1
|
Ulger Y, Delik A, Akkız H. Gut Microbiome and colorectal cancer: discovery of bacterial changes with metagenomics application in Turkısh population. Genes Genomics 2024; 46:1059-1070. [PMID: 38990271 DOI: 10.1007/s13258-024-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the 3rd most common cancer in the world and colonic carcinogenesis is a multifactorial disease that involves environmental and genetic factors. Gut microbiota plays a critical role in the regulation of intestinal homeostasis. Increasing evidence shows that the gut microbiome plays a role in CRC development and may be a biomarker for early diagnosis. OBJECTIVE This study aimed to determine the clinical prognostic significance of gut microbiota in CRC patients in the Turkish population by metagenomic analysis and to determine the microbial composition in tumor tissue biopsy samples. METHODS Tissue biopsies were taken from the participants with sterile forceps during colonoscopy and stored at -80 °C. Then, DNA isolation was performed from the tissue samples and the V3-V4 region of the 16 S rRNA gene was sequenced on the Illumina MiSeq platform. Quality control of the obtained sequence data was performed. Operational taxonomic units (OTUs) were classified according to the Greengenes database. Alpha diversity (Shannon index) and beta diversity (Bray-Curtis distance) analyses were performed. The most common bacterial species in CRC patients and healthy controls were determined and whether there were statistically significant differences between the groups was tested. RESULTS A total of 40 individuals, 13 CRC patients and 20 healthy control individuals were included in our metagenomic study. The mean age of the patients was 64.83 and BMI was 25.85. In CRC patients, the level of Bacteroidetes at the phylum taxonomy was significantly increased (p = 0.04), the level of Clostridia at the class taxonomy was increased (p = 0.23), and the level of Enterococcus at the genus taxonomy was significantly increased (p = 0.01). When CRC patients were compared with the control group, significant increases were detected in the species of Gemmiger formicilis (p = 0.15), Prevotella copri (p = 0.02) and Ruminococcus bromii (p = 0.001) at the species taxonomy. CONCLUSIONS Metagenomic analysis of intestinal microbiota composition in CRC patients provides important data for determining the treatment options for these patients. The results of this study suggest that it may be beneficial in terms of early diagnosis, poor prognosis and survival rates in CRC patients. In addition, this metagenomic study is the first study on the colon microbiome associated with CRC mucosa in the Turkish population.
Collapse
Affiliation(s)
- Yakup Ulger
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
| | - Anıl Delik
- Faculty of Medicine, Division of Gastroenterology, Cukurova University, Adana, 01330, Turkey
- Faculty of Science and Literature, Division of Biology, Cukurova University, Adana, 01330, Turkey
| | - Hikmet Akkız
- Faculty of Medicine, Division of Gastroenterology Istanbul, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
2
|
Amini M, Rezasoltani S, Asadzadeh Aghdaei H, Pourhoseingholi MA, Zali MR. Accuracy of the Discriminatory Ability of Combined Fecal Microbiota Panel in the Early Detection of Patients with Colorectal Cancer. J Gastrointest Cancer 2024; 55:332-343. [PMID: 37566155 DOI: 10.1007/s12029-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) screening and detecting it at an early stage is an effective way to decrease mortality from CRC. Colonoscopy, considered the gold standard (GS) for diagnosing the disease in many countries, has several limitations. Therefore, the main focus of this literature is to investigate the ability of combining candidate gut microbiota for early diagnosis of CRC, both in the presence and absence of GS test outcomes. METHODS We analyzed the data derived from a case-control study, including 83 screening colonoscopies conducted on subjects aged 18-92 years in Tehran, Iran. The candidate gut microbiota including, ETBF, Enterococcus faecalis, and Porphyromonas gingivalis were quantified in samples using absolute qRT PCR. The Bayesian latent class model (LCM) was employed to combine the values from the multiple bacterial markers in order to optimize the discriminatory ability compared with a single marker. RESULTS Based on Bayesian logistic regression, we discovered that family history of CRC, physical activity, cigarette smoking, and food diet were all significantly associated with an increased risk of CRC. When comparing ETBF and E. faecalis to P. gingivalis, we have observed that P. gingivalis exhibited greater predictive power in detecting high-risk individuals with CRC. As such, the sensitivity, specificity, and the area under the receiver-operating characteristics curve of combining ETBF, E. faecalis, and P. gingivalis were 98%, 96%, and 0.97, respectively. CONCLUSIONS This study suggests that the combined use of the three markers markedly improves classification performance compared to pairwise combinations, as well as individual markers, both with and without GS test outcomes. Noticeably, the triple composition of the fecal markers may serve as a reliable non-invasive indicator for the early prediction of CRC.
Collapse
Affiliation(s)
- Maedeh Amini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sama Rezasoltani
- Section Mass Spectrometry and Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Pourhoseingholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Salehi A, Naserzadeh P, Tarighi P, Afjeh-Dana E, Akhshik M, Jafari A, Mackvandi P, Ashtari B, Mozafari M. Fabrication of a microfluidic device for probiotic drug's dosage screening: Precision Medicine for Breast Cancer Treatment. Transl Oncol 2023; 34:101674. [PMID: 37224765 DOI: 10.1016/j.tranon.2023.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancer is the most common cancer in women; it has been affecting the lives of millions each year globally and microfluidic devices seem to be a promising method for the future advancements in this field. This research uses a dynamic cell culture condition in a microfluidic concentration gradient device, helping us to assess breast anticancer activities of probiotic strains against MCF-7 cells. It has been shown that MCF-7 cells could grow and proliferate for at least 24 h; however, a specific concentration of probiotic supernatant could induce more cell death signaling population after 48 h. One of our key findings was that our evaluated optimum dose (7.8 mg/L) was less than the conventional static cell culture treatment dose (12 mg/L). To determine the most effective dose over time and the percentage of apoptosis versus necrosis, flowcytometric assessment was performed. Exposing the MCF-7 cells to probiotic supernatant after 6, 24 and 48 h, confirmed that the apoptotic and necrotic cell death signaling were concentration and time dependent. We have shown a case that these types of microfluidics platforms performing dynamic cell culture could be beneficial in personalized medicine and cancer therapy.
Collapse
Affiliation(s)
- Ali Salehi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Akhshik
- Centre for Biocomposites and Biomaterials Processing. University of Toronto, Canada; EPICentre, University of Windsor, Canada
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Pooyan Mackvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Mozafari
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
4
|
Wen X, Ye X, Yang X, Jiang R, Qian C, Wang X. The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clin Transl Oncol 2023; 25:620-632. [PMID: 36376701 DOI: 10.1007/s12094-022-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Different types of cells that are involved in tumor immunity play a significant part in antitumor therapy. The intestinal microbiota consist of the trillions of diverse microorganisms that inhabit the gastrointestinal tract. Recently, much emphasis has been paid to the link between these symbionts and colorectal cancer (CRC). This association might be anything from oncogenesis and cancer development to resistance or susceptibility to chemotherapeutic medicines. Cancer patients have a significantly different microbial composition in their guts compared to healthy persons. The microbiome may play a role in the development and development of cancer through the modulation of tumor immunosurveillance, as shown by these studies; however, the specific processes underlying this role are still poorly understood. This review focuses on the relationship between the intestinal bacterial microbiota and immune cells to determine how the commensal microbiome influences the initiation and development of CRC.
Collapse
Affiliation(s)
- Xiaozi Wen
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xufang Ye
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Yang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rujin Jiang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyan Qian
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Ashwanandhini G, Reshma R, Preetha R. Synbiotic microencapsulation of Enterococcus faecium Rp1: a potential probiotic isolated from ragi porridge with antiproliferative property against colon carcinoma cell line. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3888-3894. [PMID: 36193351 PMCID: PMC9525466 DOI: 10.1007/s13197-022-05415-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2021] [Accepted: 02/19/2022] [Indexed: 06/16/2023]
Abstract
Ragi porridge, commonly consumed in South India is made from finger millet and noiyee (broken rice), and it is one of the excellent sources for probiotic bacteria. In vitro assays provided the proof that the probiotic strains isolated from ragi porridge can survive during the intestinal passage. Also, it showed antioxidant activity and antagonistic activity against foodborne pathogens including Shigella flexineri, Staphylococcus aureus, Salmonella typhii and Escherichia coli. Enterococcus faecium Rp1 isolated from ragi porridge was susceptible to vancomycin and showed to cease the progression of HCT116 (colon carcinoma) cell line. Further, Enterococcus faecium was microencapsulated using sodium alginate and aloe vera gel as binding agents and onion extract as a source of prebiotic to perform symbiotic encapsulation. In short, this study concludes that the fermented Ragi porridge is a rich source of probiotics with anti-microbial, antioxidant and antiproliferative property hence can be suggested for improving gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05415-2.
Collapse
Affiliation(s)
- Govindarajan Ashwanandhini
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| | - Raveendran Reshma
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The college of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, 603203 Kattankulathur, Chennai, Tamil Nadu India
| |
Collapse
|
6
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Williamson AJ, Jacobson R, van Praagh J, Gaines S, Koo HY, Lee B, Chan WC, Weichselbaum R, Alverdy JC, Zaborina O, Shogan BD. Enterococcus faecalis promotes a migratory and invasive phenotype in colon cancer cells. Neoplasia 2022; 27:100787. [PMID: 35366466 PMCID: PMC8971311 DOI: 10.1016/j.neo.2022.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Much about the role of intestinal microbes at the site of colon cancer development and tumor progression following curative resection remains to be understood. We have recently shown that collagenolytic bacteria such as Enterococcus faecalis predominate within the colon postoperatively, particularly at the site of the colon reconnection (i.e. anastomosis) in the early period of post-surgical recovery. The presence of collagenolytic bacteria at this site correlates with the tumor progression in a mouse model of post-surgical tumor development. In the present study we hypothesized, that collagenolytic bacteria, such as E. faecalis, play an important yet to be discovered role in tumor formation and progression. Therefore the aims of this study were to assess the role of collagenolytic E. faecalis on the migration and invasion of a murine colon cancer cell line. Results demonstrated that both migration and invasion were induced by E. faecalis with collagenolytic activity being required for only invasion. Bidirectional signaling in the E. faecalis-cancer cell interaction was observed by the discovering that the expression of gelE in E. faecalis, the gene required for collagenase production, is expressed in response to exposure to CT26 cells. The mechanism by which migration enhancement via E. faecalis occurs appears to be dependent on its ability to activate pro-uPA, a key element of the urokinase-plasminogen system, a pathway that is well - known to be important in cancer cell invasion and migration. Finally, we demonstrated that collagenase producing microbes preferentially colonize human colon cancer specimens.
Collapse
Affiliation(s)
- Ashley J. Williamson
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Rick Jacobson
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - J.B. van Praagh
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Sara Gaines
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Hyun Y. Koo
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Brandon Lee
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Wen-Ching Chan
- The University of Chicago, Center for Research Informatics, Chicago, IL, United States
| | - Ralph Weichselbaum
- The University of Chicago Medicine, Department of Radiation and Cellular Oncology, Chicago, IL, United States
| | - John C. Alverdy
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Olga Zaborina
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States
| | - Benjamin D. Shogan
- The University of Chicago Medicine, Department of Surgery, Chicago, IL, United States,Corresponding author at: University of Chicago, Room J557F, MC 5095, Chicago, IL 60637, United States.
| |
Collapse
|
8
|
Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, Valsta L, Brożyńska M, Zhu Q, Tripathi A, Vázquez-Baeza Y, Loomba R, Cheng S, Jain M, Niiranen T, Lahti L, Knight R, Salomaa V, Inouye M, Méric G. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54:134-142. [PMID: 35115689 PMCID: PMC9883041 DOI: 10.1038/s41588-021-00991-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/19/2021] [Indexed: 01/31/2023]
Abstract
Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.
Collapse
Affiliation(s)
- Youwen Qin
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Yang Liu
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Alex Tokolyi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Liisa Valsta
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marta Brożyńska
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Qiyun Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohit Jain
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus & University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Zhang J, Liu Z, Song S, Fang J, Wang L, Zhao L, Li C, Li W, Byun HM, Guo L, Li P. The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: A preliminary study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113204. [PMID: 35065505 DOI: 10.1016/j.ecoenv.2022.113204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
There has been extensive research on antibiotics exposure in adults by biomonitoring, but the biological mechanisms and potential risks to human health remain limited. In this study, 102 adults aged 26-44 years in Tianjin were studied and 23 common antibiotics in urine were analyzed by Liquid chromatography-mass spectrometry (LC-MS). All antibiotics were detected in urine, with an overall detection frequency of 40.4% (the detection frequencies of phenothiazines, quinolones, sulfonamides, tetracyclines, and chloramphenicol were 77%, 54%, 24%, 28%, and 49%, respectively.). Ofloxacin and enrofloxacin had the highest detection frequencies (85% and 81%), with median concentrations of 0.26 (IQR: 0.05-1.36) and 0.09 (IQR: 0.03-0.14) ng/mL, respectively. Based on health risk assessment, the predicted estimated daily exposures (EDEs) ranged from 0 μg/kg/day to 13.98 μg/kg/day. The hazard quotient (HQ) values of all the antibiotics except ofloxacin and ciprofloxacin were bellow one, which are considered safe. For all blood samples, the mitochondrial DNA (mtDNA) methylation levels in the MT-ATP6 (ranging between 3.86% and 34.18%) were slightly higher than MT-ATP8 and MT-ND5 (ranging between 0.57% and 9.32%, 1.08% and 19.62%, respectively). Furthermore, mtDNA methylation from MT-ATP6, MT-ATP8 and MT-ND5 were measured by bisulfite-PCR pyrosequencing. The association (P < 0.05) was found between mtDNA methylation level (MT-ATP8 and MT-ND5) and individual antibiotics including chlorpromazine, ciprofloxacin, enrofloxacin, norfloxacin, pefloxacin, sulfaquinoxaline, sulfachloropyridazine, chloramphenicol, and thiamphenicol, indicating that persistent exposure to low-dose multiple antibiotics may affect the mtDNA methylation level and in turn pose health risks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; National Institute of Metrology, Beijing 100029, China
| | - Junkai Fang
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin 300070, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Hebei 071000, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Chenguang Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Hyang-Min Byun
- Population Health Science Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne NE4 5PL, UK
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China.
| |
Collapse
|
10
|
Duijster JW, Franz E, Neefjes J, Mughini-Gras L. Bacterial and Parasitic Pathogens as Risk Factors for Cancers in the Gastrointestinal Tract: A Review of Current Epidemiological Knowledge. Front Microbiol 2021; 12:790256. [PMID: 34956157 PMCID: PMC8692736 DOI: 10.3389/fmicb.2021.790256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oncogenic potential of viral infections is well established and documented for many years already. However, the contribution of (commensal) bacteria and parasites to the development and progression of cancers has only recently gained momentum, resulting in a rapid growth of publications on the topic. Indeed, various bacteria and parasites have been suggested to play a role in the development of gastrointestinal cancer in particular. Therefore, an overview of the current epidemiological knowledge on the association between infections with bacteria and parasites and cancers of the gastrointestinal tract is needed. In this review, we summarized the methodological characteristics and main results of epidemiological studies investigating the association of 10 different bacteria (Bacteroides fragilis, Campylobacter spp., Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Porphyromonas gingivalis, non-typhoidal Salmonella, Salmonella Typhi, and Streptococcus spp.) and three parasites (Cryptosporidium spp., Schistosoma spp., and Strongyloides stercoralis) with gastrointestinal cancer. While the large body of studies based on microbiome sequencing provides valuable insights into the relative abundance of different bacterial taxa in cancer patients as compared to individuals with pre-malignant conditions or healthy controls, more research is needed to fulfill Koch's postulates, possibly making use of follow-up data, to assess the complex role of bacterial and parasitic infections in cancer epidemiology. Studies incorporating follow-up time between detection of the bacterium or parasite and cancer diagnosis remain valuable as these allow for estimation of cause-effect relationships.
Collapse
Affiliation(s)
- Janneke W. Duijster
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
de Souza JB, Brelaz-de-Castro MCA, Cavalcanti IMF. Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci 2021; 290:120202. [PMID: 34896161 DOI: 10.1016/j.lfs.2021.120202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), also named as colon and rectal or bowel cancer, is one of the leading neoplasia diagnosed in the world. Genetic sequencing studies of microorganisms from the intestinal microbiota of patients with CRC revealed that changes in its composition occur with the development of the disease, which can play a fundamental role in its development, being mediated by the production of metabolites and toxins that damage enterocytes. Some microorganisms are frequently reported in the literature as the main agents of this process, such as the bacteria Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis. Thus, understanding the mechanisms and function of each microorganism in CRC is essential for the development of treatment tools that focus on the gut microbiota. This review verifies current research aimed at evaluating the microorganisms present in the microbiota that can influence the development of CRC, as well as possible forms of treatment that can prevent the initiation and/or spread of this disease. Due to the incidence of CRC, alternatives have been launched considering factors beyond those already known in the disease development, such as diet, fecal microbiota transplantation, use of probiotics and antibiotics, which have been widely studied for this purpose. However, despite being promising, the studies that focus on the development of new therapeutic approaches targeting the microorganisms that cause CRC still need to be improved and better developed, involving new techniques to elucidate the effectiveness and safety of these new methods.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
12
|
Zwinsová B, Petrov VA, Hrivňáková M, Smatana S, Micenková L, Kazdová N, Popovici V, Hrstka R, Šefr R, Bencsiková B, Zdražilová-Dubská L, Brychtová V, Nenutil R, Vídeňská P, Budinská E. Colorectal Tumour Mucosa Microbiome Is Enriched in Oral Pathogens and Defines Three Subtypes That Correlate with Markers of Tumour Progression. Cancers (Basel) 2021; 13:cancers13194799. [PMID: 34638284 PMCID: PMC8507728 DOI: 10.3390/cancers13194799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer (CRC) progression and explains part of the observed heterogeneity of the disease. Even though the shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape of the microbiome within CRC and its associations with clinical variables remain under-explored. We performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and stool swabs of 178 patients with stage 0-IV CRC to describe the tumour microbiome and its association with clinical variables. We identified new genera associated either with CRC tumour mucosa or CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI status. We found that the CRC microbiome is strongly correlated with the grade, location and stage, but these associations are dependent on the microbial environment. Our study opens new research avenues in the microbiome CRC biomarker detection of disease progression while identifying its limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).
Collapse
Affiliation(s)
- Barbora Zwinsová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Vyacheslav A. Petrov
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Martina Hrivňáková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Research Centre of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, 601 90 Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Natálie Kazdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Vlad Popovici
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Roman Šefr
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Beatrix Bencsiková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Lenka Zdražilová-Dubská
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Laboratory Medicine-Clinical Microbiology and Immunology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Veronika Brychtová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Petra Vídeňská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Eva Budinská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Correspondence:
| |
Collapse
|
13
|
Gu X, Yu T, Guo T, Kong J. A qPCR-based method for rapid quantification of six intestinal homeostasis-relevant bacterial genera in feces. Future Microbiol 2021; 16:895-906. [PMID: 34342236 DOI: 10.2217/fmb-2020-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Developing efficient methods for monitoring the complex microbial community to rapidly assess the health status. Materials & methods: The qPCR-based method was developed, verified and in situ applied in fecal samples. Results: Six primer pairs with high specificity were designed to perform qPCR assays under a unified reaction condition within 2.5 h. The limits of detection, amplification efficiency and feasibility of the qPCR-based method established here were verified. In situ application of 18 fecal samples showed that the amounts of Bacteroides, Streptococcus and Bifidobacterium in colorectal cancer patient feces were obviously lower than those of healthy volunteers. Conclusion: This qPCR-based method was a reliable tool for rapid quantification of the six intestinal homeostasis relevant bacterial genera in feces.
Collapse
Affiliation(s)
- Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Tao Yu
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
14
|
Li H, Du X, Yan L, Tang Z, Zhang L, Zheng Q, Zeng X, Chen G, Yue H, Fu X. Low Abundance of Lactococcus lactis in Human Colorectal Cancer Is Associated with Decreased Natural Killer Cells. Nutr Cancer 2021; 74:938-946. [PMID: 34192986 DOI: 10.1080/01635581.2021.1944649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A limited number of studies have demonstrated the role of Lactococcus lactis (L. lactis) in human colorectal cancers (CRCs). The association of L. lactis abundance with the density of natural killer (NK) cells has not been investigated before. In this study, the L. lactis abundance in 60 CRC specimens, 20 adenoma (AD) specimens, and 29 normal colorectal tissues (NCs) specimens was investigated using the fluorescence in situ hybridization of 16S ribosomal RNA. The density of NK cells was detected using immunofluorescence in 28 CRC specimens, 12 AD specimens, and 22 NC specimens. The presence of L. lactis in NCs (48.28%) was detected significantly higher than that in the AD (20.00%, P = .044) and CRC (23.33%, P = .018) specimens. The abundance of L. lactis in NCs (32.73 ± 7.24) was also found to be significantly higher than that in AD (8.91 ± 5.89, P = .029) and CRC (5.63 ± 1.67, P = .003) specimens. In addition, the density of NKp30+ NK cells in NCs (51.14 ± 4.84) was significantly higher than that in the AD (6.10 ± 1.31) and CRC (1.72 ± 0.40) specimens (P < .001). Moreover, a positive association of L. lactis abundance with NKp30+ NK cells density in the colorectal samples (P < .001) was observed. The low abundance of L. lactis in the CRC tissues was associated with the decreased NK cells, which suggested that this might contribute to the progression of CRC by decreasing the number of NK cells.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1944649.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, The Central Hospital of Guangyuan City, Sichuan, China
| | - Xinhao Du
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Li Yan
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Zhenzhen Tang
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Ling Zhang
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Qiao Zheng
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xianghao Zeng
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Guimei Chen
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Huawen Yue
- Department of Digestive Endoscopy, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, China
| |
Collapse
|
15
|
Nicolò S, Tanturli M, Mattiuz G, Antonelli A, Baccani I, Bonaiuto C, Baldi S, Nannini G, Menicatti M, Bartolucci G, Rossolini GM, Amedei A, Torcia MG. Vaginal Lactobacilli and Vaginal Dysbiosis-Associated Bacteria Differently Affect Cervical Epithelial and Immune Homeostasis and Anti-Viral Defenses. Int J Mol Sci 2021; 22:ijms22126487. [PMID: 34204294 PMCID: PMC8234132 DOI: 10.3390/ijms22126487] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with High Risk-Human Papilloma Viruses (HR-HPVs) is a primary cause of cervical cancer worldwide. Vaginal-dysbiosis-associated bacteria were correlated with the persistence of HR-HPVs infection and with increased cancer risk. We obtained strains of the most represented bacterial species in vaginal microbiota and evaluated their effects on the survival of cervical epithelial cells and immune homeostasis. The contribution of each species to supporting the antiviral response was also studied. Epithelial cell viability was affected by culture supernatants of most vaginal-dysbiosis bacteria, whereas Lactobacillus gasseri or Lactobacillus jensenii resulted in the best stimulus to induce interferon-γ (IFN-γ) production by human mononuclear cells from peripheral blood (PBMCs). Although vaginal-dysbiosis-associated bacteria induced the IFN-γ production, they were also optimal stimuli to interleukin-17 (IL-17) production. A positive correlation between IL-17 and IFN-γ secretion was observed in cultures of PBMCs with all vaginal-dysbiosis-associated bacteria suggesting that the adaptive immune response induced by these strains is not dominated by TH1 differentiation with reduced availability of IFN-γ, cytokine most effective in supporting virus clearance. Based on these results, we suggest that a vaginal microbiota dominated by lactobacilli, especially by L. gasseri or L. jensenii, may be able to assist immune cells with clearing HPV infection, bypasses the viral escape and restores immune homeostasis.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Michele Tanturli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Ilaria Baccani
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Chiara Bonaiuto
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Firenze, 50134 Firenze, Italy; (M.M.); (G.B.)
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Firenze, 50134 Firenze, Italy; (M.M.); (G.B.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Correspondence: (A.A.); (M.G.T.); Tel.: +39-0552758330 (A.A.); +39-0552758020 (M.G.T.)
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Correspondence: (A.A.); (M.G.T.); Tel.: +39-0552758330 (A.A.); +39-0552758020 (M.G.T.)
| |
Collapse
|
16
|
Shoji M, Sasaki Y, Abe Y, Nishise S, Yaoita T, Yagi M, Mizumoto N, Kon T, Onozato Y, Sakai T, Umehara M, Ito M, Koseki A, Murakami R, Miyano Y, Sato H, Ueno Y. Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH OPEN 2021; 5:498-507. [PMID: 33860101 PMCID: PMC8035457 DOI: 10.1002/jgh3.12529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Background and Aim Obesity affects the gut microbiome, which in turn increases the risk for colorectal cancer. Several studies have shown the mechanisms by which some bacteria may influence the development of colorectal cancer; however, gut microbiome characteristics in obese patients with colorectal cancer remain unclear. Therefore, this study evaluated their gut microbiome profile and its relationship with metabolic markers. Methods The study assessed fecal samples from 36 consecutive patients with colorectal cancer and 38 controls without colorectal cancer. To identify microbiotic variations between patients with colorectal cancer and controls, as well as between nonobese and obese individuals, 16S rRNA gene amplicon sequencing was performed. Results Principal coordinate analysis showed significant differences in the overall structure of the microbiome among the study groups. The α‐diversity, assessed by the Chao1 index or Shannon index, was higher in patients with colorectal cancer versus controls. The relative abundance of the genera Enterococcus, Capnocytophaga, and Polaribacter was significantly altered in obese patients with colorectal cancer, whose serum low‐density lipoprotein concentrations were positively correlated with the abundance of the genus Enterococcus; among the most abundant species was Enterococcus faecalis, observed at lower levels in obese versus nonobese patients. Conclusions This study demonstrated several compositional alterations of the gut microbiome in patients with colorectal cancer and showed that a reduced presence of E. faecalis may be associated with obesity‐related colorectal cancer development. The gut microbiome may provide novel insights into the potential mechanisms in obesity‐related colorectal carcinogenesis.
Collapse
Affiliation(s)
- Masakuni Shoji
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yasuhiko Abe
- Division of Endoscopy Yamagata University Hospital Yamagata Japan
| | | | - Takao Yaoita
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Makoto Yagi
- Division of Endoscopy Yamagata University Hospital Yamagata Japan
| | - Naoko Mizumoto
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Takashi Kon
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yusuke Onozato
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Takayuki Sakai
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Matsuki Umehara
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Minami Ito
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Ayumi Koseki
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yuki Miyano
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| |
Collapse
|
17
|
Bertolino L, Ursi MP, Zampino R, Durante-Mangoni E. Associating enterococcal endocarditis and colorectal neoplasia: is colonoscopy mandatory? - Authors' reply. Eur J Intern Med 2021; 85:114-115. [PMID: 33390321 DOI: 10.1016/j.ejim.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Lorenzo Bertolino
- Department of Advanced Medical & Surgical Sciences, University of Campania 'L. Vanvitelli' Via De Crecchio 7, 80138 Napoli, Italy
| | - Maria Paola Ursi
- Department of Advanced Medical & Surgical Sciences, University of Campania 'L. Vanvitelli' Via De Crecchio 7, 80138 Napoli, Italy
| | - Rosa Zampino
- Department of Advanced Medical & Surgical Sciences, University of Campania 'L. Vanvitelli' Via De Crecchio 7, 80138 Napoli, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital Piazzale Ettore Ruggieri, 80131 Napoli, Italy
| | - Emanuele Durante-Mangoni
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital Piazzale Ettore Ruggieri, 80131 Napoli, Italy; Department of Precision Medicine, University of Campania 'L. Vanvitelli' Via De Crecchio 7, 80138 Napoli, Italy.
| |
Collapse
|
18
|
Grenda A, Krawczyk P. Cancer trigger or remedy: two faces of the human microbiome. Appl Microbiol Biotechnol 2021; 105:1395-1405. [PMID: 33492450 DOI: 10.1007/s00253-021-11125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Currently, increasing attention cancer treatment has focused on molecularly targeted therapies and more recently on immunotherapies targeting immune checkpoints. However, even such advanced treatment may be ineffective. The reasons for this are sought, inter alia, in the human microbiome. In our intestines, there are bacteria that are beneficial to us, but pathogenic microorganisms may also be present. Microbial imbalance (dysbiosis) is now perceived as one of the gateways to cancer. However, it is feasible to use bacteria and their metabolites to restore the natural, beneficial microbiome during oncological treatment. Akkermansia mucinifila, Enterococcus hirae, or Faecalibacterium prausnitzii are bacteria that exhibit this beneficial potential. Greater benefits of therapy can be observed in cancer patients enriched in these bacterial species and treated with anti-PD-1, anti-PD-L1, or anti-CTLA-4 monoclonal antibodies. In this review, we present issues related to the role of bacteria in carcinogenesis and their therapeutic potential "supporting" modern anti-cancer therapies.Key Points• Bacteria can be directly or indirectly a cancer trigger.• Bacterial metabolites regulate the pathways associated with carcinogenesis.• Intestinal bacteria activate the immune system to fight cancer.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
19
|
Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141030. [PMID: 32726703 DOI: 10.1016/j.scitotenv.2020.141030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Non-communicable diseases (NCDs) have replaced communicable diseases as the leading cause of premature death worldwide over the past century. Increasing numbers of studies have reported a link between NCDs and dysbiotic gut microbiota. Some gut microbiota, such as Helicobacter pylori, have been implicated in person-to-person transmission. Based on these reports, we develop a hypothesis regarding dysbiotic microbiota-associated NCDs, and explore how the presence of communicable NCDs could be confirmedexperimentally. We have also reviewed reports on environmental factors, including a high-fat diet, alcohol, smoking, exercise, radiation and air pollution, which have been associated with dysbiotic microbiota, and determined whether any of these parameters were also associated with NCDs. This review discusses the potential mechanism by which dysbiotic microbiota induced by environmental factors are directly or indirectly involved in person-to-person transmission. The hypothetical interplay between the environment, gut microbiota and host can be tested through high-throughput sequencing, animal models, and cell studies, although each of these modalities presents specific challenges. Confirmation of a causative association of dysbiotic microbiota with NCDs would represent a paradigm shift in efforts to prevent and control these diseases, and should stimulate additional studies on the associations among environmental factors, gut microbiota, and NCDs.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China.
| | - Zhao Ju
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing 100850, PR China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
20
|
Niccolai E, Baldi S, Ricci F, Russo E, Nannini G, Menicatti M, Poli G, Taddei A, Bartolucci G, Calabrò AS, Stingo FC, Amedei A. Evaluation and comparison of short chain fatty acids composition in gut diseases. World J Gastroenterol 2019; 25:5543-5558. [PMID: 31576099 PMCID: PMC6767983 DOI: 10.3748/wjg.v25.i36.5543] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An altered (dysbiosis) and unhealthy status of the gut microbiota is usually responsible for a reduction of short chain fatty acids (SCFAs) concentration. SCFAs obtained from the carbohydrate fermentation processes are crucial in maintaining gut homeostasis and their determination in stool samples could provide a faster, reliable and cheaper method to highlight the presence of an intestinal dysbiosis and a biomarker for various gut diseases. We hypothesize that different intestinal diseases, such as celiac disease (CD), adenomatous polyposis (AP) and colorectal cancer (CRC) could display a particular fecal SCFAs' signature. AIM To compare the fecal SCFAs' profiles of CD, AP, CRC patients and healthy controls, using the same analytical method. METHODS In this cross-sectional study, we defined and compared the SCFAs' concentration in fecal samples of 9 AP, 16 CD, 19 CRC patients and 16 healthy controls (HC). The SCFAs' analysis were performed using a gas-chromatography coupled with mass spectrometry method. Data analysis was carried out using Wilcoxon rank-sum test to assess pairwise differences of SCFAs' profiles, partial least squares-discriminate analysis (PLS-DA) to determine the status membership based on distinct SCFAs' profiles, and Dirichlet regression to determine factors influencing concentration levels of SCFAs. RESULTS We have not observed any difference in the SCFAs' amount and composition between CD and healthy control. On the contrary, the total amount of SCFAs was significantly lower in CRC patients compared to HC (P = 0.044) and CD (P = 0.005). Moreover, the SCFAs' percentage composition was different in CRC and AP compared to HC. In detail, HC displayed higher percentage of acetic acid (P value = 1.3 × 10-6) and a lower amount of butyric (P value = 0.02192), isobutyric (P value = 7.4 × 10-5), isovaleric (P value = 0.00012) and valeric (P value = 0.00014) acids compared to CRC patients. AP showed a lower abundance of acetic acid (P value = 0.00062) and higher percentages of propionic (P value = 0.00433) and isovaleric (P value = 0.00433) acids compared to HC. Moreover, AP showed higher levels of propionic acid (P value = 0.03251) and a lower level of isobutyric acid (P value = 0.00427) in comparison to CRC. The PLS-DA model demonstrated a significant separation of CRC and AP groups from HC, although some degree of overlap was observed between CRC and AP. CONCLUSION Analysis of fecal SCFAs shows the potential to provide a non-invasive means of diagnosis to detect patients with CRC and AP, while CD patients cannot be discriminated from healthy subjects.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence 50134, Italy
| | - Giovanni Poli
- Department of Statistics, Computer Science, Applications “G.Parenti”, Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence 50134, Italy
| | - Antonino Salvatore Calabrò
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence 50134, Italy
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|
21
|
Boem F, Amedei A. Healthy axis: Towards an integrated view of the gut-brain health. World J Gastroenterol 2019; 25:3838-3841. [PMID: 31413521 PMCID: PMC6689813 DOI: 10.3748/wjg.v25.i29.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the lack of precise mechanisms of action, a growing number of studies suggests that gut microbiota is involved in a great number of physiological functions of the human organism. In fact, the composition and the relations of intestinal microbial populations play a role, either directly or indirectly, to both the onset and development of various pathologies. In particular, the gastrointestinal tract and nervous system are closely connected by the so-called gut–brain axis, a complex bidirectional system in which the central and enteric nervous system interact with each other, also engaging endocrine, immune and neuronal circuits. This allows us to put forward new working hypotheses on the origin of some multifactorial diseases: from eating to neuropsychiatric disorders (such as autism spectrum disorders and depression) up to diabetes and tumors (such as colorectal cancer). This scenario reinforces the idea that the microbiota and its composition represent a factor, which is no longer negligible, not only in preserving what we call “health” but also in defining and thus determining it. Therefore, we propose to consider the gut-brain axis as the focus of new scientific and clinical investigation as long as the locus of possible systemic therapeutic interventions.
Collapse
Affiliation(s)
- Federico Boem
- Department of Oncology and Hemato-Oncology, University of Milan, Milano 20122, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50134, Italy
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Firenze 50134, Italy
| |
Collapse
|