1
|
Shen Y, Nakajima H, Zhu J, Wu W. Integrin β2 regulates titanium particle‑induced inflammation in macrophages: In vitro aseptic loosening model. Mol Med Rep 2025; 31:25. [PMID: 39540364 DOI: 10.3892/mmr.2024.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Aseptic loosening is a major complication of joint replacement surgery, characterized by periprosthetic osteolysis and chronic inflammation at the bone‑implant interface. Cells release chemokines, cytokines and other pro‑inflammatory substances that perpetuate inflammation reactions, while other particle‑stimulated macrophages promote osteoclastic bone resorption and impair bone formation. The present study investigated integrin and inflammatory cytokine expression patterns in RAW 264.7 cells treated with titanium (Ti) particles to elucidate the role of integrins in Ti particle‑mediated inflammatory osteolysis. Assessment was performed by reverse transcription‑quantitative PCR, western blotting, confocal immunofluorescence, flow cytometry and enzyme‑linked immunosorbent assays. Cell migration was evaluated by wound healing assay. It was found that Ti particles significantly induced integrin expression in RAW 264.7 cells, including upregulation of integrins β2 (CD18), aL (CD11a), aM (CD11b) and aX (CD11c). Ti particles also enhanced the expression of Toll‑like receptors (TLRs; TLR1, TLR2, TLR3 and TLR4) and triggered the release of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)‑1β, IL‑8 and IL‑12. Proteomics showed higher expression and activity levels of TLR2 and TLR4, along with their downstream signaling adaptors myeloid differentiation primary response protein 88 (MyD88) and Mal/TIR‑domain‑containing adapter protein (TIRAP), following Ti treatment. Additionally, Ti treatment significantly enhanced the migration rate of RAW 264.7 cells. The present findings indicated that Ti particles regulate the inflammatory response of RAW 264.7 cells in an in vitro aseptic loosening model by activating the TLR/TIRAP/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Yue Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Haruna Nakajima
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113‑8654, Japan
| | - Junfeng Zhu
- Department of Orthopedics Surgery, Suichang Branch of The Second Affiliated Hospital, Zhejiang University School of Medicine (Suichang County People's Hospital in Zhejiang), Lishui, Zhejiang 323300, P.R. China
| | - Weigang Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
2
|
Yu X, Jiang J, Li C, Wang Y, Ren Z, Hu J, Yuan T, Wu Y, Wang D, Sun Z, Wu Q, Chen B, Fang P, Ding H, Meng J, Jiang H, Zhao J, Bao N. Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. Mol Med 2024; 30:266. [PMID: 39707212 DOI: 10.1186/s10020-024-01034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Periprosthetic osteolysis and subsequent aseptic loosening are the leading causes of failure following total joint arthroplasty. Osteogenic impairment induced by wear particles is regarded as a crucial contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress identified as a key underlying mechanism. Therefore, identifying potential therapeutic targets and agents that can regulate ER stress adaption in osteoblasts is necessary for arresting aseptic loosening. Osthole (OST), a natural coumarin derivative, has demonstrated promising osteogenic properties and the ability to modulate ER stress adaption in various diseases. However, the impact of OST on ER stress-mediated osteogenic impairment caused by wear particles remains unclear. METHODS TiAl6V4 particles (TiPs) were sourced from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was utilized to explore the effects of OST on TiPs-induced osteogenic impairment in vivo. Primary mouse osteoblasts were employed to investigate the impact of OST on ER stress-mediated osteoblast apoptosis and osteogenic inhibition induced by TiPs in vitro. The mechanisms underlying OST-modulated alleviation of ER stress induced by TiPs were elucidated through Molecular docking, immunochemistry, PCR, and Western blot analysis. RESULTS In this study, we found that OST treatment effectively mitigated TiAl6V4 particles (TiPs)-induced osteolysis by enhancing osteogenesis in a mouse calvarial model. Furthermore, we observed that OST could attenuate ER stress-mediated apoptosis and osteogenic reduction in osteoblasts exposed to TiPs in vitro and in vivo. Mechanistically, we demonstrated that OST exerts bone-sparing effects on stressed osteoblasts upon TiPs exposure by specifically suppressing the ER stress-dependent PERK signaling cascade. CONCLUSION Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. These findings suggest that OST may serve as a potential therapeutic agent for combating wear particle-induced osteogenic impairment, offering a novel alternative strategy for managing aseptic prosthesis loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Li
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yongjie Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Bin Chen
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Peng Fang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Hui Jiang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Liu X, Wang W, Zhu F, Xu H, Ge G, Liang X, Yang H, Xu Y, Xu W, Wei M, Zhou Q, Geng D. Osteoblastic ferroptosis inhibition by small-molecule promoting GPX4 activation for peri-prosthetic osteolysis therapy. J Nanobiotechnology 2024; 22:758. [PMID: 39696565 DOI: 10.1186/s12951-024-03049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Peri-prosthesis osteolysis (PPO) represents the most severe complication of total joint arthroplasty (TJA) surgery and imposes the primary cause of prosthesis failure and subsequent revision surgery. Antiresorptive therapies are usually prescribed to treat PPO, especially for elderly people. Nevertheless, the efficacy of anti-osteoporotic medications remains constrained. Recent therapeutic strategies to promote periprosthetic osseointegration by restoring osteoblast function are considered more effective approaches. However, the precise mechanism underlying the inhibition of osteogenesis triggered by wear particles remains enigmatic. Herein, we demonstrate that wear particles inhibit osteoblast function by inducing ferroptosis to sabotage extracellular mineralization and arouse periprosthetic osteolysis. The suppression of ferroptosis could significantly rescue osteogenesis thus alleviating PPO. Furthermore, Glutathione Peroxidase 4 (GPX4) has been identified as a key target in regulating osteoblastic ferroptosis. By utilizing virtual screening techniques, we have successfully conducted a comprehensive screening of a natural compound known as Urolithin A (UA), which exhibits remarkable inhibition of osteoblastic ferroptosis while simultaneously promoting the process of osteogenesis through its precise targeting mechanism on GPX4. Meanwhile, UA improves the osteolytic conditions significantly in vivo even when the adjunction of titanium (Ti) nanoparticles. This strategy has great potential in treating peri-prosthesis osteolysis and potentially broadens the scope of clinical therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Feng Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haibo Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gaoran Ge
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaolong Liang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yaozeng Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200070, China.
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
4
|
Mann KA, Miller MA, Gandhi SA, Kusler JE, Tatusko ME, Biggs AE, Oest ME. Peri-operative zoledronic acid attenuates peri-prosthetic osteolysis in a rat model of cemented knee replacement. J Orthop Res 2024; 42:2693-2704. [PMID: 39032112 DOI: 10.1002/jor.25941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Progressive osteolysis can occur at the cement-bone interface of joint replacements and the associated loss of fixation can lead to clinical loosening. We previously developed a rat hemiarthroplasty model that exhibited progressive loss of fixation with the development of cement-bone gaps under the tibial tray that mimicked patterns found in human arthroplasty retrievals. Here we explored the ability of a bisphosphonate (zoledronic acid, ZA) to attenuate cement-bone osteolysis and maintain implant stability. Sprague-Dawley rats (n = 59) received a poly(methylmethacrylate) cemented tibial component and were followed for up to 12 weeks. Treatment groups included peri-operative administration of ZA (ZA group), administration of ZA at 6 weeks postop (late ZA group), or vehicle (Veh group). There was a 60% reduction in the rate of cement-bone gap formation for the ZA group (0.15 mm3/week) compared to Veh group (0.38 mm3/week, p = 0.016). Late ZA prevented further progression of gap formation but did not reverse bone loss to the level achieved in the ZA group. Micromotion from five times body weight toggle loading was positively correlated with cement-bone gap volume (p = 0.009) and negatively correlated with the amount of cement in the metaphysis (p = 0.005). Reduced new bone formation and enduring nonviable bone in the epiphysis for the ZA group were found. This suggests that low bone turnover in the epiphysis may suppress the early catabolic response due to implantation, thereby maintaining better fixation in the epiphysis. This preclinical model presents compelling supporting data documenting improved maintenance of the cement-bone fixation with the use of peri-operative bisphosphonates.
Collapse
Affiliation(s)
- Kenneth A Mann
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark A Miller
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sachin A Gandhi
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jace E Kusler
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Megan E Tatusko
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Amy E Biggs
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, Institute for Human Performance, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
Liu Q, Ma T, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused extracellular vesicles from M 2 macrophages and human umbilical cord mesenchymal stem cells for the targeted regulation of macrophage pyroptosis in periprosthetic osteolysis. J Extracell Vesicles 2024; 13:e70028. [PMID: 39711510 DOI: 10.1002/jev2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024] Open
Abstract
The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors. In a pioneering approach to precisely inhibit the pyroptosis of local macrophages induced by wear particles, we have engineered fused extracellular vesicles (fEV) from M2 macrophages and human umbilical cord mesenchymal stem cells. These fEV boast the distinctive capability for targeted transport and immune evasion, collectively enhancing the anti-pyroptosis effect of the therapeutic extracellular vesicles. Our research demonstrates the targeted, significant preventive and therapeutic potential of fEVs against periprosthetic osteolysis prompted by wear particles, highlighting its crucial clinical significance and application prospects. These findings suggest that extracellular vesicle fusion technology heralds a novel paradigm in the design and development of targeted extracellular vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Araki Y, Hirose K, Hirose M, Hayashi K, Demura S. The occurrence of remitting seronegative symmetrical synovitis with pitting edema (RS3PE) after arthroplasty mimicking a periprosthetic joint infection: A case report and literature review. Medicine (Baltimore) 2024; 103:e40344. [PMID: 39495994 PMCID: PMC11537642 DOI: 10.1097/md.0000000000040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
RATIONALE As the elderly population grows, the number of joint arthroplasty surgeries is also increasing. Periprosthetic joint infection (PJI) is a postoperative complication that occurs in 1%-2% of the arthroplasties. Once it occurs, PJI is refractory to treatment. Similar symptoms of PJI, including joint synovitis and elevated body temperature, sometimes arise because of crystal arthritis, rheumatoid arthritis, or other inflammatory diseases. Precise diagnosis is essential for determining the optimal treatment strategy. PATIENT CONCERNS An 81-year-old female patient with a history of bilateral knee arthroplasty presented with a high fever of 38 °C and was unable to walk due to swelling and pain in the bilateral lower extremities. Infectious conditions, such as cellulitis or PJI, were suspected. Imaging findings revealed bilateral knee joint synovitis with pitting edema around the lower extremities, and cultures of bilateral joint fluids were negative. No crystals were observed in the joint fluid. Laboratory data revealed highly elevated levels of inflammatory marker; however, antinuclear antibodies, including rheumatoid factor and cyclic citrullinated peptide, were not detected. DIAGNOSES Based on bilateral synovitis with pitting edema in the lower extremities, in addition to negative culture findings and normal antinuclear antibodies, the diagnosis of remitting seronegative symmetrical synovitis with pitting edema (RS3PE) was made. INTERVENTIONS Steroid therapy was performed. The dose was gradually reduced, with the improvement of the symptoms. OUTCOMES The inflammatory reaction promptly decreased and then normalized. With improved inflammation, the symptoms of pitting edema, pain in the bilateral lower extremities, and fluid effusion of the knee joints were reduced. She was able to walk without a cane, and her activities of daily living fully recovered. LESSONS High fever and synovitis after joint arthroplasty do not necessarily indicate an infectious condition. Clinicians should be familiar with the occurrence of RS3PE, regardless of whether arthroplasty is performed.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopaedic Surgery, Hirose Hospital, Sabae-City, Fukui, Japan
- Department of Orthopaedic Surgery, Kanazawa University Hospital, Graduate School of Medical Sciences, Kanazawa-City, Ishikawa, Japan
| | - Kei Hirose
- Department of Surgery, Hirose Hospital, Sabae-City, Fukui, Japan
| | - Maki Hirose
- Department of Surgery, Hirose Hospital, Sabae-City, Fukui, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Hospital, Graduate School of Medical Sciences, Kanazawa-City, Ishikawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Kanazawa University Hospital, Graduate School of Medical Sciences, Kanazawa-City, Ishikawa, Japan
| |
Collapse
|
7
|
Liao R, Dewey MJ, Rong J, Johnson SA, D’Angelo WA, Hussey GS, Badylak SF. Matrix-bound nanovesicles alleviate particulate-induced periprosthetic osteolysis. SCIENCE ADVANCES 2024; 10:eadn1852. [PMID: 39423278 PMCID: PMC11488533 DOI: 10.1126/sciadv.adn1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Aseptic loosening of orthopedic implants is an inflammatory disease characterized by immune cell activation, chronic inflammation, and destruction of periprosthetic bone, and is one of the leading reasons for prosthetic failure, affecting 12% of total joint arthroplasty patients. Matrix-bound nanovesicles (MBVs) are a subclass of extracellular vesicle recently shown to mitigate inflammation in preclinical models of rheumatoid arthritis and influenza-mediated "cytokine storm." The molecular mechanism of these anti-inflammatory properties is only partially understood. The objective of the present study was to investigate the effects of MBV on RANKL-induced osteoclast formation in vitro and particulate-induced osteolysis in vivo. Results showed that MBV attenuated osteoclast differentiation and activity by suppressing the NF-κB signaling pathway and downstream NFATc1, DC-STAMP, c-Src, and cathepsin K expression. In vivo, local administration of MBV attenuated ultrahigh molecular weight polyethylene particle-induced osteolysis, bone reconstruction, and periosteal inflammation. The results suggest that MBV may be a therapeutic option for preventing periprosthetic loosening.
Collapse
Affiliation(s)
- Runzhi Liao
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jiayang Rong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Scott A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William A. D’Angelo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
8
|
Jardon M, Fritz J, Samim M. Imaging approach to prosthetic joint infection. Skeletal Radiol 2024; 53:2023-2037. [PMID: 38133670 DOI: 10.1007/s00256-023-04546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The diagnosis of prosthetic joint infection (PJI) remains challenging, despite multiple available laboratory tests for both serum and synovial fluid analysis. The clinical symptoms of PJI are not always characteristic, particularly in the chronic phase, and there is often significant overlap in symptoms with non-infectious forms of arthroplasty failure. Further exacerbating this challenge is lack of a universally accepted definition for PJI, with publications from multiple professional societies citing different diagnostic criteria. While not included in many of the major societies' guidelines for diagnosis of PJI, diagnostic imaging can play an important role in the workup of suspected PJI. In this article, we will review an approach to diagnostic imaging modalities (radiography, ultrasound, CT, MRI) in the workup of suspected PJI, with special attention to the limitations and benefits of each modality. We will also discuss the role that image-guided interventions play in the workup of these patients, through ultrasound and fluoroscopically guided joint aspirations. While there is no standard imaging algorithm that can universally applied to all patients with suspected PJI, we will discuss a general approach to diagnostic imaging and image-guided intervention in this clinical scenario.
Collapse
Affiliation(s)
- Meghan Jardon
- Department of Radiology, NYU Langone Medical Center, New York, NY, USA.
| | - Jan Fritz
- Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| | - Mohammad Samim
- Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Lyu Z, Meng X, Hu F, Wu Y, Ding Y, Long T, Qu X, Wang Y. Nanoscale ZnO doping in prosthetic polymers mitigate wear particle-induced inflammation and osteolysis through inhibiting macrophage secretory autophagy. Mater Today Bio 2024; 28:101225. [PMID: 39309162 PMCID: PMC11415586 DOI: 10.1016/j.mtbio.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Wear particles produced by joint replacements induce inflammatory responses that lead to periprosthetic osteolysis and aseptic loosening. However, the precise mechanisms driving wear particle-induced osteolysis are not fully understood. Recent evidence suggests that autophagy, a cellular degradation process, plays a significant role in this pathology. This study aimed to clarify the role of autophagy in mediating inflammation and osteolysis triggered by wear particles and to evaluate the therapeutic potential of zinc oxide nanoparticles (ZnO NPs). We incorporated ZnO into the prosthetic material itself, ensuring that the wear particles inherently carried ZnO, providing a targeted and sustained intervention. Our findings reveal that polymer wear particles induce excessive autophagic activity, which is closely associated with increased inflammation and osteolysis. We identified secretory autophagy as a key mechanism for IL-1β secretion, exacerbating osteolysis. Both in vitro and in vivo experiments demonstrated that ZnO-doped particles significantly inhibit autophagic overactivation, thereby reducing inflammation and osteolysis. In summary, this study establishes secretory autophagy as a critical mechanism in wear particle-induced osteolysis and highlights the potential of ZnO-doped prosthetic polymers for targeted, sustained mitigation of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangchao Meng
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Fei Hu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuezhou Wu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yurun Ding
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Teng Long
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Papagiannis S, Tatani I, Kyriakopoulos G, Kokkalis Z, Megas P, Stathopoulos C, Grafanaki K, Lakoumentas J. Alterations in Small Non-coding MicroRNAs (miRNAs) and the Potential Role in the Development of Aseptic Loosening After Total Hip Replacement: Study Protocol for an Observational, Cross-Sectional Study. Cureus 2024; 16:e72179. [PMID: 39583487 PMCID: PMC11582946 DOI: 10.7759/cureus.72179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION Total hip arthroplasty (THA) is one of the most successful and effective surgeries for the treatment of hip osteoarthritis, with good rates in terms of survival, pain relief, and patient functional recovery. Aseptic loosening (AL) accompanied by periprosthetic osteolysis (PPOL) is the most frequent late complication, accounting for almost 50% of all revision surgeries. The primary purpose of this observational, cross-sectional study is to identify alterations in small, non-coding RNAs, miRNAs, that could be involved in the pathogenesis of AL and PPOL following THA. METHODS/DESIGN Sixty-three patients will be included in this study and will be divided into three groups (21 in each group): Group A (control group), including patients undergoing primary THA due to degenerative hip osteoarthritis, Group B including patients without clinical and radiological evidence of PPOL/AL following primary THA, and Group C including patients with clinical and radiological evidence of PPOL and AL undergoing revision surgery following primary THA. Blood samples will be collected from all patients. Peripheral blood samples from Group A and C patients will be collected prior to surgery while synovial membrane samples will also be collected intraoperatively. Synovial membrane samples will not be collected from Group B patients since they are not candidates for any surgical intervention. The relative expression of miRNAs let-7i-5p, let-7e-5p, miR-15a-5p, miR-30a-3p, and miR-130a-3p, will be measured using real-time quantitative PCR (qRT-PCR) at baseline from all patients. CONCLUSION The primary goal is to identify the expression of inflammation-related miRNAs that could play a role in the pathophysiology of AL and highlight the differences among patients with confirmed AL, patients with degenerative hip disease, and patients with no signs of AL following THA. The secondary goal is to use these miRNAs as biomarkers to estimate the possibility for a patient to develop AL after total hip replacement, and also as possible treatment targets. Our study has been registered with an International Standard Randomized Controlled Trial Number ID: ISRCTN25839413.
Collapse
Affiliation(s)
- Spyridon Papagiannis
- Orthopedics and Traumatology, University General Hospital of Patras, Patras, GRC
| | - Irini Tatani
- Orthopedics and Traumatology, University General Hospital of Patras, Patras, GRC
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, GRC
| | - Zinon Kokkalis
- Orthopedics and Traumatology, University General Hospital of Patras, Patras, GRC
| | - Panagiotis Megas
- Orthopedics and Traumatology, University General Hospital of Patras, Patras, GRC
| | | | - Katerina Grafanaki
- Department of Dermatology, School of Medicine, University of Patras, Patras, GRC
| | - John Lakoumentas
- Department of Medical Physics, School of Medicine, University of Patras, Patras, GRC
| |
Collapse
|
11
|
Sköld C, Sörensen J, Brüggemann A, Hailer NP. Is 18F-fluoride PET/CT an Accurate Tool to Diagnose Loosening After Total Joint Arthroplasty? Clin Orthop Relat Res 2024:00003086-990000000-01724. [PMID: 39293088 DOI: 10.1097/corr.0000000000003228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Several studies using positron emission tomography (PET) show highly elevated periprosthetic bone uptake of fluorine-18 sodium fluoride (18F-fluoride), suggestive of implant loosening after arthroplasty. Focus so far has been on qualitative but not on quantitative assessment. There is also a lack of intraoperative confirmation of preoperative 18F-fluoride PET findings. Although the method seems to have acceptable accuracy and high sensitivity, an attempt to improve the specificity and an overall validation of the method appear warranted. QUESTIONS/PURPOSES (1) Is there a difference in 18F-fluoride uptake around loose versus well-fixed THA and TKA components? (2) Can 18F-fluoride uptake measures provide a threshold that differentiates loose from well-fixed implants undergoing revision for a variety of septic and aseptic indications? (3) In a population restricted to THA and TKA undergoing revision for aseptic indications, can measurement of 18F-fluoride uptake still distinguish loose from well-fixed components? (4) What is the interrater reliability of measuring 18F-fluoride uptake? METHODS This was a retrospective assessment of a diagnostic test, 18F-fluoride PET/CT, which was performed prior to revision surgery. We included 63 patients with 31 THAs and 32 TKAs. Sixty-five percent of patients were female, and the mean age at 18F-fluoride PET/CT was 66 years. The THA had different modes of fixation (cemented, cementless, and hybrid; 45%, 32%, and 23%, respectively), whereas all TKAs were cemented. Imaging was conducted using routine protocols 1 hour after tracer injection. The interobserver reproducibility was analyzed using Spearman rank correlations and Bland-Altman analyses. Two independent observers were trained separately by a nuclear physician to measure maximal periprosthetic standardized uptake values (SUVmax) for each arthroplasty component (n = 126). Findings at surgery (whether the components were well fixed or loose, as well as the presence or absence of infection) were used as a reference. Presence of periprosthetic joint infection was retrospectively determined based on the criteria suggested by the European Bone and Joint Infection Society (EBJIS): clinical features in combination with blood analysis, synovial fluid cytologic analysis, and microbiology test results. Receiver operating characteristic (ROC) curves were plotted to assess the area under the curve (AUC) for each investigated component separately, indicating suitable SUVmax thresholds that differentiate loose from well-fixed components. After excluding patients with confirmed or suspected PJI per the EBJIS criteria (n = 12), the above analysis was repeated for the remaining patients with aseptic loosening (n = 51). RESULTS We found higher 18F-fluoride uptake around loose versus well-fixed components in all but femoral TKA components (median [range] SUVmax for well-fixed versus loose THA cups 10 [7 to 30] versus 22 [6 to 64], difference of medians 12; p = 0.003; well-fixed versus loose TKA femoral components 14 [4 to 41] versus 19 [9 to 42], difference of medians 5; p = 0.38). We identified favorable ROC curves for all investigated components except femoral TKA components (THA cups AUC 0.81 [best threshold 13.9]; THA femoral stems AUC 0.9 [best threshold 17.3]; femoral TKA components AUC 0.6 [best threshold 14.3]; tibial TKA components AUC 0.83 [best threshold 15.8]). 18F-fluoride was even more accurate at diagnosing loosening when we limited the population to those patients believed not to have prosthetic joint infection (THA cups AUC 0.87 [best threshold 14.2]; THA femoral stems AUC 0.93 [best threshold 15.0]; femoral TKA components AUC 0.65 [best threshold 15.8]; tibial TKA components AUC 0.86 [best threshold 14.7]). We found strong interrater correlation when assessing SUVmax values, with Spearman ρ values ranging from 0.96 to 0.99 and Bland-Altman plots indicating excellent agreement between the two independent observers. CONCLUSION Measuring SUVmax after 18F-fluoride PET/CT is a useful adjunct in the diagnostic evaluation for suspected implant loosening after THA and TKA. The method appears to be both accurate and reliable in diagnosing implant loosening for all components except femoral TKA components. In a real-world mixed population with both low-grade infection and aseptic loosening, the method seems to be fairly easy to learn and helpful to subspecialized arthroplasty clinicians. When infection can be ruled out, the method probably performs even better. Further prospective studies are warranted to explore the reason why femoral TKA component loosening was more difficult to ascertain using this novel technique. LEVEL OF EVIDENCE Level III, diagnostic study.
Collapse
Affiliation(s)
- Caroline Sköld
- Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Department of Surgical Sciences/Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Anders Brüggemann
- Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Nils P Hailer
- Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Hannon CP, Salmons HI, Trousdale RT, Lewallen DG, Berry DJ, Abdel MP. Why Are Contemporary Primary Ceramic-on-Highly Crosslinked Polyethylene Total Hip Arthroplasties Failing? An Analysis of Over 5,500 Cases. J Arthroplasty 2024:S0883-5403(24)00921-5. [PMID: 39265814 DOI: 10.1016/j.arth.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ceramic-on-highly crosslinked polyethylene (HXLPE) has become the most common bearing surface utilized in primary total hip arthroplasty (THA). The purpose of this study was to determine the implant survivorship and clinical outcomes of THAs with ceramic-on-HXLPE in a large single-institutional series. METHODS We identified 5,536 primary THAs performed from 2007 to 2017 using a ceramic-on-HXLPE bearing through our total joint registry. The mean age was 60 years, 51% were women, and the mean body mass index was 30. A cementless femoral component was used in 98% of cases, and a head size of ≥ 36 was used in 75%. Kaplan-Meier survivorship analyses were completed to assess survivorship free of any revision or reoperation. Clinical outcomes were assessed via Harris Hip Score. The mean follow-up was four years. RESULTS The 5-year survivorship free of any revision was 97%. The most common indications for revision were dislocation (41 hips), periprosthetic joint infection (39 hips), and periprosthetic femur fracture (18 hips). The 5-year survivorship free of any reoperation was 96%. There were an additional 70 reoperations, with the most common indications being wound dehiscence (32 hips), iliopsoas impingement (11 hips), and periprosthetic femur fracture (11 hips). There were only two bearing surface failures: one HXLPE liner fractured and one dissociated. There were no ceramic head fractures or failures. The mean Harris Hip Score increased from 57 to 92 (P < 0.0001). CONCLUSIONS In over 5,500 THAs completed with modern ceramic-on-HXLPE bearings, failures of the bearing surface were nearly eliminated at midterm follow-up, and overall 5-year survivorship free of revision was excellent. Dislocation, periprosthetic joint infection, and periprosthetic femur fracture were the most common causes of failure. As bearing surfaces have evolved, traditional failure mechanisms such as polyethylene wear, corrosion and metal reactions, and ceramic fractures have become nearly extinct. LEVEL OF EVIDENCE III (Case-Control Study), Therapeutic.
Collapse
Affiliation(s)
- Charles P Hannon
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Harold I Salmons
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Wagener N, Pumberger M, Hardt S. Impact of fixation method on femoral bone loss: a retrospective evaluation of stem loosening in first-time revision total hip arthroplasty among two hundred and fifty five patients. INTERNATIONAL ORTHOPAEDICS 2024; 48:2339-2350. [PMID: 38822836 PMCID: PMC11347471 DOI: 10.1007/s00264-024-06230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE Implant loosening represent the most common indication for stem revision in hip revision arthroplasty. This study compares femoral bone loss and the risk of initial revisions between cemented and uncemented loosened primary stems, investigating the impact of fixation method at primary implantation on femoral bone defects. METHODS This retrospective study reviewed 255 patients who underwent their first revision for stem loosening from 2010 to 2022, receiving either cemented or uncemented stem implants. Femoral bone loss was preoperatively measured using the Paprosky classification through radiographic evaluations. Kaplan-Meier analysis estimated the survival probability of the original stem, and the hazard ratio assessed the relative risk of revision for uncemented versus cemented stems in the first postoperative year and the following two to ten years. RESULTS Cemented stems showed a higher prevalence of significant bone loss (type 3b and 4 defects: 32.39% vs. 2.72%, p < .001) compared to uncemented stems, which more commonly had type 1 and 2 defects (82.07% vs. 47.89%, p < .001). In our analysis of revision cases, primary uncemented stems demonstrated a 20% lower incidence of stem loosening in the first year post-implantation compared to cemented stems (HR 0.8; 95%-CI 0.3-2.0). However, the incidence in uncemented stems increased by 20% during the subsequent years two to ten (HR 1.2; 95%-CI 0.7-1.8). Septic loosening was more common in cemented stems (28.17% vs. 10.87% in uncemented stems, p = .001). Kaplan-Meier analysis indicated a modestly longer revision-free period for cemented stems within the first ten years post-implantation (p < .022). CONCLUSION During first-time revision, cemented stems show significantly larger femoral bone defects than uncemented stems. Septic stem loosening occurred 17.30% more in cemented stems.
Collapse
Affiliation(s)
- Nele Wagener
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Department of Orthopaedic Surgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
14
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
15
|
Dong J, Ruan B, Zhang L, Wei A, Li C, Tang N, Zhu L, Jiang Q, Cao W. DNA Methylation-Mediated GPX4 Transcriptional Repression and Osteoblast Ferroptosis Promote Titanium Particle-Induced Osteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0457. [PMID: 39161535 PMCID: PMC11331012 DOI: 10.34133/research.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Metal wear particles generated by the movement of joint prostheses inevitably lead to aseptic osteolytic damage and ultimately prosthesis loosening, which are aggravated by various types of regulated cell death of bone. Nevertheless, the exact cellular nature and regulatory network underlying osteoferroptosis are poorly understood. Here, we report that titanium particles (TP) induced severe peri-implant osteolysis and ferroptotic changes with concomitant transcriptional repression of a key anti-ferroptosis factor, GPX4, in a mouse model of calvarial osteolysis. GPX4 repression was accompanied by an increase in DNA methyltransferases (DNMTs) 1/3a/3b and hypermethylation of the Gpx4 promoter, which were partly mediated by the transcriptional regulator/co-repressor KLF5 and NCoR. Conversely, treatment with SGI-1027, a DNMT-specific inhibitor, resulted in marked reversal of Gpx4 promoter hypermethylation and GPX4 repression, as well as improvement in ferroptotic osteolysis to a similar extent as with a ferroptosis inhibitor, liproxstatin-1. This suggests that epigenetic GPX4 repression and ferroptosis caused by the increase of DNMT1/3a/3b have a causal influence on TP-induced osteolysis. In cultured primary osteoblasts and osteoclasts, GPX4 repression and ferroptotic changes were observed primarily in osteoblasts that were alleviated by SGI-1027 in a GPX4 inactivation-sensitive manner. Furthermore, we developed a mouse strain with Gpx4 haplodeficiency in osteoblasts (Gpx4 Ob+/-) that exhibited worsened ferroptotic osteolysis in control and TP-treated calvaria and largely abolished the anti-ferroptosis and osteoprotective effects of SGI-1027. Taken together, our results demonstrate that DNMT1/3a/3b elevation, resulting GPX4 repression, and osteoblastic ferroptosis form a critical epigenetic pathway that significantly contributes to TP-induced osteolysis, and that targeting DNMT aberration and the associated osteoferroptosis could be a potential strategy to prevent or slow down prosthesis-related osteolytic complications.
Collapse
Affiliation(s)
- Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Ai Wei
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Chuling Li
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Neng Tang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Linxi Zhu
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wangsen Cao
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
- Yancheng Medical Research Center, Yancheng First People’s Hospital,
Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
16
|
Di Martino A, Valtetsiotis K, Rossomando V, Brunello M, Bordini B, D’Agostino C, Ruta F, Traina F, Faldini C. Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines 2024; 12:1778. [PMID: 39200242 PMCID: PMC11351197 DOI: 10.3390/biomedicines12081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The scientific literature suggests that, if periprosthetic osteolysis (PPO) is not treated, it may have a negative impact on the results of a total hip replacement and possibly result in failure. This systematic review aimed to determine the efficacy of using bisphosphonates preventatively to limit PPO after a total hip arthroplasty (THA). METHODS A systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A PICOS template was developed to ensure a structured approach. A search for relevant studies was performed across four databases, including Pubmed, Scopus, Embase, and Cochrane. They were all last searched on March 1st and were assessed using the Cochrane risk of bias tool for randomised studies. RESULTS The final analysis included seven studies with a total of 126 study group participants and 144 control group participants. The studies looked at Bony Mass Density in terms of bone loss on Gruen's femoral zones after THA in a bisphosphonate (treatment) and control group (placebo/no treatment). The analysis revealed a statistically significant difference (p < 0.05) in favour of the bisphosphonate group in many of the included studies at 6, 12, and 24 postoperative months. CONCLUSIONS This systematic review and meta-analysis, using the most recent applicable studies, showed the efficacy of bisphosphonates in limiting periprosthetic osteolysis after THA in a period between 6 and 24 postoperative months. Future studies should focus increasing group sizes and collecting results beyond the 2-year mark.
Collapse
Affiliation(s)
- Alberto Di Martino
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Konstantinos Valtetsiotis
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Valentino Rossomando
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Matteo Brunello
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Barbara Bordini
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Claudio D’Agostino
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Federico Ruta
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Traina
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
- Chirurgia Protesica e dei Reimpianti d’Anca e di Ginocchio, Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Rizzoli Orthopedic Institute, Via G.C. Pupilli 1, 40136 Bologna, Italy (V.R.); (M.B.); (C.D.); (F.R.); (C.F.)
- Department of Biomedical and Neuromotor Science-DIBINEM, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
17
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
18
|
Liu S, Hall DJ, Dommann-Scherrer C, Pourzal R, Wahl P. Fourier-transform infrared spectroscopy imaging is a useful adjunct to routine histopathology to identify failure of polyethylene inlays in revision total hip arthroplasty. APMIS 2024; 132:553-563. [PMID: 38741279 DOI: 10.1111/apm.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
The use of highly crosslinked ultra-high molecular weight polyethylene (XLPE) has significantly reduced the volumetric wear of acetabular liners, thereby reducing the incidence of osteolysis. However, contemporary components tend to generate smaller wear particles, which can no longer be identified using conventional histology. This technical limitation can result in imprecise diagnosis. Here, we report on two uncemented total hip arthroplasty cases (~7 years in situ) revised for periprosthetic fracture of the femur and femoral loosening, respectively. Both liners exhibited prominent wear. The retrieved pseudocapsular tissue exhibited a strong macrophage infiltration without microscopically identifiable polyethylene particles. Yet, using Fourier-transform infrared micro-spectroscopic imaging (FTIR-I), we demonstrated the prominent intracellular accumulation of polyethylene debris in both cases. This study shows that particle induced osteolysis can still occur with XLPE liners, even under 10 years in situ. Furthermore, we demonstrate the difficulty of determining the presence of polyethylene debris within periprosthetic tissue. Considering the potentially increased bioactivity of finer particles from XLPE compared to conventional liners, an accurate detection method is required, and new histopathological hallmarks of particle induced osteolysis are needed. FTIR-I is a great tool to that end and can help the accurate determination of foreign body tissue responses.
Collapse
Affiliation(s)
- Songyun Liu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Deborah J Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Peter Wahl
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Shaffrey I, Henry J, Demetracopoulos C. An evaluation of the total ankle replacement in the modern era: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:71. [PMID: 39118953 PMCID: PMC11304414 DOI: 10.21037/atm-23-1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2024]
Abstract
Background and Objective Total ankle replacement has become an increasingly popular surgical procedure for treatment of end-stage ankle arthritis. Though ankle arthrodesis has historically been considered the gold standard treatment, advancements in implant design, functional outcomes, and survivorship have made total ankle replacement a compelling alternative. Particularly, in the past 20 years, total ankle replacement has undergone tremendous innovation, and the field of research in this procedure continues to grow. In this review, we aim to summarize the history, evolution, advancements, and future directions of total ankle replacement as described through implant design, indications, surgical procedures, complications, and outcomes. Methods Literature searches were conducted in PubMed to identify relevant articles published prior to March 2023 using the following keywords: "total ankle replacement", "total ankle arthroplasty", and "total ankle". Key Content and Findings Total ankle replacement has demonstrated significant improvements in surgical technique, implant design, survivorship, and clinical and functional outcomes in the modern era. The procedure reports high patient satisfaction, low complication rates, and improved functional abilities that challenge the current gold standard treatment for ankle arthritis. Conclusions Though there are areas of improvement for total ankle replacement, the procedure demonstrates promising outcomes for patients with end-stage ankle arthritis to improve pain and functional abilities. Research studies continue to explore various the facets of total ankle replacement, including outcomes, risk factors, novel techniques and modalities, and complications, to direct future innovation and to optimize patient results.
Collapse
Affiliation(s)
- Isabel Shaffrey
- Foot and Ankle Department, Hospital for Special Surgery, New York, NY, USA
| | - Jensen Henry
- Foot and Ankle Department, Hospital for Special Surgery, New York, NY, USA
| | | |
Collapse
|
20
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Lee GW, Song JE, Han JE, Kim NS, Lee KB. The Role of Receptor Activator of Nuclear Factor-κB Ligand/Osteoprotegerin Ratio in Synovial Fluid as a Potential Marker for Periprosthetic Osteolysis Following Total Ankle Arthroplasty. Clin Orthop Surg 2024; 16:661-668. [PMID: 39092303 PMCID: PMC11262952 DOI: 10.4055/cios23411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 08/04/2024] Open
Abstract
Background Periprosthetic osteolysis is a prevalent complication following total ankle arthroplasty (TAA), implicating various cytokines in osteoclastogenesis as pivotal in this process. This study aimed to evaluate the relationship between osteolysis and the concentrations of osteoclastogenesis-related cytokines in synovial fluid and investigate its clinical value following TAA. Methods Synovial fluid samples from 23 ankles that underwent revision surgery for osteolysis following TAA were analyzed as the osteolysis group. As a control group, we included synovial fluid samples obtained from 23 ankles during primary TAA for osteoarthritis. The receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio in these samples was quantified using sandwich enzyme-linked immunosorbent assay techniques, and a bead-based multiplex immunoassay facilitated the detection of specific osteoclastogenesis-related cytokines. Results RANKL levels averaged 487.9 pg/mL in 14 of 23 patients in the osteolysis group, with no detection in the control group's synovial fluid. Conversely, a significant reduction in OPG levels was observed in the osteolysis group (p = 0.002), resulting in a markedly higher mean RANKL/OPG ratio (0.23) relative to controls (p = 0.020). Moreover, the osteolysis group had increased concentrations of various osteoclastogenesis-related cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-8, IP-10, and monocyte chemotactic protein-1) in the synovial fluid relative to the control group. Conclusions Our results demonstrated that periprosthetic osteolysis was associated with osteoclastogenesis activation through an elevated RANKL/OPG ratio following TAA. We assume that RANKL and other osteoclastogenesis-related cytokines in the synovial fluid have clinical value as a potential marker for the development and progression of osteolysis following TAA.
Collapse
Affiliation(s)
- Gun-Woo Lee
- Department of Orthopedic Surgery, Chonnam National University Hospital, Gwangju, Korea
- Department of Orthopedic Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Ji-Eun Song
- Department of Orthopedic Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Jeong-Eun Han
- Department of Orthopedic Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Nack-Sung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Hospital, Gwangju, Korea
- Department of Orthopedic Surgery, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Abdelmoneim M, Farid H, El-Nahal AA, Mohamad MM. Evaluation of total hip arthroplasty for management of acetabular fracture complications: A prospective cohort study. JOURNAL OF MUSCULOSKELETAL SURGERY AND RESEARCH 2024; 8:210-220. [DOI: 10.25259/jmsr_90_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Objectives:
Total hip arthroplasty (THA) has been recommended as an effective tool for restoring joint function. This study aimed to evaluate the functional and clinical outcomes of THA management of acetabular fracture late complications such as arthritis by both Harris-Hip Score (HHS) and Western Ontario McMaster Osteoarthritis Index (WOMAC) score, anticipate, and prevent the most common complications such as infection and dislocation.
Methods:
This prospective case series included 30 patients with THA to manage acetabular fracture complications such as arthritis. The study started in November 2021 and ended in September 2023. Inclusion criteria were patients with acetabular fractures with secondary arthritis (pre-existing osteoarthritis were excluded) aged 25– 70 and who had at least 1 year from fracture to arthroplasty. Exclusion criteria were patients with a history of previous infection.
Results:
Heterotopic ossification (HO) improved statistically significantly after using ketorolac at an 18-month follow-up compared to preoperatively. Using both the HHS and WOMAC scores, a statistically significant difference was found between pre-operative and post-operative functional outcomes for estimating HO development using radiographs.
Conclusion:
THA was safe and effective in managing late acetabular fracture complications. Ketorolac use showed promising results in prophylaxis against HO.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Orthopedic Surgery, Kasralainy School of Medicine, Cairo University, Cairo, Egypt,
| | - Hany Farid
- Department of Orthopedics, Gamal Abd Elnasser Hospital, Alexandria, Egypt,
| | - Ashraf A El-Nahal
- Department of Orthopedic Surgery, Kasralainy School of Medicine, Cairo University, Cairo, Egypt,
| | - Molham M Mohamad
- Department of Orthopedic Surgery, Kasralainy School of Medicine, Cairo University, Cairo, Egypt,
| |
Collapse
|
23
|
Yu X, Ren Z, Wang Y, Yuan G, Hu J, Song L, Pan C, Feng K, Liu Y, Shao L, Zhang L, Wang J, Zhao J, Bao N, Sun Z. Kaempferol attenuates particle-induced osteogenic impairment by regulating ER stress via the IRE1α-XBP1s pathway. J Biol Chem 2024; 300:107394. [PMID: 38768813 PMCID: PMC11223082 DOI: 10.1016/j.jbc.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are the primary causes of failure following total joint arthroplasty. Wear particle-induced osteogenic impairment is recognized as an important contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress emerging as a pivotal underlying mechanism. Hence, searching for potential therapeutic targets and agents capable of modulating ER stress in osteoblasts is crucial for preventing aseptic loosening. Kaempferol (KAE), a natural flavonol compound, has shown promising osteoprotective effects and anti-ER stress properties in diverse diseases. However, the influence of KAE on ER stress-mediated osteogenic impairment induced by wear particles remains unclear. In this study, we observed that KAE effectively relieved TiAl6V4 particles-induced osteolysis by improving osteogenesis in a mouse calvarial model. Furthermore, we demonstrated that KAE could attenuate ER stress-mediated apoptosis in osteoblasts exposed to TiAl6V4 particles, both in vitro and in vivo. Mechanistically, our results revealed that KAE mitigated ER stress-mediated apoptosis by upregulating the IRE1α-XBP1s pathway while concurrently partially inhibiting the IRE1α-regulated RIDD and JNK activation. Collectively, our findings suggest that KAE is a prospective therapeutic agent for treating wear particle-induced osteolysis and highlight the IRE1α-XBP1s pathway as a potential therapeutic target for preventing aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuxiang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guodong Yuan
- Department of Orthopedics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuqiao Liu
- Medical Information Data Bank, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longgang Shao
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinjuan Wang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
24
|
Mani G, Porter D, Collins S, Schatz T, Ornberg A, Shulfer R. A review on manufacturing processes of cobalt-chromium alloy implants and its impact on corrosion resistance and biocompatibility. J Biomed Mater Res B Appl Biomater 2024; 112:e35431. [PMID: 38817036 DOI: 10.1002/jbm.b.35431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/23/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Cobalt-Chromium (CoCr) alloys are currently used for various cardiovascular, orthopedic, fracture fixation, and dental implants. A variety of processes such as casting, forging, wrought processing, hot isostatic pressing, metal injection molding, milling, selective laser melting, and electron beam melting are used in the manufacture of CoCr alloy implants. The microstructure and precipitates (carbides, nitrides, carbonitrides, and intermetallic compounds) formed within the alloy are primarily determined by the type of manufacturing process employed. Although the effects of microstructure and precipitates on the physical and mechanical properties of CoCr alloys are well reviewed and documented in the literature, the effects on corrosion resistance and biocompatibility are not comprehensively reviewed. This article reviews the various processes used to manufacture CoCr alloy implants and discusses the effects of manufacturing processes on corrosion resistance and biocompatibility. This review concludes that the microstructure and precipitates formed in the alloy are unique to the manufacturing process employed and have a significant impact on the corrosion resistance and biocompatibility of CoCr alloys. Additionally, a historical and scientific overview of corrosion and biocompatibility for metallic implants is included in this review. Specifically, the failure of CoCr alloys when used in metal-on-metal bearing surfaces of total hip replacements is highlighted. It is recommended that the type of implant/application (orthopedic, dental, cardiovascular, etc.) should be the first and foremost factor to be considered when selecting biomaterials for medical device development.
Collapse
Affiliation(s)
- Gopinath Mani
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| | - Deanna Porter
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| | - Shell Collins
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| | - Tim Schatz
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| | - Andreas Ornberg
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| | - Robert Shulfer
- Global Biocompatibility and Science & Technology Organization, Abbott, St. Paul, Minnesota, USA
| |
Collapse
|
25
|
Gao T, Yu C, Shi X, Hu Y, Chang Y, Zhang J, Wang Y, Zhai Z, Jia X, Mao Y. Artemisinic acid attenuates osteoclast formation and titanium particle-induced osteolysis via inhibition of RANKL-induced ROS accumulation and MAPK and NF-κB signaling pathways. Front Pharmacol 2024; 15:1345380. [PMID: 38751789 PMCID: PMC11094322 DOI: 10.3389/fphar.2024.1345380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Periprosthetic osteolysis (PPO) is the most common cause of joint arthroplasty failure. Its progression involves both biological and mechanical factors. Osteoclastogenesis induced by wear from debris-cell interactions, ultimately leading to excessive bone erosion, is considered the primary cause of PPO; therefore, targeting osteoclasts is a promising treatment approach. Currently available drugs have various side effects and limitations. Artemisinic acid (ArA) is a sesquiterpene isolated from the traditional herb Artemisia annua L. that has various pharmacological effects, such as antimalarial, anti-inflammatory, and antioxidant activities. Therefore, this study was aimed at investigating the effect of ArA on osteoclast formation and bone resorption function in vitro, as well as wear particle-induced osteolysis in vivo, and to explore its molecular mechanism of action. Here, we report that ArA inhibits RANKL-stimulated osteoclast formation and function. Mechanistically, ArA suppresses intracellular reactive oxygen species levels by activating the antioxidant response via nuclear factor erythroid-2-related factor 2 (Nrf2) pathway upregulation. It also inhibits the mitogen-activated kinases (MAPK) and nuclear factor-κB (NF-κB) pathways, as well as the transcription and expression of NFATc1 and c-Fos. In vivo experiments demonstrated that ArA reduces osteoclast formation and alleviates titanium particle-induced calvarial osteolysis. Collectively, our study highlights that ArA, with its osteoprotective and antioxidant effects, is a promising therapeutic agent for preventing and treating PPO and other osteoclast-mediated osteolytic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
27
|
Jillek B, Szabó P, Kopniczky J, Krafcsik O, Szabó I, Patczai B, Turzó K. Characterizing Surface Morphological and Chemical Properties of Commonly Used Orthopedic Implant Materials and Determining Their Clinical Significance. Polymers (Basel) 2024; 16:1193. [PMID: 38732662 PMCID: PMC11085225 DOI: 10.3390/polym16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The goal of the study was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology, as these determine their successful biointegration. The morphological and chemical structure of Vortex plate anodized titanium from commercially pure (CP) Grade 2 Titanium (Ti2) is generally used in the following; non-cemented total hip replacement (THR) stem and cup Ti alloy (Ti6Al4V) with titanium plasma spray (TPS) coating; cemented THR stem Stainless steel (SS); total knee replacement (TKR) femoral component CoCrMo alloy (CoCr); cemented acetabular component from highly cross-linked ultrahigh molecular weight polyethylene (HXL); and cementless acetabular liner from ultrahigh molecular weight polyethylene (UHMWPE) (Sanatmetal, Ltd., Eger, Hungary) discs, all of which were examined. Visualization and elemental analysis were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. TPS Ti presented the highest Ra value (25 ± 2 μm), followed by CoCr (535 ± 19 nm), Ti2 (227 ± 15 nm) and SS (170 ± 11 nm). The roughness measured in the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements regarding the investigated prosthesis materials. XPS results supported the EDS results and revealed a high % of Ti4+ on Ti2 and TPS surfaces. The results indicate that the surfaces of prosthesis materials have significantly different features, and a detailed characterization is needed to successfully apply them in orthopedic surgery and traumatology.
Collapse
Affiliation(s)
- Bertalan Jillek
- Department of Orthopedics, Somogy County Mór Kaposi Teaching Hospital, Tallián Gyula u. 20-32, H-7400 Kaposvár, Hungary
| | - Péter Szabó
- Szentágothai Research Center, Environmental Analytical and Geoanalytical Research Group, Ifjúság útja 20., H-7624 Pécs, Hungary;
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., H-6720 Szeged, Hungary;
| | - Olga Krafcsik
- Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
| | - István Szabó
- Department of Orthopedics, Somogy County Mór Kaposi Teaching Hospital, Tallián Gyula u. 20-32, H-7400 Kaposvár, Hungary
| | - Balázs Patczai
- Department of Traumatology and Hand Surgery, University of Pécs, Ifjúság u. 13., H-7624 Pécs, Hungary;
| | - Kinga Turzó
- Dental School, Medical Faculty, University of Pécs, Tüzér u. 1, H-7623 Pécs, Hungary;
| |
Collapse
|
28
|
Sass JO, Henke P, Mitrovic A, Weinmann M, Kluess D, Johannsen J, Sellin ML, Lembke U, Reimer D, Lork C, Jonitz-Heincke A, Bader R. Multifunctional Hybrid Material for Endoprosthetic Implants Based on Alumina-Toughened Zirconia Ceramics and Additively Manufactured TiNbTa Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1838. [PMID: 38673194 PMCID: PMC11051168 DOI: 10.3390/ma17081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Aseptic implant loosening after a total joint replacement is partially influenced by material-specific factors when cobalt-chromium alloys are used, including osteolysis induced by wear and corrosion products and stress shielding. Here, we aim to characterize a hybrid material consisting of alumina-toughened zirconia (ATZ) ceramics and additively manufactured Ti-35Nb-6Ta (TiNbTa) alloys, which are joined by a glass solder. The structure of the joint, the static and fatigue shear strength, the influence of accelerated aging, and the cytotoxicity with human osteoblasts are characterized. Furthermore, the biomechanical properties of the functional demonstrators of a femoral component for total knee replacements are evaluated. The TiNbTa-ATZ specimens showed a homogenous joint with statistically distributed micro-pores and a slight accumulation of Al-rich compounds at the glass solder-TiNbTa interface. Shear strengths of 26.4 ± 4.2 MPa and 38.2 ± 14.4 MPa were achieved for the TiNbTa-ATZ and Ti-ATZ specimens, respectively, and they were not significantly affected by the titanium material used, nor by accelerated aging (p = 0.07). All of the specimens survived 107 cycles of shear loading to 10 MPa. Furthermore, the TiNbTa-ATZ did not impair the proliferation and metabolic activity of the human osteoblasts. Functional demonstrators made of TiNbTa-ATZ provided a maximum bearable extension-flexion moment of 40.7 ± 2.2 Nm. The biomechanical and biological properties of TiNbTa-ATZ demonstrate potential applications for endoprosthetic implants.
Collapse
Affiliation(s)
- Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
| | - Paul Henke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
| | - Aurica Mitrovic
- ZM Praezisionsdentaltechnik GmbH, Breite Str. 16, D-18057 Rostock, Germany (C.L.)
| | | | - Daniel Kluess
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
- INNOPROFF GmbH, Joachim-Jungius-Straße 9, D-18059 Rostock, Germany
| | - Jan Johannsen
- Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Am Schleusengraben 14, D-21029 Hamburg, Germany;
| | - Marie-Luise Sellin
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
| | - Ulrich Lembke
- DOT GmbH, Charles-Darwin-Ring 1A, D-18059 Rostock, Germany
| | - Daniel Reimer
- FMZ GmbH, Charles-Darwin-Ring 3A, D-18059 Rostock, Germany
| | - Cornelia Lork
- ZM Praezisionsdentaltechnik GmbH, Breite Str. 16, D-18057 Rostock, Germany (C.L.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany; (P.H.)
| |
Collapse
|
29
|
Wang J, Chen G, Yang X, Dou W, Mao Y, Zhang Y, Shi X, Xia Y, You Q, Liu M. Inhibitory effects of norcantharidin on titanium particle-induced osteolysis, osteoclast activation and bone resorption via MAPK pathways. Int Immunopharmacol 2024; 129:111655. [PMID: 38340423 DOI: 10.1016/j.intimp.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenwen Dou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yudie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaotian Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehua Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuyi You
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
30
|
Travnickova M, Filova E, Slepicka P, Slepickova Kasalkova N, Kocourek T, Zaloudkova M, Suchy T, Bacakova L. Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:2837. [PMID: 38474083 DOI: 10.3390/ijms25052837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.
Collapse
Affiliation(s)
- Martina Travnickova
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Elena Filova
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Faculty of Materials and Technology, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Tomas Kocourek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 01 Kladno, Czech Republic
| | - Margit Zaloudkova
- Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holesovickach 94/41, 182 09 Prague, Czech Republic
| | - Tomas Suchy
- Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holesovickach 94/41, 182 09 Prague, Czech Republic
| | - Lucie Bacakova
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Faculty of Materials and Technology, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| |
Collapse
|
31
|
Ma T, Chen S, Wang J, Liang S, Chen M, Liu Q, Zhang Z, Liu G, Yang Y, Hu Y, Xie J. Enhanced Osteolysis Targeted Therapy through Fusion of Exosomes Derived from M2 Macrophages and Bone Marrow Mesenchymal Stem Cells: Modulating Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303506. [PMID: 37806770 DOI: 10.1002/smll.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.
Collapse
Affiliation(s)
- Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
32
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
33
|
Mondal S, MacManus DB, Ghosh R, Banagunde A, Dunne N. A numerical investigation of stress, strain, and bone density changes due to bone remodelling in the talus bone following total ankle arthroplasty. J Med Eng Technol 2024; 48:1-11. [PMID: 38864409 DOI: 10.1080/03091902.2024.2355319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Total ankle arthroplasty is the gold standard surgical treatment for severe ankle arthritis and fracture. However, revision surgeries due to the in vivo failure of the ankle implant are a serious concern. Extreme bone density loss due to bone remodelling is one of the main reasons for in situ implant loosening, with aseptic loosening of the talar component being one of the primary reasons for total ankle arthroplasty revisions. This study is aimed at determining the performance and potential causes of failure of the talar component. Herein, we investigated the stress, strain, and bone density changes that take place in the talus bone during the first 6 months of bone remodelling due to the total ankle arthroplasty procedure. Computed tomography scans were used to generate the 3D geometry used in the finite element (FE) model of the Intact and implanted ankle. The Scandinavian Total Ankle Replacement (STAR™) CAD files were generated, and virtual placement within bone models was done following surgical guidelines. The dorsiflexion physiological loading condition was investigated. The cortical region of the talus bone was found to demonstrate the highest values of stress (5.02 MPa). Next, the adaptive bone remodelling theory was used to predict bone density changes over the initial 6-month post-surgery. A significant change in bone density was observed in the talus bone due to bone remodelling. The observed quantitative changes in talus bone density over 6-month period underscore potential implications for implant stability and fracture susceptibility. These findings emphasise the importance of considering such biomechanical factors in ankle implant design and clinical management.
Collapse
Affiliation(s)
- Subrata Mondal
- Mechanical Engineering Department, University of Bath, United Kingdom
| | - David B MacManus
- School of Mechanical and Materials Engineering, University College Dublin, Ireland
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Abhishek Banagunde
- Powertrain Durability Mahindra and Mahindra Ltd, Mahindra World City, Chennai, Tamilnadu, India
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland
- Centre for Medical Engineering Research, Dublin City University, Ireland
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Biodesign Europe, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
34
|
Kapustina I, Ali Y, Kallen ME, Hasan SA, Davis DL. Arthroplasty-Related Pseudotumor of the Scapula: Case Report and Review of the Literature. Indian J Radiol Imaging 2024; 34:163-166. [PMID: 38106871 PMCID: PMC10723976 DOI: 10.1055/s-0043-1772692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Arthroplasty-related pseudotumors are nonneoplastic and noninfectious inflammatory masses that are typically associated with adverse reaction to metal debris. Pseudotumors most commonly occur in the setting of metal-on-metal joint replacements at the hip. However, the presentation of pseudotumor at the shoulder is exceedingly rare. In this article, we reported a case of arthroplasty-related pseudotumor of the scapula. Clinical history, radiologic signs, and tissue analysis are described. Knowledge of this rare diagnosis will support clinical decision making for teams of radiologists, pathologists, oncologists, and orthopaedic surgeons who provide care for patients presenting with suspicious shoulder masses.
Collapse
Affiliation(s)
- Irina Kapustina
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland, United States
| | - Youssef Ali
- University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Michael E. Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - S. Ashfaq Hasan
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Derik L. Davis
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
35
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
36
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Man K, Mazumder S, Dahotre NB, Yang Y. Surface Nanostructures Enhanced Biocompatibility and Osteoinductivity of Laser-Additively Manufactured CoCrMo Alloys. ACS OMEGA 2023; 8:47658-47666. [PMID: 38144145 PMCID: PMC10734289 DOI: 10.1021/acsomega.3c04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 12/26/2023]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in orthopedic implants due to their excellent corrosion and wear resistance and superior mechanical properties. However, their limited capability to promote cell adhesion and new bone tissue formation, poor blood compatibility, and risk of microbial infection can lead to implant failure or reduced implant lifespan. Surface structure modification has been used to improve the cytocompatibility and blood compatibility of implant materials and reduce the risk of infection. In this study, we prepared CoCrMo alloys with surface nanostructures of various aspect ratios (AR) using laser-directed energy deposition (L-DED) and biocorrosion. Our results showed that medium and high AR nanostructures reduced platelet adhesion, while all of the alloys demonstrated good blood compatibility and antibacterial properties. Moreover, the medium and high AR nanostructures promoted cell adhesion and spreading of both preosteoblast MC3T3 cells and human bone marrow mesenchymal stem cells (hMSCs). Furthermore, the nanostructure promoted the osteogenic differentiation of both cell types compared with the flat control surface, with a substantial enhancing effect for the medium and high ARs. Our study proposes a promising approach for developing implant materials with improved clinical outcomes.
Collapse
Affiliation(s)
- Kun Man
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
- Center
for Agile and Adaptive Additive Manufacturing, University of North Texas, Denton, Texas 76207, United States
| | - Sangram Mazumder
- Center
for Agile and Adaptive Additive Manufacturing, University of North Texas, Denton, Texas 76207, United States
- Department
of Materials Science and Engineering, University
of North Texas, Denton, Texas 76207, United States
| | - Narendra B. Dahotre
- Center
for Agile and Adaptive Additive Manufacturing, University of North Texas, Denton, Texas 76207, United States
- Department
of Materials Science and Engineering, University
of North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| |
Collapse
|
38
|
Tao H, Li X, Chu M, Wang Q, Li P, Han Q, Chen K, Zhu P, Hao Y, Yang X, Geng D, Gu Y. CB2 regulates oxidative stress and osteoclastogenesis through NOX1-dependent signaling pathway in titanium particle-induced osteolysis. Cell Death Discov 2023; 9:461. [PMID: 38104087 PMCID: PMC10725463 DOI: 10.1038/s41420-023-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles at the interface between the prosthesis and bone is a crucial issue of periprosthetic bone loss and implant failure. After wear and tear, granular material accumulates around the joint prosthesis, causing a chronic inflammatory response, progressive osteoclast activation and eventual loosening of the prosthesis. Although many studies have been conducted to address bone loss after joint replacement surgeries, they have not fully addressed these issues. Focusing on osteoclast activation induced by particles has important theoretical implications. Cannabinoid type II receptor (CB2) is a seven-transmembrane receptor that is predominantly distributed in the human immune system and has been revealed to be highly expressed in bone-associated cells. Previous studies have shown that modulation of CB2 has a positive effect on bone metabolism. However, the exact mechanism has not yet been elucidated. In our experiments, we found that NOX1-mediated ROS accumulation was involved in titanium particle-stimulated osteoclast differentiation. Furthermore, we confirmed that CB2 blockade alleviated titanium particle-stimulated osteoclast activation by inhibiting the NOX1-mediated oxidative stress pathway. In animal experiments, downregulation of CB2 alleviated the occurrence of titanium particle-induced cranial osteolysis by inhibiting osteoclasts and scavenging intracellular ROS. Collectively, our results suggest that CB2 blockade may be an attractive and promising therapeutic scheme for particle-stimulated osteoclast differentiation and preventing PPO.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xueyan Li
- Anesthesiology department, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ping Li
- Department of Central Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Gusu School, Suzhou, Jiangsu, China
| | - Qibin Han
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
39
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
40
|
Xu X, Li L, Wang B, Shi B. Caffeic acid phenethyl ester ameliorates titanium particle-induced bone loss and inflammatory reaction in a mouse acute model. Biochem Biophys Res Commun 2023; 681:47-54. [PMID: 37751634 DOI: 10.1016/j.bbrc.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
With the increasing clinical application of dental and orthopedic implants, the problem of peri-implant osteolysis has attracted attention. The inflammatory response and osteoclast differentiation induced by wear particles play an important role in peri-implant bone loss. However, the treatment of peri-implant osteolysis is still lacking. In the present study, we investigated the effect of caffeic acid phenethyl ester (CAPE) on titanium particles induced bone loss in a mouse model. We found that CAPE significantly suppressed titanium particle-induced bone loss in vivo. CAPE treatment decreased ratio of nuclear factor kappa B receptor activator ligand (RANKL)/osteoprotegerin (OPG) and subsequently reduced osteoclastogenesis in the mouse model. In addition, CAPE downregulated the expression and secretion of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) stimulated by titanium particles in vivo. In summary, we conclude that CAPE prevent the titanium particles-induced bone loss.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Beike Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
41
|
Pegios VF, Kenanidis E, Tsotsolis S, Potoupnis M, Tsiridis E. Bisphosphonates' use and risk of aseptic loosening following total hip arthroplasty: a systematic review. EFORT Open Rev 2023; 8:798-808. [PMID: 37909705 PMCID: PMC10646521 DOI: 10.1530/eor-22-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Purpose The main indication of bisphosphonates (BPs) is osteoporosis treatment. However, there is growing interest in the peri- and postoperative use of BPs to mitigate total hip arthroplasty (THA) aseptic loosening (AL) risk. This systematic review aimed to evaluate the implant survival and the AL rate in patients with elective THA receiving BPs compared to those that do not receive BPs. Secondary outcomes included the comparison of revision rate, postoperative complications, and patients' functional scores. Methods This systematic review was conducted under the PRISMA 2020 guidelines with a pre-registered PROSPERO protocol. Three engines and grey literature were searched up until May 2022. Randomized and nonrandomized controlled trials and comparative cohort studies assessing BP and control therapy impact on THA survival were included. Results Twelve studies embraced the inclusion criteria. A total of 99 678 patients and 99 696 THAs were included; 10 025 patients received BPs (BP group), and 89 129 made up the control group. The overall revision and AL rates were lower in the BP group (2.17% and 1.85%) than in the control group (4.06% and 3.2%). Periprosthetic fracture (PPF) cases were higher in the BP group (0.24%) than in the control group (0.04%); however, the majority of PPF cases were derived from a single study. Further complication risk was similar between groups. Most studies reported comparable functional scores between groups. Conclusion BP treatment after elective THA seems to reduce the overall revision and AL risk. Other complications' risk and functional scores were similar between groups. Further high-quality studies are needed to validate the results due to the multifactorial AL pathogenesis.
Collapse
Affiliation(s)
- Vasileios F Pegios
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Thessaloniki, Greece
| | - Eustathios Kenanidis
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Thessaloniki, Greece
| | - Stavros Tsotsolis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Thessaloniki, Greece
- Department of Trauma and Orthopaedics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Michael Potoupnis
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Thessaloniki, Greece
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Thessaloniki, Greece
| |
Collapse
|
42
|
Xie J, Hu Y, Su W, Chen S, Wang J, Liang S, Chen M, Wang H, Ma T. PLGA nanoparticles engineering extracellular vesicles from human umbilical cord mesenchymal stem cells ameliorates polyethylene particles induced periprosthetic osteolysis. J Nanobiotechnology 2023; 21:398. [PMID: 37904168 PMCID: PMC10617042 DOI: 10.1186/s12951-023-02177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
The wear particle-induced dissolution of bone around implants is a significant pathological factor in aseptic loosening, and controlling prosthetic aseptic loosening holds crucial social significance. While human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exos, Exos) have been found to effectively promote osteogenesis and angiogenesis, their role in periprosthetic osteolysis remains unexplored. To enhance their in vivo application, we engineered HucMSCs-Exos-encapsulated poly lactic-co-glycolic acid (PLGA) nanoparticles (PLGA-Exos). In our study, we demonstrate that PLGA-Exos stimulate osteogenic differentiation while inhibiting the generation of reactive oxygen species (ROS) and subsequent osteoclast differentiation in vitro. In vivo imaging revealed that PLGA-Exos released exosomes slowly and maintained a therapeutic concentration. Our in vivo experiments demonstrated that PLGA-Exos effectively suppressed osteolysis induced by polyethylene particles. These findings suggest that PLGA-Exos hold potential as a therapeutic approach for the prevention and treatment of periprosthetic osteolysis. Furthermore, they provide novel insights for the clinical management of osteolysis.
Collapse
Affiliation(s)
- Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiping Su
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haoyi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
43
|
Jaenisch M, Guder C, Ossendorff R, Randau TM, Gravius S, Wirtz DC, Strauss AC, Schildberg FA. In Vitro Biocompatibility of the Novel Ceramic Composite Baghdadite for Defect Augmentation in Revision Total Hip Arthroplasty. J Funct Biomater 2023; 14:517. [PMID: 37888182 PMCID: PMC10607879 DOI: 10.3390/jfb14100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Biological augmentation of bony defects in weight-bearing areas of both the acetabulum and the femur remains challenging. The calcium-silicate-based ceramic Baghdadite is a very interesting material to be used in the field of revision total hip arthroplasty for the treatment of bony defects in weight-bearing and non-weight-bearing areas alike. The aim of this study was to investigate the biocompatibility of Baghdadite utilizing an osteoblast-like, human osteosarcoma cell line (MG-63) and the human monocytic leukemia-derived cell line (THP-1). THP-1-derived macrophages and MG-63 were indirectly exposed to Baghdadite for 7 days using a transwell system. Viability was assessed with MTT assay and pH analysis. To investigate proliferation rate, both cell lines were labelled using CFSE and flow cytometrically analyzed. ELISA was used to measure the secretion of IL-1ß, IL-6 and TNFα. The investigation of viability, while showing a slight difference in optical density for the MTT assays in MG-63 cells, did not present a meaningful difference between groups for both cell lines. The comparison of pH and the proportion of living cells between groups did not present with a significant difference for both THP-1 and MG-63. Baghdadite did not have a relevant impact on the proliferation rate of the investigated cell lines. Mean fluorescence intensity was calculated between groups with no significant difference. Baghdadite exerted a proinflammatory effect, which could be seen in an upregulated production of TNFα in macrophages. Production of IL-1ß and IL-6 was not statistically significant, but the IL-6 ELISA showed a trend to an upregulated production as well. A similar effect on MG-63 was not observed. No relevant cytotoxicity of Baghdadite ceramics was encountered. Baghdadite ceramics exhibit a proinflammatory potential by significantly increasing the secretion of TNFα in THP-1-derived macrophages. Whether this proinflammatory potential results in a clinically relevant effect on osteointegration is unclear and requires further investigation. Baghdadite ceramics provide an interesting alternative to conventional bone substitutes and should be further investigated in a biomechanical and in vivo setting.
Collapse
Affiliation(s)
- Max Jaenisch
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian Guder
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas M. Randau
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
- Department of Orthopedics, Orthopedic Surgery and Sports Medicine, Augustinian Hospital Cologne, 50678 Cologne, Germany
| | - Sascha Gravius
- Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, 68167 Mannheim, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas C. Strauss
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
44
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Bielniková-Kryštofová H, Oldřich M, Židlík V, Žiak D, Szotkovská I, Škarda J, Voves J, Pometlová J, Pleva L, Havlíček M, Čabanová K. Immunohistochemical evaluation of tissues following bone implant extraction from upper and lower limb. Histol Histopathol 2023; 38:1119-1127. [PMID: 36928509 DOI: 10.14670/hh-18-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Fractured bones can regenerate and restore their biological and mechanical properties to the state prior to the damage. In some cases, however, the treatment of fractures requires the use of supportive implants. For bone healing, three processes are essential: the inflammatory phase, the repair phase and the remodelling phase. A proper course of the first - inflammatory - stage is important to ensure a successful fracture healing process. In our study, we evaluated tissue samples immunohistochemically from the area surrounding the fractures of upper and lower limbs (bone tissue, soft tissue, and the implant-adhering tissue) for markers: CD11b, CD15, CD34, CD44, CD68, Cathepsin K, and TRAcP that are linked to the aforementioned phases. In soft tissue, higher expressions of CD68, CD34, CD15 and CD11b markers were observed than in other locations. TRAcP and Cathepsin K markers were more expressed in the bone tissue, while pigmentation, necrosis and calcification were more observed in the implant-adhering tissue. Since even the implant materials commonly perceived as inert elicit the observed inflammatory responses, new surface treatments and materials need to be developed.
Collapse
Affiliation(s)
- Hana Bielniková-Kryštofová
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Centre for Advanced Innovation Technologies, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava and University of Ostrava, Ostrava, Czech Republic
| | - Motyka Oldřich
- Faculty of Mining and Geology, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Židlík
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava and University of Ostrava, Ostrava, Czech Republic
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Dušan Žiak
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava and University of Ostrava, Ostrava, Czech Republic
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Iveta Szotkovská
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava and University of Ostrava, Ostrava, Czech Republic
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jozef Škarda
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava and University of Ostrava, Ostrava, Czech Republic
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Laboratory of Molecular Pathology, Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jiří Voves
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Trauma Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jana Pometlová
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Trauma Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Leopold Pleva
- Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Trauma Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | | | - Kristina Čabanová
- Centre for Advanced Innovation Technologies, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
- Faculty of Mining and Geology, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
46
|
Yu X, Ding H, Wang D, Ren Z, Chen B, Wu Q, Yuan T, Liu Y, Zhang L, Zhao J, Sun Z. Particle-induced osteolysis is mediated by endoplasmic reticulum stress-associated osteoblast apoptosis. Chem Biol Interact 2023; 383:110686. [PMID: 37659624 DOI: 10.1016/j.cbi.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Osteoblast dysfunction plays a crucial role in periprosthetic osteolysis and aseptic loosening, and endoplasmic reticulum (ER) stress is recognized as an important causal factor of wear particle-induced osteolysis. However, the influence of ER stress on osteoblast activity during osteolysis and its underlying mechanisms remain elusive. This study aims to investigate whether ER stress is involved in the detrimental effects of wear particles on osteoblasts. Through our investigation, we observed elevated expression levels of ER stress and apoptosis markers in particle-stimulated bone specimens and osteoblasts. To probe further, we employed the ER stress inhibitor, 4-PBA, to treat particle-stimulated osteoblasts. The results revealed that 4-PBA effectively alleviated particle-induced osteoblast apoptosis and mitigated osteogenic reduction. Furthermore, our study revealed that wear particle-induced ER stress in osteoblasts coincided with mitochondrial damage, calcium overload, and oxidative stress, all of which were effectively alleviated by 4-PBA treatment. Encouragingly, 4-PBA administration also improved bone formation and attenuated osteolysis in a mouse calvarial model. In conclusion, our results demonstrate that ER stress plays a crucial role in mediating wear particle-induced osteoblast apoptosis and impaired osteogenic function. These findings underscore the critical involvement of ER stress in wear particle-induced osteolysis and highlight ER stress as a potential therapeutic target for ameliorating wear particle-induced osteogenic reduction and bone destruction.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Lei Zhang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
47
|
Bandyopadhyay A, Mitra I, Avila JD, Upadhyayula M, Bose S. Porous metal implants: processing, properties, and challenges. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2023; 5:032014. [PMID: 37476350 PMCID: PMC10355163 DOI: 10.1088/2631-7990/acdd35] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/26/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
Porous and functionally graded materials have seen extensive applications in modern biomedical devices-allowing for improved site-specific performance; their appreciable mechanical, corrosive, and biocompatible properties are highly sought after for lightweight and high-strength load-bearing orthopedic and dental implants. Examples of such porous materials are metals, ceramics, and polymers. Although, easy to manufacture and lightweight, porous polymers do not inherently exhibit the required mechanical strength for hard tissue repair or replacement. Alternatively, porous ceramics are brittle and do not possess the required fatigue resistance. On the other hand, porous biocompatible metals have shown tailorable strength, fatigue resistance, and toughness. Thereby, a significant interest in investigating the manufacturing challenges of porous metals has taken place in recent years. Past research has shown that once the advantages of porous metallic structures in the orthopedic implant industry have been realized, their biological and biomechanical compatibility-with the host bone-has been followed up with extensive methodical research. Various manufacturing methods for porous or functionally graded metals are discussed and compared in this review, specifically, how the manufacturing process influences microstructure, graded composition, porosity, biocompatibility, and mechanical properties. Most of the studies discussed in this review are related to porous structures for bone implant applications; however, the understanding of these investigations may also be extended to other devices beyond the biomedical field.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Jose D Avila
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Mahadev Upadhyayula
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
48
|
Sun Z, Kang J, Yang S, Zhang Y, Huang N, Zhang X, Du G, Jiang J, Ning B. CD73 inhibits titanium particle-associated aseptic loosening by alternating activation of macrophages. Int Immunopharmacol 2023; 122:110561. [PMID: 37451018 DOI: 10.1016/j.intimp.2023.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Aseptic inflammation is a major cause of late failure in total joint arthroplasty, and the primary factor contributing to the development and perpetuation of aseptic inflammation is classical macrophage activation (M1 phenotype polarization) induced by wear particles. CD73 (ecto-5'-nucleotidase) is an immunosuppressive factor that establishes an adenosine-induced anti-inflammatory environment. Although CD73 has been shown to suppress inflammation by promoting alternate macrophage activation (M2 phenotype polarization), its role in wear particle-induced aseptic inflammation is currently unknown. Our experiments were based on metabolomic assay results in a mouse model of aseptic loosening, and studied the function of CD73 in vivo and in vitro using a mouse aseptic loosening model and a mouse bone marrow derived macrophage (BMDM) inflammation model. Results show that aseptic loosening (AL) reduces the purine metabolic pathway and decreases the native expression of the metabolite adenosine. In vivo, CD73 expression was low in the bone tissue surrounding the titanium nail and synovial-like interface tissue, while in vitro experiments demonstrated that CD73 knockdown promoted titanium particles-induced aseptic inflammation. CD73 overexpression mitigated the titanium particle-mediated enhancement of LPS-induced M1 polarization while promoting the titanium particle-mediated attenuation of IL-4-induced M2 polarization. In BMDM exposed to titanium particles, CD73 promotes M2 polarization via the p38 pathway. Meanwhile, local injection of recombinant mouse CD73 protein slightly alleviated the progression of AL. Collectively, our data suggest that CD73 alleviates the process of AL, and this function is achieved by promoting alternate activation of macrophages.
Collapse
Affiliation(s)
- Zhengfang Sun
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shuye Yang
- Department of Traumatic Orthopedics, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong Province, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Nana Huang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xiaodi Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Gangqiang Du
- Department of Traumatic Orthopedics, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong Province, China
| | - Jianhao Jiang
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Department of Traumatic Orthopedics, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong Province, China.
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
49
|
Li X, Shen H, Zhang M, Teissier V, Huang EE, Gao Q, Tsubosaka M, Toya M, Kushioka J, Maduka CV, Contag CH, Chow SKH, Zhang N, Goodman SB. Glycolytic reprogramming in macrophages and MSCs during inflammation. Front Immunol 2023; 14:1199751. [PMID: 37675119 PMCID: PMC10477714 DOI: 10.3389/fimmu.2023.1199751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Background Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.
Collapse
Affiliation(s)
- Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Zhang
- Cardiovascular Institute Operations, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Chima V. Maduka
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Christopher H. Contag
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
50
|
Pan B, Zhang Z, Wu X, Xian G, Hu X, Gu M, Zheng L, Li X, Long L, Chen W, Sheng P. Macrophages-derived exosomes modulates wear particle-induced osteolysis via miR-3470b targeting TAB3/NF-κB signaling. Bioact Mater 2023; 26:181-193. [PMID: 36911207 PMCID: PMC9999169 DOI: 10.1016/j.bioactmat.2023.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
Image 1.
Collapse
Key Words
- APL, Aseptic prothesis loosening
- Aseptic prothesis loosening
- Bglap, Osteocalcin
- CTSK, Cathepsin K
- Exosome
- Inflammatory osteolysis
- Macrophage
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFATc-1, Nuclear factor of activated T-cells, cytoplasmic 1
- Non-coding RNA
- OB, Osteoblast
- OC, Osteoclast
- P-P65, phospho-P65
- P65, NF-κB signaling
- Runx2, Runt-related transcription factor 2
- TAB3, TGF-β-activated kinase 1 (MAP3K7) binding protein 3
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
- Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China.,Université de Paris, CNRS, INSERM, B3OA, Paris, France
| | - Xuantao Hu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China.,Department of Spine Surgery, The first affiliated hospital of Sun Yat-sen University, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, China
| |
Collapse
|