head and neck cancers.
Collapse
Affiliation(s)
- T Diefenbach-Elstob
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - S Tabrizi
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - P Rivest
- Département de médicine sociale et préventive, École de santé publique de l'Université de Montréal, Montréal, QC, Canada
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | - A Benedetti
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - L Azoulay
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - K Schwartzman
- Respiratory Division, Department of Medicine, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- Montreal Chest Institute, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - C Greenaway
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- Division of Infectious Diseases, SMBD-Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
3
|
Datta M, Via LE, Dartois V, Xu L, Barry CE, Jain RK. Leveraging insights from cancer to improve tuberculosis therapy. Trends Mol Med 2025; 31:11-20. [PMID: 39142973 PMCID: PMC11717643 DOI: 10.1016/j.molmed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Bertolaccini L, Casiraghi M, Uslenghi C, Maiorca S, Spaggiari L. Recent advances in lung cancer research: unravelling the future of treatment. Updates Surg 2024; 76:2129-2140. [PMID: 38581618 DOI: 10.1007/s13304-024-01841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Lung cancer, a multifaceted disease, demands tailored therapeutic approaches due to its diverse subtypes and stages. This comprehensive review explores the intricate landscape of lung cancer research, delving into recent breakthroughs and their implications for diagnosis, therapy, and prevention. Genomic profiling and biomarker identification have ushered in the era of personalised medicine, enabling targeted therapies that minimise harm to healthy tissues while effectively combating cancer cells. The relationship between pulmonary tuberculosis and lung cancer is examined, shedding light on potential mechanisms linking these two conditions. Early detection methods, notably low-dose computed tomography scans, have significantly improved patient outcomes, emphasising the importance of timely interventions. There has been a growing interest in segmentectomy as a surgical intervention for early-stage lung cancer in recent years. Immunotherapy has emerged as a transformative approach, harnessing the body's immune system to recognise and eliminate cancer cells. Combining immunotherapy with traditional treatments, such as chemotherapy and targeted therapies, has shown enhanced efficacy, addressing the disease's heterogeneity and overcoming drug resistance. Precision medicine, guided by genomic profiling, has enabled the development of targeted therapies like tyrosine kinase inhibitors, offering personalised treatments tailored to individual patients. Challenges such as drug resistance and limited accessibility to advanced therapies persist, emphasising the need for collaborative efforts and innovative technologies like artificial intelligence. Despite challenges, ongoing interdisciplinary collaborations and technological advancements offer hope for a future where lung cancer is treatable and preventable, reducing the burden on patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Luca Bertolaccini
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
| | - Monica Casiraghi
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Clarissa Uslenghi
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Sebastiano Maiorca
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Pires DC, Arueira Chaves L, Dantas Cardoso CH, Faria LV, Rodrigues Campos S, Sobreira da Silva MJ, Sequeira Valerio T, Rodrigues Campos M, Emmerick ICM. Effects of low dose computed tomography (LDCT) on lung cancer screening on incidence and mortality in regions with high tuberculosis prevalence: A systematic review. PLoS One 2024; 19:e0308106. [PMID: 39259749 PMCID: PMC11389911 DOI: 10.1371/journal.pone.0308106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/16/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Lung cancer screening (LCS) using low-dose computed tomography (LDCT) is a strategy for early-stage diagnosis. The implementation of LDCT screening in countries with a high prevalence/incidence of tuberculosis (TB) is controversial. This systematic review and meta-analysis aim to identify whether LCS using LDCT increases early-stage diagnosis and decreases mortality, as well as the false-positive rate, in regions with a high prevalence of TB. METHODS/DESIGN Studies were identified by searching BVS, PUBMED, EMBASE, and SCOPUS. RCT and cohort studies (CS) that show the effects of LDCT in LC screening on mortality and secondary outcomes were eligible. Two independent reviewers evaluated eligibility and a third judged disagreements. We used the Systematic Review Data Repository (SRDR+) to extract the metadata and record decisions. The analyses were stratified by study design and incidence of TB. We used the Cochrane "Risk of bias" assessment tool. RESULTS The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were used. Thirty-seven papers were included, referring to 22 studies (10 RCTs and 12 cohorts). Few studies were from regions with a high incidence of TB (One RCT and four cohorts). Nonetheless, the evidence is compatible with European and USA studies. RCTs and CS also had consistent results. There is an increase in early-stage (I-II) diagnoses and reduced LC mortality in the LCDT arm compared to the control. Although false-positive rates varied, they stayed within the 20 to 30% range. DISCUSSION This is the first meta-analysis of LDCT for LCS focused on its benefits in regions with an increased incidence/prevalence of TB. Although the specificity of Lung-RADS was higher in participants without TB sequelae than in those with TB sequelae, our findings point out that the difference does not invalidate implementing LDCT LCS in these regions. TRIAL REGISTRATION Systematic review registration Systematic review registration PROSPERO CRD42022309581.
Collapse
Affiliation(s)
- Debora Castanheira Pires
- Laboratório de Pesquisa Clínica em DST e AIDS do Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luisa Arueira Chaves
- Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Carlos Henrique Dantas Cardoso
- Departamento de Administração e Planejamento em Saúde–Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Vinhal Faria
- Departamento de Administração e Planejamento em Saúde–Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio Rodrigues Campos
- Departamento de Administração e Planejamento em Saúde–Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Mônica Rodrigues Campos
- Departamento de Ciências Sociais–Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel Cristina Martins Emmerick
- Division of Thoracic Surgery, Department of Surgery, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Bartolomeu-Gonçalves G, Souza JMD, Fernandes BT, Spoladori LFA, Correia GF, Castro IMD, Borges PHG, Silva-Rodrigues G, Tavares ER, Yamauchi LM, Pelisson M, Perugini MRE, Yamada-Ogatta SF. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024; 12:202. [PMID: 39329871 PMCID: PMC11430992 DOI: 10.3390/diseases12090202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains an impactful infectious disease, leading to millions of deaths every year. Mycobacterium tuberculosis causes the formation of granulomas, which will determine, through the host-pathogen relationship, if the infection will remain latent or evolve into active disease. Early TB diagnosis is life-saving, especially among immunocompromised individuals, and leads to proper treatment, preventing transmission. This review addresses different approaches to diagnosing TB, from traditional methods such as sputum smear microscopy to more advanced molecular techniques. Integrating these techniques, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), has significantly improved the sensitivity and specificity of M. tuberculosis identification. Additionally, exploring novel biomarkers and applying artificial intelligence in radiological imaging contribute to more accurate and rapid diagnosis. Furthermore, we discuss the challenges of existing diagnostic methods, including limitations in resource-limited settings and the emergence of drug-resistant strains. While the primary focus of this review is on TB diagnosis, we also briefly explore the challenges and strategies for diagnosing non-tuberculous mycobacteria (NTM). In conclusion, this review provides an overview of the current landscape of TB diagnostics, emphasizing the need for ongoing research and innovation. As the field evolves, it is crucial to ensure that these advancements are accessible and applicable in diverse healthcare settings to effectively combat tuberculosis worldwide.
Collapse
Affiliation(s)
- Guilherme Bartolomeu-Gonçalves
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Joyce Marinho de Souza
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Faculdade de Ciências da Saúde, Biomedicina, Universidade do Oeste Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil
| | - Bruna Terci Fernandes
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Curso de Farmácia, Faculdade Dom Bosco, Cornélio Procópio CEP 86300-000, Paraná, Brazil
| | | | - Guilherme Ferreira Correia
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Isabela Madeira de Castro
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | | | - Gislaine Silva-Rodrigues
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Campus Londrina CEP 86067-000, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Marsileni Pelisson
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Marcia Regina Eches Perugini
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| |
Collapse
|
7
|
Leong TL, Steinfort DP. Contemporary Concise Review 2023: Advances in lung cancer and interventional pulmonology. Respirology 2024; 29:665-673. [PMID: 38960450 DOI: 10.1111/resp.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Eligibility criteria for lung cancer screening increasingly need to consider family history of lung cancer, as well as age and smoking status. Lung cancer screening will reveal a multitude of incidental findings, of variable clinical significance, and with a need for clear pathways of management. Pulmonary nodule sampling is enhanced by intra-procedural imaging and cutting-edge robotic technology. Systematic thoracic lymph node sampling has implications for treatment efficacy. Bronchoscopic ablative techniques are feasible for peripheral lung cancers. Bronchoscopic sampling continues to have a high yield for lung cancer molecular characterization. Immunotherapy indications have expanded to include early stage and resectable lung cancer.
Collapse
Affiliation(s)
- Tracy L Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel P Steinfort
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Behera AK, Ganga R, Kumar V, Sahu D, Kiran SS, Gupta RK, Rath AK, Goyal N. Prospective Evaluation of Safety and Diagnostic Efficacy of Medical Thoracoscopy in Undiagnosed Exudative Pleural Effusion: Experience From a Tuberculosis High-Burden Country. Cureus 2024; 16:e63517. [PMID: 39081440 PMCID: PMC11288337 DOI: 10.7759/cureus.63517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Pleural effusion is due to the pathological accumulation of pleural fluid in the pleural space, 25%-30% of which may remain undiagnosed despite the combination of biochemical, microbiological, and pathological tests and closed pleural biopsy. Medical thoracoscopy may help physicians diagnose such cases. We aimed to study the diagnostic yield of medical thoracoscopy in patients with undiagnosed exudative pleural effusion and assess the safety profile of the medical thoracoscopy. METHODOLOGY A cross-sectional descriptive study was conducted on 105 patients with undiagnosed pleural effusion. Medical thoracoscopy was performed using an Olympus semi-rigid thoracoscope (LTF 160 Evis Pleurovideoscope, Japan) as per standard protocol. Multiple pleural biopsies were taken and sent for histopathology examination, NAAT (nucleic acid amplification test), and MGIT (mycobacteria growth indicator tube). Post-procedure, the patients were evaluated for any complications. RESULTS A total of 105 patients were enrolled in the study. The mean ± SD age was 55.1 ± 13.6 years. Sixty-three (60%) patients were males. The diagnostic utility of medical thoracoscopy was found in 94 (89.5%) patients. The diagnosis of tuberculosis (TB) was made in 34 (32.3%) patients, and 48 (45.7%) patients were diagnosed with malignant pleural effusion. Adenocarcinoma of the lung was the most common malignancy diagnosed (32 patients, 66.6%). Five (5.31%) patients had dual etiology of pleural effusion: tubercular and malignancy. The most common complication was chest pain following the procedure (99.4%). One patient developed pneumomediastinum and was managed conservatively. There were no major adverse events after the procedure. CONCLUSIONS Medical thoracoscopy has a high diagnostic yield and favorable safety profile with minimal complications. Excessive reliance on the level of ADA (adenosine deaminase) may further delay the diagnosis. Dual etiologies like TB coexisting with malignancy should be considered in TB high-burden countries.
Collapse
Affiliation(s)
- Ajoy K Behera
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Ranganath Ganga
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Vikas Kumar
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Dibakar Sahu
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Soma S Kiran
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rakesh K Gupta
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Amit K Rath
- Pulmonary Medicine, SCB (Srirama Chandra Bhanja) Medical College and Hospital, Cuttack, IND
| | - Nitesh Goyal
- Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
9
|
Abudereheman M, Lian Z, Ainitu B. Weighted gene co-expression network analysis and whole genome sequencing identify potential lung cancer biomarkers. Front Oncol 2024; 14:1355527. [PMID: 38854719 PMCID: PMC11157001 DOI: 10.3389/fonc.2024.1355527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Tuberculosis (TB) leads to an increased risk of lung cancer (LC). However, the carcinogenetic mechanism of TB remains unclear. We constructed gene co-expression networks and carried out whole-exome sequencing (WES) to identify key modules, hub genes, and the most recurrently mutated genes involved in the pathogenesis of TB-associated LC. Methods The data used in this study were obtained from the Gene Expression Omnibus (GEO) and WES. First, we screened LC-related genes in GSE43458 and TB-related genes in GSE83456 by weighted gene co-expression network analysis (WGCNA). Subsequently, we screened differentially expressed genes related to LC and TB in GSE42834. We also performed WES of 15 patients (TB, n = 5; LC, n = 5; TB+LC, n = 5), constructed mutational profiles, and identified differences in the profiles of the three groups for further investigation. Results We identified 278 hub genes associated with tumorigenesis of pulmonary TB. Moreover, WES identified 112 somatic mutations in 25 genes in the 15 patients. Finally, four common genes (EGFR, HSPA2, CECR2, and LAMA3) were confirmed in a Venn diagram of the 278 hub genes and the mutated genes from WES. KEGG analysis revealed various pathway changes. The PI3K-AKT signaling pathway was the most enriched pathway, and all four genes are included in this pathway. Thus, these four genes and the PI3K-AKT signaling pathway may play important roles in LC. Conclusion Several potential genes and pathways related to TB-associated LC were identified, including EGFR and three target genes not found in previous studies. These genes are related to cell proliferation, colony formation, migration, and invasion, and provide a direction for future research into the mechanisms of LC co-occurring with TB. The PI3K-AKT signaling pathway was also identified as a potential key pathway involved in LC development.
Collapse
Affiliation(s)
| | | | - Baidurula Ainitu
- Oncology Department, The Eighth Affiliated Hospital of XinJiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Woo SJ, Kim Y, Kang HJ, Jung H, Youn DH, Hong Y, Lee JJ, Hong JY. Tuberculous pleural effusion-induced Arg-1 + macrophage polarization contributes to lung cancer progression via autophagy signaling. Respir Res 2024; 25:198. [PMID: 38720340 PMCID: PMC11077851 DOI: 10.1186/s12931-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.
Collapse
Affiliation(s)
- Seong Ji Woo
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyun-Jung Kang
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea.
- Department of Internal Medicine, Hallym University Chuncheon Hospital, Chuncheon, South Korea.
| |
Collapse
|
11
|
Xu Y, Zhang Q, Chen Z, Yang S, Chen H, Xiao X, Jiang H. Impact of immune checkpoint inhibitors (ICIs) therapy on interferon-γ release assay (IGRA) and diagnostic value in non-small cell lung cancer (NSCLC) patients. BMC Pulm Med 2024; 24:174. [PMID: 38609918 PMCID: PMC11010406 DOI: 10.1186/s12890-024-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), a highly contagious respiratory disease, presents a significant global health threat, with a notable increase in incidence reported by the WHO in 2022. Particularly, the interplay between TB and non-small cell lung cancer (NSCLC) gains attention, especially considering the rising use of immune checkpoint inhibitors (ICIs) in cancer treatment. This interplay may influence TB diagnostics and reactivation, warranting a closer examination. METHODS A retrospective analysis was conducted on clinical data of NSCLC patients with positive T-SPOT results before undergoing anti-tumor treatment at Zhongshan Hospital (Xiamen), Fudan University, from January 1, 2021 to December 31, 2022. We assessed the incidence of tuberculosis reactivation and treatment outcomes among these patients. Moreover, we compared the differences in tuberculosis activity between the ICIs and non-ICIs treatment groups. Additionally, we observed the changes in T-SPOT spot count before and after immunotherapy, analyzing their association with tuberculosis activity and prognosis. RESULTS A total of 40 NSCLC patients with positive T-SPOT results before treatment were included in the study, with 26 patients in the ICIs treatment group and 14 patients in the non-ICIs treatment group. The study found no significant differences between the two groups in terms of gender, age, stage, histological type, performance status, driver gene expression, and distant metastasis. With a median follow-up time of 10.0 (6.0-14.5) months, three cases (11.5%) in the ICIs treatment group developed tuberculosis activity, diagnosed at 2, 3, and 12 months after ICIs treatment initiation. Conversely, no tuberculosis activity was observed in the non-ICIs treatment group, and the difference between the two groups was not significant (P = 0.186). Among the 32 patients who received ICIs treatment, spot count dynamics were diverse: four cases (12.5%) showed an increase, 12 cases (37.5%) had no change, and 16 cases (50.0%) had a decrease. During the follow-up, the progression rate (PD) was 50.0%, 75.0%, and 62.5% in the three groups, respectively (P = 0.527). Similarly, the mortality rate was 0%, 25.0%, and 25.0%, respectively (P = 0.106). Interestingly, among the patients with decreased spot counts, three cases (18.75%) were diagnosed with active pulmonary tuberculosis. CONCLUSIONS For NSCLC patients with a positive T-SPOT response undergoing ICIs treatment, our study observed indications of active tuberculosis. The varied T-SPOT spot count changes post-ICIs treatment suggest a complex interaction, potentially linking T-SPOT spot count reduction to tuberculosis reactivation risk. These preliminary findings underscore the importance of further research to more accurately assess T-SPOT's diagnostic utility in this context.
Collapse
Affiliation(s)
- Yijiao Xu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Qingwei Zhang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Zhisheng Chen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Shuwen Yang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Haiyan Chen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Xiong Xiao
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| | - Hongni Jiang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
- Zhongshan Hospital, Fudan University, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, China.
| |
Collapse
|
12
|
Wang C, Zou RQ, He GZ. Progress in mechanism-based diagnosis and treatment of tuberculosis comorbid with tumor. Front Immunol 2024; 15:1344821. [PMID: 38298194 PMCID: PMC10827852 DOI: 10.3389/fimmu.2024.1344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberculosis (TB) and tumor, with similarities in immune response and pathogenesis, are diseases that are prone to produce autoimmune stress response to the host immune system. With a symbiotic relationship between the two, TB can facilitate the occurrence and development of tumors, while tumor causes TB reactivation. In this review, we systematically sorted out the incidence trends and influencing factors of TB and tumor, focusing on the potential pathogenesis of TB and tumor, to provide a pathway for the co-pathogenesis of TB comorbid with tumor (TCWT). Based on this, we summarized the latest progress in the diagnosis and treatment of TCWT, and provided ideas for further exploration of clinical trials and new drug development of TCWT.
Collapse
Affiliation(s)
- Chuan Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Rong-Qi Zou
- Vice Director of Center of Sports Injury Prevention, Treatment and Rehabilitation China National Institute of Sports Medicine A2 Pangmen, Beijing, China
| | - Guo-Zhong He
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Moon SM, Choi H, Kim SH, Kang HK, Park DW, Jung JH, Han K, Shin DW, Lee H. Increased Lung Cancer Risk and Associated Risk Factors in Tuberculosis Survivors: A Korean Population-Based Study. Clin Infect Dis 2023; 77:1329-1339. [PMID: 37345907 PMCID: PMC10640693 DOI: 10.1093/cid/ciad373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Few studies have comprehensively evaluated the risk of lung cancer in tuberculosis survivors with consideration of smoking status and chronic obstructive pulmonary disease (COPD). Furthermore, little is known about lung cancer risk factors in tuberculosis survivors. METHODS This population-based cohort study enrolled tuberculosis survivors (n = 75 467) between 2010 and 2017 and 1:1 age- and sex-matched controls. Subjects were followed up for 1 year from the date of tuberculosis diagnosis to the date of the incident lung cancer, death, or December 2018, whichever came first. The risk of lung cancer was evaluated according to smoking and COPD status. We also evaluated the risk factors for lung cancer and developed an individualized lung cancer prediction model for tuberculosis survivors. RESULTS During a median follow-up duration of 4.8 years, the incident lung cancer risk was 1.72-fold higher in tuberculosis survivors than in the controls. Among tuberculosis survivors, those who were current smokers with ≥20 pack-years showed the highest risk of lung cancer (adjusted hazard ratio, 6.78) compared with never-smoker, non-tuberculosis-infected controls. tuberculosis survivors with COPD had a higher risk (2.43) than non-COPD, non-tuberculosis-infected controls. Risk factors for lung cancer in tuberculosis survivors were pulmonary tuberculosis, age >60 years, smoking, and the presence of COPD or asthma. The individualized lung cancer risk model showed good discrimination (concordance statistic = 0.827). CONCLUSIONS Previous tuberculosis infection is an independent risk factor regardless of smoking status or amount and COPD. Closer monitoring of tuberculosis survivors, especially heavy smokers or those with COPD, is needed for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Seong Mi Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sang Hyuk Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyung Koo Kang
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyung Jung
- Department of Biostatistics, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
15
|
Xiong M, Xie S, Wang Y, Cai C, Sha W, Cui H, Ni J. The diagnosis interval influences risk factors of mortality in patients with co-existent active tuberculosis and lung cancer: a retrospective study. BMC Pulm Med 2023; 23:382. [PMID: 37817103 PMCID: PMC10563245 DOI: 10.1186/s12890-023-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Previous studies reported that tuberculosis (TB) is associated with an increased risk of lung cancer or the survival and mortality of lung cancer. However, the impact of coexisting TB on the survival of lung cancer patients was controversial. We aimed to identify risk factors on the survival rate of patients with co-existent active TB and lung cancer. METHODS One hundred seventy-three patients diagnosed with active TB and lung cancer from January 2016 to August 2021 in Shanghai pulmonary hospital were selected and divided into two groups (≤ 6 months, > 6 months) according to the diagnosis interval between active TB and lung cancer (the order of diagnosis is not considered). The clinical characteristics and survival were analyzed. Univariate and multivariate logistic regression analyses were used to identify the risk factors for overall survival (OS). RESULTS One hundred seventy-three patients were diagnosed with lung cancer and active TB. The study population exhibited a median age of 64 years, with a majority of 81.5% being male, 58.0% of patients had a history of smoking. Among those involved, 93.6% had pulmonary TB, 91.9% were diagnosed with non-small cell lung cancer (NSCLC), 76.9% were Eastern Cooperative Oncology Group (ECOG) 0-2 and 12.7% were ECOG 3-4. We observed better survival in the > 6 months group compared with the ≤ 6 months group (hazard ratio [HR] 0.456, 95% confidence interval [CI]:0.234-0.889, P = 0.017). The 1-, 3-, and 5- year OS rates were 94.2%, 80.3%, and 77.6%, respectively, in the > 6 months group and 88.3%, 63.8%, and 58.5%, respectively, in the ≤ 6 months group. Surgery (HR 0.193, [95% CI, 0.038-0.097]; P = 0.046) and ECOG Performance Status (HR 12.866, [95% CI, 2.730-60.638]; P = 0.001) were independent prognostic factors in the > 6 months group. CONCLUSIONS Patients diagnosed with lung cancer and active TB for more than half a year have a significantly better prognosis than those diagnosed within half a year. ECOG Performance Status and surgery might possibly affect the outcomes of patients with co-existent active TB and lung cancer.
Collapse
Affiliation(s)
- Mengting Xiong
- Clinic and Research Center of Tuberculosis, Department of oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zheng Min Road, Shanghai, 200433, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yukun Wang
- Clinic and Research Center of Tuberculosis, Department of oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zheng Min Road, Shanghai, 200433, China
| | - Chenlei Cai
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Department of oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zheng Min Road, Shanghai, 200433, China.
| | - Haiyan Cui
- Clinic and Research Center of Tuberculosis, Department of oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zheng Min Road, Shanghai, 200433, China.
| | - Jian Ni
- Clinic and Research Center of Tuberculosis, Department of oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zheng Min Road, Shanghai, 200433, China.
| |
Collapse
|
16
|
Taylor J, Bastos ML, Lachapelle-Chisholm S, Mayo NE, Johnston J, Menzies D. Residual respiratory disability after successful treatment of pulmonary tuberculosis: a systematic review and meta-analysis. EClinicalMedicine 2023; 59:101979. [PMID: 37205923 PMCID: PMC10189364 DOI: 10.1016/j.eclinm.2023.101979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Pulmonary tuberculosis (PTB) can result in long-term health consequences, even after successful treatment. We conducted a systematic review and meta-analysis to estimate the occurrence of respiratory impairment, other disability states, and respiratory complications following successful PTB treatment. Methods We identified studies from January 1, 1960, to December 6, 2022, describing populations of all ages that successfully completed treatment for active PTB and had been assessed for at least one of the following outcomes: occurrence of respiratory impairment, other disability states, or respiratory complications following PTB treatment. Studies were excluded if they reported on participants with self-reported TB, extra-pulmonary TB, inactive TB, latent TB, or if participants had been selected on the basis of having more advanced disease. Study characteristics and outcome-related data were abstracted. Meta-analysis was performed using a random effects model. We adapted the Newcastle Ottawa Scale to evaluate the methodological quality of the included studies. Heterogeneity was assessed using the I2 statistic and prediction intervals. Publication bias was assessed using Doi plots and LFK indices. This study is registered with PROSPERO (CRD42021276327). Findings 61 studies with 41,014 participants with PTB were included. In 42 studies reporting post-treatment lung function measurements, 59.1% (I2 = 98.3%) of participants with PTB had abnormal spirometry compared to 5.4% (I2 = 97.4%) of controls. Specifically, 17.8% (I2 = 96.6%) had obstruction, 21.3% (I2 = 95.4%) restriction, and 12.7% (I2 = 93.2%) a mixed pattern. Among 13 studies with 3179 participants with PTB, 72.6% (I2 = 92.8%) of participants with PTB had a Medical Research Council dyspnoea score of 1-2 and 24.7% (I2 = 92.2%) a score of 3-5. Mean 6-min walk distance in 13 studies was 440.5 m (I2 = 99.0%) in all participants (78.9% predicted, I2 = 98.9%) and 403.0 m (I2 = 95.1%) among MDR-TB participants in 3 studies (70.5% predicted, I2 = 97.6%). Four studies reported data on incidence of lung cancer, with an incidence rate ratio of 4.0 (95% CI 2.1-7.6) and incidence rate difference of 2.7 per 1000 person-years (95% CI 1.2-4.2) when compared to controls. Quality assessment indicated overall low-quality evidence in this field, heterogeneity was high for pooled estimates of nearly all outcomes of interest, and publication bias was considered likely for almost all outcomes. Interpretation The occurrence of post-PTB respiratory impairment, other disability states, and respiratory complications is high, adding to the potential benefits of disease prevention, and highlighting the need for optimised management after successful treatment. Funding Canadian Institutes of Health Research Foundation Grant.
Collapse
Affiliation(s)
- Joshua Taylor
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mayara Lisboa Bastos
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, QC, Canada
| | - Sophie Lachapelle-Chisholm
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nancy E. Mayo
- Centre for Outcomes Research and Evaluation, McGill University, Montreal, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - James Johnston
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Departments of Epidemiology, Biostatistics and Occupational Health, and Medicine, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, McGill University, Montreal, QC, Canada
- Corresponding author. 5252 de Maisonneuve West, Room 3D.58, McGill University, Montreal, QC H4A 3S5, Canada.
| |
Collapse
|
17
|
Basham CA, Karim ME, Johnston JC. Multimorbidity prevalence and chronic disease patterns among tuberculosis survivors in a high-income setting. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2023; 114:264-276. [PMID: 36459364 PMCID: PMC10036698 DOI: 10.17269/s41997-022-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Multimorbidity is the presence of two or more chronic health conditions. Tuberculosis (TB) survivors are known to have higher prevalence of multimorbidity, although prevalence estimates from high-income low-TB incidence jurisdictions are not available and potential differences in the patterns of chronic disease among TB survivors with multimorbidity are poorly understood. In this study, we aimed to (1) compare the prevalence of multimorbidity among TB survivors with matched non-TB controls in a high-income setting; (2) assess the robustness of aim 1 analyses to different modelling strategies, unmeasured confounding, and misclassification bias; and (3) among people with multimorbidity, elucidate chronic disease patterns specific to TB survivors. METHODS A population-based cohort study of people immigrating to British Columbia, Canada, 1985-2015, using health administrative data. Participants were divided into two groups: people diagnosed with TB (TB survivors) and people not diagnosed with TB (non-TB controls) in British Columbia. Coarsened exact matching (CEM) balanced demographic, immigration, and socioeconomic covariates between TB survivors and matched non-TB controls. Our primary outcome was multimorbidity, defined as ≥2 chronic diseases from the Elixhauser comorbidity index. RESULTS In the CEM-matched sample (n=1962 TB survivors; n=1962 non-TB controls), we estimated that 21.2% of TB survivors (n=416), compared with 12% of non-TB controls (n=236), had multimorbidity. In our primary analysis, we found a double-adjusted prevalence ratio of 1.74 (95% CI: 1.49-2.05) between TB survivors and matched non-TB controls for multimorbidity. Among people with multimorbidity, differences were observed in chronic disease frequencies between TB survivors and matched controls. CONCLUSION TB survivors had a 74% higher prevalence of multimorbidity compared with CEM-matched non-TB controls. TB-specific multimorbidity patterns were observed through differences in chronic disease frequencies between the matched samples. These findings suggest a need for TB-specific multimorbidity interventions in high-income settings such as Canada. We suggest TB survivorship as a framework for developing person-centred interventions for multimorbidity among TB survivors.
Collapse
Affiliation(s)
- C Andrew Basham
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mohammad Ehsanul Karim
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Centre for Health Evaluative and Outcome Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James C Johnston
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| |
Collapse
|
18
|
Collatuzzo G, La Vecchia C, Parazzini F, Alicandro G, Turati F, Di Maso M, Malvezzi M, Pelucchi C, Negri E, Boffetta P. Cancers attributable to infectious agents in Italy. Eur J Cancer 2023; 183:69-78. [PMID: 36801622 DOI: 10.1016/j.ejca.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To provide an evidence-based, comprehensive assessment of the current burden of infection-related cancers in Italy. METHODS We calculated the proportion of cancers attributable to infectious agents (Helicobacter pylori [Hp]; hepatitis B virus [HBV] and hepatitis C virus [HCV]; human papillomavirus [HPV]; human herpesvirus-8 [HHV8]; Epstein-Barr virus [EBV]; and human immunodeficiency virus [HIV]) to estimate the burden of infection-related cancer incidence (2020) and mortality (2017). Data on the prevalence of infections were derived from cross-sectional surveys of the Italian population, and relative risks from meta-analyses and large-scale studies. Attributable fractions were calculated based on the counterfactual scenario of a lack of infection. RESULTS We estimated that 7.6% of total cancer deaths in 2017 were attributable to infections, with a higher proportion in men (8.1%) than in women (6.9%). The corresponding figures for incident cases were 6.5%, 6.9% and 6.1%. Hp was the first cause of infection-related cancer deaths (3.3% of the total), followed by HCV (1.8%), HIV (1.1%), HBV (0.9%), HPV, EBV and HHV8 (each ≤0.7%). Regarding incidence, 2.4% of the new cancer cases were due to Hp, 1.3% due to HCV, 1.2% due to HIV, 1.0% due to HPV, 0.6% due to HBV and <0.5% due to EBV and HHV8. CONCLUSIONS Our estimate of 7.6% of cancer deaths and 6.9% of incident cases that were attributable to infections in Italy is higher than those estimated in other developed countries. Hp is the major cause of infection-related cancer in Italy. Prevention, screening and treatment policies are needed to control these cancers, which are largely avoidable.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Fabio Parazzini
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy; Department of Obstetrics, Gynecology, and Neonatology, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 12, 20122 Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Turati
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Matteo Di Maso
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Matteo Malvezzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Liao KM, Lee CS, Wu YC, Shu CC, Ho CH. Prior treated tuberculosis and mortality risk in lung cancer. Front Med (Lausanne) 2023; 10:1121257. [PMID: 37064038 PMCID: PMC10090669 DOI: 10.3389/fmed.2023.1121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundLung cancer is one of the leading causes of cancer death worldwide, and tuberculosis (TB) is a common pre-existing disease. However, there is scarce literature studying the mortality risk in patients with prior TB and subsequent lung cancer.MethodsWe recruited lung cancer patients from the Taiwan Cancer Registry from 2011 to 2015 and classified them into two groups according to presence or absence of prior TB. We then matched them in a ratio of 1:4 using the exact matching approach. The mortality risk within 3 years after diagnosis of lung cancer was analyzed and compared between these two groups.ResultsDuring the study period, 43,472 patients with lung cancer were recruited, and of these, 1,211 (2.79%) patients had prior TB. After matching, this cohort included 5,935 patients with lung cancer in two groups: patients with prior TB before lung cancer (n = 1,187) and those without (n = 4,748). After controlling for demographic factors and comorbidities, the patients with prior TB had increased adjusted hazard ratios of 1.13 (95% CI: 1.04–1.23) and 1.11 (1.02–1.21) for all-cause and cancer-specific 3-year mortality, respectively, compared to the lung cancer patients without prior TB. Duration between TB and lung cancer (<1 year vs. 1–3 years vs. >3 years) had no differences for mortality risk.ConclusionIn the present study, 2.79% patients with lung cancer had prior TB, which was associated with higher 3-year mortality after they developed lung cancer. The mortality risk with prior TB did not decrease even if >3 years passed before diagnosis of lung cancer.
Collapse
Affiliation(s)
- Kuang-Ming Liao
- Department of Internal Medicine, Chi Mei Medical Center, Chiali, Taiwan
| | - Chung-Shu Lee
- Department of Pulmonary and Critical Care Medicine, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Yu-Cih Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Chin-Chung Shu,
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
- Chung-Han Ho,
| |
Collapse
|
20
|
Insights into Personalised Medicine in Bronchiectasis. J Pers Med 2023; 13:jpm13010133. [PMID: 36675794 PMCID: PMC9863431 DOI: 10.3390/jpm13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Bronchiectasis is a heterogenous disease with multiple aetiologies resulting in inflammation and dilatation of the airways with associated mucus production and chronic respiratory infection. The condition is being recognised ever more frequently as the availability of computed tomography increases. It is associated with significant morbidity and healthcare-related costs. With new understanding of the disease process, varying endotypes, identification of underlying causes and treatable traits, the management of bronchiectasis can be increasingly personalised.
Collapse
|
21
|
Osarogiagbon RU, Yang PC, Sequist LV. Expanding the Reach and Grasp of Lung Cancer Screening. Am Soc Clin Oncol Educ Book 2023; 43:e389958. [PMID: 37098234 DOI: 10.1200/edbk_389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Low-dose computer tomographic (LDCT) lung cancer screening reduces lung cancer-specific and all-cause mortality among high-risk individuals, but implementation has been challenging. Despite health insurance coverage for lung cancer screening in the United States since 2015, fewer than 10% of eligible persons have participated; striking geographic, racial, and socioeconomic disparities were already evident, especially in the populations at greatest risk of lung cancer and, therefore, most likely to benefit from screening; and adherence to subsequent testing is significantly lower than that reported in clinical trials, potentially reducing the realized benefit. Lung cancer screening is a covered health care benefit in very few countries. Obtaining the full population-level benefit of lung cancer screening will require improved participation of already eligible persons (the grasp of screening) and improved eligibility criteria that more closely match up with the full spectrum of persons at risk (the reach of screening), irrespective of smoking history. We used the socioecological framework of health care to systematically review implementation barriers to lung cancer screening and discuss multilevel solutions. We also discussed guideline-concordant management of incidentally detected lung nodules as a complementary approach to early lung cancer detection that can extend the reach and strengthen the grasp of screening. Furthermore, we discussed ongoing efforts in Asia to explore the possibility of LDCT screening in populations in whom lung cancer risk is relatively independent of smoking. Finally, we summarized innovative technological solutions, including biomarker selection and artificial intelligence strategies, to improve the safety, effectiveness, and cost-effectiveness of lung cancer screening in diverse populations.
Collapse
Affiliation(s)
- Raymond U Osarogiagbon
- Thoracic Oncology Research Group, Multidisciplinary Thoracic Oncology Program, Baptist Cancer Center, Memphis, TN
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Lecia V Sequist
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Luczynski P, Poulin P, Romanowski K, Johnston JC. Tuberculosis and risk of cancer: A systematic review and meta-analysis. PLoS One 2022; 17:e0278661. [PMID: 36584036 PMCID: PMC9803143 DOI: 10.1371/journal.pone.0278661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Cancer is a major cause of death among people who experience tuberculosis (TB), but little is known about its timing and incidence following TB treatment. Our primary objectives were to estimate the pooled risk of all and site-specific malignancies in people with TB compared to the general population or suitable controls. Our secondary objective was to describe the pooled risk of cancer at different time points following TB diagnosis. METHODS This study was prospectively registered (PROSPERO: CRD42021277819). We systematically searched MEDLINE, Embase, and the Cochrane Database for studies published between 1980 and 2021. We included original observational research articles that estimated cancer risk among people with TB compared to controls. Studies were excluded if they had a study population of fewer than 50 individuals; used cross-sectional, case series, or case report designs; and had a follow-up period of less than 12 months. Random-effects meta-analysis was used to obtain the pooled risk of cancer in the TB population. RESULTS Of the 5,160 unique studies identified, data from 17 studies were included. When compared to controls, the pooled standardized incidence ratios (SIR) of all cancer (SIR 1.62, 95% CI 1.35-1.93, I2 = 97%) and lung cancer (SIR 3.20, 95% CI 2.21-4.63, I2 = 90%) was increased in the TB population. The pooled risk of all cancers and lung cancer was highest within the first year following TB diagnosis (SIR 4.70, 95% CI 1.80-12.27, I2 = 99%) but remained over five years of follow-up. CONCLUSIONS People with TB have an increased risk of both pulmonary and non-pulmonary cancers. Further research on cancer following TB diagnosis is needed to develop effective screening and early detection strategies. Clinicians should have a high index of suspicion for cancer in people with TB, particularly in the first year following TB diagnosis.
Collapse
Affiliation(s)
- Pauline Luczynski
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Poulin
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Kamila Romanowski
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Provincial TB Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - James C. Johnston
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Provincial TB Services, British Columbia Centre for Disease Control, Vancouver, Canada
| |
Collapse
|
23
|
Uchida Y, Soejima K. Clinical characteristics of patients simultaneously diagnosed with lung cancer and active pulmonary tuberculosis in countries where tuberculosis is moderately endemic. Transl Cancer Res 2022; 11:2480-2482. [PMID: 36093510 PMCID: PMC9459592 DOI: 10.21037/tcr-22-1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshinori Uchida
- Department of Respiratory Medicine, University of Yamanashi Hospital, Yamanashi, Japan
| | - Kenzo Soejima
- Department of Respiratory Medicine, University of Yamanashi Hospital, Yamanashi, Japan
| |
Collapse
|
24
|
Qin Y, Chen Y, Chen J, Xu K, Xu F, Shi J. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future. Infect Agent Cancer 2022; 17:20. [PMID: 35525982 PMCID: PMC9078090 DOI: 10.1186/s13027-022-00434-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
Various investigations have expanded the views that tuberculosis is an important risk factor for lung cancer occurrence. Lung cancer originates from chronic inflammation and infection. It is becoming clearer that Mycobacterium tuberculosis (M.tb) in tuberculosis patients meticulously schemes multiple mechanisms to induce tumor formation and is indispensable to participate in the occurrence of lung cancer. In addition, some additional factors such as age, sex and smoking, accelerate the development of lung cancer after Mycobacterium tuberculosis infection. The clarification of these insights is fostering new diagnoses and therapeutic approaches to prevention of the patients developing from tuberculosis into lung cancer.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yujie Chen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, No. 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Feifan Xu
- Affiliated Nantong Hospital of Shanghai University, No. 500 Yonghe Road, Nantong, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|