1
|
Balak CD, Schlachetzki JCM, Lana AJ, West E, Hong C, DuGal J, Zhou Y, Li B, Saisan P, Spann NJ, Sarsani V, Pasillas MP, O'Brien S, Gordts P, Stevens B, Kamme F, Glass CK. Mechanisms driving epigenetic and transcriptional responses of microglia in a neurodegenerative lysosomal storage disorder model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623296. [PMID: 39605454 PMCID: PMC11601307 DOI: 10.1101/2024.11.12.623296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lysosomal dysfunction is causally linked to neurodegeneration in many lysosomal storage disorders (LSDs) and is associated with various age-related neurodegenerative diseases 1,2 , but there is limited understanding of the mechanisms by which altered lysosomal function leads to changes in gene expression that drive pathogenic cellular phenotypes. To investigate this question, we performed systematic imaging, transcriptomic, and epigenetic studies of major brain cell types in Sgsh null (KO) mice, a preclinical mouse model for Sanfilippo syndrome (Mucopolysaccharidosis Type IIIA, MPS-IIIA) 3,4 . MPS-IIIA is a neurodegenerative LSD caused by homozygous loss-of-function (LoF) mutations in SGSH which results in severe early-onset developmental, behavioral, and neurocognitive impairment 5-15 . Electron microscopy, immunohistochemistry, and single-nucleus RNA-sequencing analysis revealed microglia as the cell type exhibiting the most dramatic phenotypic alterations in Sgsh KO mice. Further temporal analysis of microglia gene expression showed dysregulation of genes associated with lysosomal function and immune signaling pathways beginning early in the course of the disease. Sgsh deficiency similarly resulted in increases in open chromatin and histone acetylation at thousands of putative microglia-specific enhancers associated with upregulated genes but had much less impact on the epigenetic landscapes of neurons or oligodendrocytes. We provide evidence for dominant and context-dependent roles of members of the MITF/TFE family as major drivers of microglia-specific epigenetic and transcriptional changes resulting from lysosomal stress that are dependent on collaborative interactions with PU.1/ETS and C/EBP transcription factors. Lastly, we show that features of the transcriptomic and epigenetic alterations observed in murine Sgsh deficiency are also observed in microglia derived from mouse models of age-related neurodegeneration and in human Alzheimer's disease patients, revealing common and disease-specific transcriptional mechanisms associated with disease-associated microglia phenotypes.
Collapse
|
2
|
Dias C, Ballout N, Morla G, Alileche K, Santiago C, Guerrera IC, Chaubet A, Ausseil J, Trudel S. Extracellular vesicles from microglial cells activated by abnormal heparan sulfate oligosaccharides from Sanfilippo patients impair neuronal dendritic arborization. Mol Med 2024; 30:197. [PMID: 39497064 PMCID: PMC11536927 DOI: 10.1186/s10020-024-00953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND In mucopolysaccharidosis type III (MPS III, also known as Sanfilippo syndrome), a pediatric neurodegenerative disorder, accumulation of abnormal glycosaminoglycans (GAGs) induces severe neuroinflammation by triggering the microglial pro-inflammatory cytokines production via a TLR4-dependent pathway. But the extent of the microglia contribution to the MPS III neuropathology remains unclear. Extracellular vesicles (EVs) mediate intercellular communication and are known to participate in the pathogenesis of adult neurodegenerative diseases. However, characterization of the molecular profiles of EVs released by MPS III microglia and their effects on neuronal functions have not been described. METHODS Here, we isolated EVs secreted by the microglial cells after treatment with GAGs purified from urines of Sanfilippo patients (sfGAGs-EVs) or from age-matched healthy subjects (nGAGs-EVs) to explore the EVs' proteins and small RNA profiles using LC-MS/MS and RNA sequencing. We next performed a functional assay by immunofluorescence following nGAGs- or sfGAGs-EVs uptake by WT primary cortical neurons and analyzed their extensions metrics after staining of βIII-tubulin and MAP2 by confocal microscopy. RESULTS Functional enrichment analysis for both proteomics and RNA sequencing data from sfGAGs-EVs revealed a specific content involved in neuroinflammation and neurodevelopment pathways. Treatment of cortical neurons with sfGAGs-EVs induced a disease-associated phenotype demonstrated by a lower total neurite surface area, an impaired somatodendritic compartment, and a higher number of immature dendritic spines. CONCLUSIONS This study shows, for the first time, that GAGs from patients with Sanfilippo syndrome can induce microglial secretion of EVs that deliver a specific molecular message to recipient naive neurons, while promoting the neuroinflammation, and depriving neurons of neurodevelopmental factors. This work provides a framework for further studies of biomarkers to evaluate efficiency of emerging therapies.
Collapse
Affiliation(s)
- Chloé Dias
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Nissrine Ballout
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Guillaume Morla
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Katia Alileche
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Christophe Santiago
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Ida Chiara Guerrera
- Necker Proteomics Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, 75015, Paris, France
| | - Adeline Chaubet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Jerome Ausseil
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stephanie Trudel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France.
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
3
|
Howie AH, Tingley K, Inbar-Feigenberg M, Mitchell JJ, Angel K, Gentle J, Smith M, Offringa M, Butcher NJ, Campeau PM, Chakraborty P, Chan A, Fergusson D, Mamak E, McClelland P, Mercimek-Andrews S, Mhanni A, Moazin Z, Rockman-Greenberg C, Rupar CA, Skidmore B, Stockler S, Thavorn K, Wyatt A, Potter BK. Review of clinical trials and guidelines for children and youth with mucopolysaccharidosis: outcome selection and measurement. Orphanet J Rare Dis 2024; 19:393. [PMID: 39443985 PMCID: PMC11520150 DOI: 10.1186/s13023-024-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND To inform the development of a core outcome set (COS) for children and youth with mucopolysaccharidoses (MPS), we aimed to identify all outcomes and associated outcome measurement instruments that are reported in recent clinical trials and recommended as measurements in clinical management guidelines. METHODS To identify English-language clinical trials and guidelines pertaining to MPS published between 2011 and mid-2021, we applied a comprehensive peer-reviewed search strategy to relevant databases and registers on May 16, 2021. Two reviewers independently screened retrieved citations and then full-text articles to determine eligibility for inclusion. From articles meeting inclusion criteria, we extracted details of the study design, population, intervention, and comparator, along with verbatim outcomes and associated outcome measurement instruments. Outcomes were organized into domains within five a priori core areas: life impact, pathophysiological manifestations, growth and development, resource use, and death. We conducted descriptive analyses at the study level, grouping articles arising from the same study. RESULTS From 2593 unique citations, 73 articles from 61 unique studies were included in the review, pertaining to all MPS subtypes except for exceptionally rare subtypes. Eighty-four unique outcomes were reported across the studies, 33 (39%) of which were reported by three or fewer studies. Most outcomes (55; 65%) were in the pathophysiological manifestations core area, followed by life impact (17; 20%) and growth and development (10; 12%); one outcome each pertained to resource use and death. The most frequently reported outcomes were general adverse events (45; 74%), immune-related adverse events (39; 64%), and urinary glycosaminoglycans (38; 62%). Substantial variability existed in the reporting of outcome measurement instruments. Some differences in outcome reporting were observed by MPS subtype and publication year. DISCUSSION Outcomes reported in clinical trials and guidelines for MPS in children and youth vary considerably and largely focus on pathophysiological manifestations. A COS is needed to standardize the selection and measurement of meaningful outcomes across future studies. We will present the outcomes identified in this review to knowledge users as part of a consensus process to select the most critical outcomes for inclusion in the COS. Trial Registration The protocol for this study was registered in PROSPERO (CRD42021267531) and in the COMET Database.
Collapse
Affiliation(s)
- Alison H Howie
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Kylie Tingley
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | | | | | - Kim Angel
- The Canadian MPS Society, Vancouver, Canada
| | | | - Maureen Smith
- Patient Partner, Canadian Organization for Rare Disorders, Ottawa, Canada
| | - Martin Offringa
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | | | - Alicia Chan
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | | - Eva Mamak
- Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | | | | | - Aizeddin Mhanni
- Max Rady College of Medicine, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Zeinab Moazin
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - C Anthony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | | | | | - Kednapa Thavorn
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Beth K Potter
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON, K1G 5Z3, Canada.
| |
Collapse
|
4
|
Barbero-Herranz R, Garriga-García M, Moreno-Blanco A, Palacios E, Ruiz-Sala P, Vicente-Santamaría S, Stanescu S, Belanger-Quintana A, Pintos-Morell G, Arconada B, del Campo R, Avendaño-Ortiz J. The Role of the Gut Microbiota in Sanfilippo Syndrome's Physiopathology: An Approach in Two Affected Siblings. Int J Mol Sci 2024; 25:8856. [PMID: 39201540 PMCID: PMC11354487 DOI: 10.3390/ijms25168856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs. We analyzed the composition and functionality of the gut microbiota in two MPS III siblings with the same mutation (c.544C > T, c.1080delC, in the SGSH gene) and the same diet, but with differences in their GISs, including recurrent diarrhea in one of them. Using 16S sequencing, we observed that the MPS III patients exhibited decreased alpha diversity and a lower abundance of Lachnospiraceae and Bifidobacteriaceae accompanied by a higher abundance of the Ruminococcaceae and Rikenellaceae families than the healthy control subjects. Comparing siblings, we found an increased abundance of Bacteroidaceae and a lower abundance of Ruminococcaceae and Akkermansiaceae in the GIS-free patient. This patient also had a higher relative abundance of Sus genes (SusA, SusB, SusE, and SusG) involved in glycosaminoglycan metabolism. We found higher HS levels in the stool of the two MPS III patients than in healthy volunteers, particularly in the patient with GISs. Functionally, whole fecal metabolites from the patient with GISs induced oxidative stress in vitro in healthy monocytes. Finally, the Bacteroides thetaiotaomicron strain isolated from MPS III stool samples exhibited HS degradation ability. Overall, our results reveal different microbiota compositions and functionalities in MPS III siblings, who exhibited differential gastrointestinal symptomatology. Our study may serve as a gateway to explore the impact of the gut microbiota and its potential to enhance the quality of life in Sanfilippo syndrome patients.
Collapse
Affiliation(s)
- Raquel Barbero-Herranz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
| | - María Garriga-García
- Endocrinology and Nutrition Service, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.G.-G.); (S.V.-S.)
| | - Ana Moreno-Blanco
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Palacios
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Autonomous University of Madrid (UAM), IdiPaz, 28049 Madrid, Spain;
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Saioa Vicente-Santamaría
- Endocrinology and Nutrition Service, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (M.G.-G.); (S.V.-S.)
| | - Sinziana Stanescu
- Unidad de Enfermedades Metabólicas Hospital, CSUR, MetabERN, Pediatric Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.); (A.B.-Q.)
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas Hospital, CSUR, MetabERN, Pediatric Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (S.S.); (A.B.-Q.)
| | - Guillem Pintos-Morell
- Vall d’Hebron Institut de Recerca (VHIR), Unidad de Enfermedades Raras, Hospital Vall d’Hebron Barcelona Hospital Campus, Comité Médico Consultivo MPS-Lisosomales, 08035 Barcelona, Spain;
| | - Beatriz Arconada
- Federación Española de Enfermedades Raras (FEDER), 28009 Madrid, Spain;
| | - Rosa del Campo
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, Villanueva de la Cañada, 28691 Madrid, Spain
| | - José Avendaño-Ortiz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.B.-H.); (A.M.-B.); (E.P.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
6
|
Pan X, Caillon A, Fan S, Khan S, Tomatsu S, Pshezhetsky AV. Heterologous HSPC Transplantation Rescues Neuroinflammation and Ameliorates Peripheral Manifestations in the Mouse Model of Lysosomal Transmembrane Enzyme Deficiency, MPS IIIC. Cells 2024; 13:877. [PMID: 38786099 PMCID: PMC11120110 DOI: 10.3390/cells13100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1β, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.
Collapse
Affiliation(s)
- Xuefang Pan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Antoine Caillon
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Shuxian Fan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Alexey V. Pshezhetsky
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
7
|
Li JW, Mao SJ, Chao YQ, Hu CX, Qian YJ, Dai YL, Huang K, Shen Z, Zou CC. Application of tandem mass spectrometry in the screening and diagnosis of mucopolysaccharidoses. Orphanet J Rare Dis 2024; 19:179. [PMID: 38685110 PMCID: PMC11059687 DOI: 10.1186/s13023-024-03195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are caused by a deficiency in the enzymes needed to degrade glycosaminoglycans (GAGs) in the lysosome. The storage of GAGs leads to the involvement of several systems and even to the death of the patient. In recent years, an increasing number of therapies have increased the treatment options available to patients. Early treatment is beneficial in improving the prognosis, but children with MPSs are often delayed in their diagnosis. Therefore, there is an urgent need to develop a method for early screening and diagnosis of the disease. Tandem mass spectrometry (MS/MS) is an analytical method that can detect multiple substrates or enzymes simultaneously. GAGs are reliable markers of MPSs. MS/MS can be used to screen children at an early stage of the disease, to improve prognosis by treating them before symptoms appear, to evaluate the effectiveness of treatment, and for metabolomic analysis or to find suitable biomarkers. In the future, MS/MS could be used to further identify suitable biomarkers for MPSs for early diagnosis and to detect efficacy.
Collapse
Affiliation(s)
- Jing-Wen Li
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shao-Jia Mao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yun-Qi Chao
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chen-Xi Hu
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yan-Jie Qian
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yang-Li Dai
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ke Huang
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zheng Shen
- Lab Center, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
8
|
Xu T, Heon-Roberts R, Moore T, Dubot P, Pan X, Guo T, Cairo CW, Holley R, Bigger B, Durcan TM, Levade T, Ausseil J, Amilhon B, Gorelik A, Nagar B, Sturiale L, Palmigiano A, Röckle I, Thiesler H, Hildebrandt H, Garozzo D, Pshezhetsky AV. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.587986. [PMID: 38712143 PMCID: PMC11071461 DOI: 10.1101/2024.04.26.587986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology. Graphical abstract
Collapse
|
9
|
Taherzadeh M, Zhang E, Londono I, De Leener B, Wang S, Cooper JD, Kennedy TE, Morales CR, Chen Z, Lodygensky GA, Pshezhetsky AV. Severe central nervous system demyelination in Sanfilippo disease. Front Mol Neurosci 2023; 16:1323449. [PMID: 38163061 PMCID: PMC10756675 DOI: 10.3389/fnmol.2023.1323449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Chronic progressive neuroinflammation is a hallmark of neurological lysosomal storage diseases, including mucopolysaccharidosis III (MPS III or Sanfilippo disease). Since neuroinflammation is linked to white matter tract pathology, we analyzed axonal myelination and white matter density in the mouse model of MPS IIIC HgsnatP304L and post-mortem brain samples of MPS III patients. Methods Brain and spinal cord tissues of human MPS III patients, 6-month-old HgsnatP304L mice and age- and sex-matching wild type mice were analyzed by immunofluorescence to assess levels of myelin-associated proteins, primary and secondary storage materials, and levels of microgliosis. Corpus callosum (CC) region was studied by transmission electron microscopy to analyze axon myelination and morphology of oligodendrocytes and microglia. Mouse brains were analyzed ex vivo by high-filed MRI using Diffusion Basis Spectrum Imaging in Python-Diffusion tensor imaging algorithms. Results Analyses of CC and spinal cord tissues by immunohistochemistry revealed substantially reduced levels of myelin-associated proteins including Myelin Basic Protein, Myelin Associated Glycoprotein, and Myelin Oligodendrocyte Glycoprotein. Furthermore, ultrastructural analyses revealed disruption of myelin sheath organization and reduced myelin thickness in the brains of MPS IIIC mice and human MPS IIIC patients compared to healthy controls. Oligodendrocytes (OLs) in the CC of MPS IIIC mice were scarce, while examination of the remaining cells revealed numerous enlarged lysosomes containing heparan sulfate, GM3 ganglioside or "zebra bodies" consistent with accumulation of lipids and myelin fragments. In addition, OLs contained swollen mitochondria with largely dissolved cristae, resembling those previously identified in the dysfunctional neurons of MPS IIIC mice. Ex vivo Diffusion Basis Spectrum Imaging revealed compelling signs of demyelination (26% increase in radial diffusivity) and tissue loss (76% increase in hindered diffusivity) in CC of MPS IIIC mice. Discussion Our findings demonstrate an important role for white matter injury in the pathophysiology of MPS III. This study also defines specific parameters and brain regions for MRI analysis and suggests that it may become a crucial non-invasive method to evaluate disease progression and therapeutic response.
Collapse
Affiliation(s)
- Mahsa Taherzadeh
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Erjun Zhang
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Irene Londono
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sophie Wang
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy E. Kennedy
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Zesheng Chen
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Gregory A. Lodygensky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Pierzynowska K, Deresz P, Węgrzyn G, Gaffke L. Dysregulation of genes coding for proteins involved in metabolic processes in mucopolysaccharidoses, evidenced by a transcriptomic approach. Metab Brain Dis 2023; 38:2133-2144. [PMID: 37195412 PMCID: PMC10349023 DOI: 10.1007/s11011-023-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSD) caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans (GAGs). Most types of these severe disorders are characterized by neuronopathic phenotypes. Although lysosomal accumulation of GAGs is the primary metabolic defect in MPS, secondary alterations in biochemical processes are considerable and influence the course of the disease. Early hypothesis suggested that these secondary changes might be due to lysosomal storage-mediated impairment of activities of other enzymes, and subsequent accumulation of various compounds in cells. However, recent studies indicated that expression of hundreds of genes is changed in MPS cells. Therefore, we asked whether metabolic effects observed in MPS are caused primarily by GAG-mediated inhibition of specific biochemical reactions or appear as results of dysregulation of expression of genes coding for proteins involved in metabolic processes. Transcriptomic analyses of 11 types of MPS (using RNA isolated from patient-derived fibroblasts), performed in this study, showed that a battery of the above mentioned genes is dysregulated in MPS cells. Some biochemical pathways might be especially affected by changes in expression of many genes, including GAG metabolism and sphingolipid metabolism which is especially interesting as secondary accumulation of various sphingolipids is one of the best known additional (while significantly enhancing neuropathological effects) metabolic defects in MPS. We conclude that severe metabolic disturbances, observed in MPS cells, can partially arise from changes in the expression of many genes coding for proteins involved in metabolic processes.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Patrycja Deresz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
11
|
Bugiani M, Abbink TEM, Edridge AWD, van der Hoek L, Hillen AEJ, van Til NP, Hu‐A‐Ng GV, Breur M, Aiach K, Drevot P, Hocquemiller M, Laufer R, Wijburg FA, van der Knaap MS. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol 2023; 10:904-917. [PMID: 37165777 PMCID: PMC10270249 DOI: 10.1002/acn3.51772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Centre for Global Child HealthAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Anne E. J. Hillen
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Niek P. van Til
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | | | | | | | - Frits A. Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center “Sphinx”Amsterdam University Medical Centers, Academic Medical CenterAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
| |
Collapse
|
12
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
13
|
Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. Pediatr Neurol 2023; 139:76-85. [PMID: 36571866 DOI: 10.1016/j.pediatrneurol.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Childhood dementias are a group of over 100 rare and ultra-rare pediatric conditions that are clinically characterized by chronic global neurocognitive decline. This decline is associated with a progressive loss of skills and shortened life expectancy. With an estimated incidence of one in 2800 births and less than 5% of the conditions having disease-modifying therapies, the impact is profound for patients and their families. Traditional research, care, and advocacy efforts have focused on individual disorders, or groups classified by molecular pathogenesis, and this has established robust foundations for further progress and collaboration. This review describes the shared and disease-specific clinical changes contributing to childhood dementia and considers these as potential indicators of underlying pathophysiologic processes. Like adult neurodegenerative syndromes, the heterogeneous phenotypes extend beyond cognitive decline and may involve changes in eating, motor function, pain, sleep, and behavior, mediated by physiological changes in neural networks. Importantly, these physiological phenotypes are associated with significant carer stress, anxiety, and challenges in care. These phenotypes are also pertinent for the development of therapeutics and optimization of best practice management. A collective approach to childhood dementia is anticipated to identify relevant biomarkers of prognosis or therapeutic efficacy, streamline the path from preclinical studies to clinical trials, increase opportunities for the development of multiple therapeutics, and refine clinical care.
Collapse
Affiliation(s)
- Jason V Djafar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
| |
Collapse
|
14
|
De Pasquale V, Esposito A, Scerra G, Scarcella M, Ciampa M, Luongo A, D’Alonzo D, Guaragna A, D’Agostino M, Pavone LM. N-Substituted l-Iminosugars for the Treatment of Sanfilippo Type B Syndrome. J Med Chem 2023; 66:1790-1808. [PMID: 36696678 PMCID: PMC9923752 DOI: 10.1021/acs.jmedchem.2c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sanfilippo syndrome comprises a group of four genetic diseases due to the lack or decreased activity of enzymes involved in heparan sulfate (HS) catabolism. HS accumulation in lysosomes and other cellular compartments results in tissue and organ dysfunctions, leading to a wide range of clinical symptoms including severe neurodegeneration. To date, no approved treatments for Sanfilippo disease exist. Here, we report the ability of N-substituted l-iminosugars to significantly reduce substrate storage and lysosomal dysfunctions in Sanfilippo fibroblasts and in a neuronal cellular model of Sanfilippo B subtype. Particularly, we found that they increase the levels of defective α-N-acetylglucosaminidase and correct its proper sorting toward the lysosomal compartment. Furthermore, l-iminosugars reduce HS accumulation by downregulating protein levels of exostosin glycosyltransferases. These results highlight an interesting pharmacological potential of these glycomimetics in Sanfilippo syndrome, paving the way for the development of novel therapeutic approaches for the treatment of such incurable disease.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department
of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Gianluca Scerra
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Melania Scarcella
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonietta Luongo
- AORN
Sant’Anna e San Sebastiano, Via F. Palasciano, 81100 Caserta, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia, 80126 Napoli, Italy
| | - Annalisa Guaragna
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy,
| | - Massimo D’Agostino
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy,
| | - Luigi Michele Pavone
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy,
| |
Collapse
|
15
|
Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S, Connell A, Selleck S. Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans. Front Genet 2023; 13:1012706. [PMID: 36699460 PMCID: PMC9870329 DOI: 10.3389/fgene.2022.1012706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate modified proteins or proteoglycans (HSPGs) are an abundant class of cell surface and extracellular matrix molecules. They serve important co-receptor functions in the regulation of signaling as well as membrane trafficking. Many of these activities directly affect processes associated with neurodegeneration including uptake and export of Tau protein, disposition of Amyloid Precursor Protein-derived peptides, and regulation of autophagy. In this review we focus on the impact of HSPGs on autophagy, membrane trafficking, mitochondrial quality control and biogenesis, and lipid metabolism. Disruption of these processes are a hallmark of Alzheimer's disease (AD) and there is evidence that altering heparan sulfate structure and function could counter AD-associated pathological processes. Compromising presenilin function in several systems has provided instructive models for understanding the molecular and cellular underpinnings of AD. Disrupting presenilin function produces a constellation of cellular deficits including accumulation of lipid, disruption of autophagosome to lysosome traffic and reduction in mitochondrial size and number. Inhibition of heparan sulfate biosynthesis has opposing effects on all these cellular phenotypes, increasing mitochondrial size, stimulating autophagy flux to lysosomes, and reducing the level of intracellular lipid. These findings suggest a potential mechanism for countering pathology found in AD and related disorders by altering heparan sulfate structure and influencing cellular processes disrupted broadly in neurodegenerative disease. Vertebrate and invertebrate model systems, where the cellular machinery of autophagy and lipid metabolism are conserved, continue to provide important translational guideposts for designing interventions that address the root cause of neurodegenerative pathology.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Robert Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Gelila Berhanu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Scott Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Rintz E, Podlacha M, Cyske Z, Pierzynowska K, Węgrzyn G, Gaffke L. Activities of (Poly)phenolic Antioxidants and Other Natural Autophagy Modulators in the Treatment of Sanfilippo Disease: Remarkable Efficacy of Resveratrol in Cellular and Animal Models. Neurotherapeutics 2023; 20:254-271. [PMID: 36344724 PMCID: PMC10119361 DOI: 10.1007/s13311-022-01323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Sanfilippo disease, caused by mutations in the genes encoding heparan sulfate (HS) (a glycosaminoglycan; GAG) degradation enzymes, is a mucopolysaccharidosis (MPS), which is also known as MPS type III, and is characterized by subtypes A, B, C, and D, depending on identity of the dysfunctional enzyme. The lack of activity or low residual activity of an HS-degrading enzyme leads to excess HS in the cells, impairing the functions of different types of cells, including neurons. The disease usually leads to serious psychomotor dysfunction and death before adulthood. In this work, we show that the use of molecules known as dietary (poly)phenolic antioxidants and other natural compounds known as autophagy activators (genistein, capsaicin, curcumin, resveratrol, trehalose, and calcitriol) leads to accelerated degradation of accumulated HS in the fibroblasts of all subtypes of MPS III. Both the cytotoxicity tests we performed and the available literature data indicated that the use of selected autophagy inducers was safe. Since it showed the highest effectivity in cellular models, resveratrol efficacy was tested in experiments with a mouse model of MPS IIIB. Urinary GAG levels were normalized in MPS IIIB mice treated with 50 mg/kg/day resveratrol for 12 weeks or longer. Behavioral tests indicated complete correction of hyperactivity and anxiety in these animals. Biochemical analyses indicated that administration of resveratrol caused autophagy stimulation through an mTOR-independent pathway in the brains and livers of the MPS IIIB mice. These results indicate the potential use of resveratrol (and possibly other autophagy stimulators) in the treatment of Sanfilippo disease.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
17
|
do Valle DA, Santos MLSF, Telles BA, Cordeiro ML. Neurological, neurobehavioral, and radiological alterations in patients with mucopolysaccharidosis III (Sanfilippo's syndrome) in Brazil. Front Neurol 2022; 13:968297. [PMID: 36468061 PMCID: PMC9714604 DOI: 10.3389/fneur.2022.968297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2023] Open
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo syndrome is the most common form of MPS, in which neurological involvement in all stages of the disease is prominent. The current study aimed to comprehensively describe the neurological profile of children and adolescents with MPS III who visited the largest pediatric hospital in South America. A prospective/retrospective cohort analysis was performed on 10 patients with MPS III from eight unrelated families. Most patients <12 months of age had achieved development milestones within the expected range for their age, with delay in walking independently and first single word acquisition. Behavioral symptoms were reported in seven patients. Eight patients (80%) developed profound intellectual disabilities. Six patients (60%) had epilepsy, among whom 75% had their first seizure between 2 and 4 years of age; the frequency of which increased with age. Monotherapy was effective in 60% of patients. Two patients, both aged <8 years, had normal baseline electroencephalographic activity. Epileptiform activity was observed in three patients. Cortical atrophy was visualized using magnetic resonance imaging in 71% patients; all but one of these patients were aged >6 years. Neurological abnormalities increased in prevalence and severity with age. Anti-seizure drug resistance was uncommon. Dysmorphological and systemic manifestations were uncommon and mild and did not correlate with neurological involvement. Despite high allelic heterogeneity, neurodegeneration was similar among all patients. Overall, these data contribute to the scarce literature from developing countries.
Collapse
Affiliation(s)
- Daniel Almeida do Valle
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Child Neurology Hospital Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Mara L. Cordeiro
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Psychiatry and Biological Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Cyske Z, Anikiej-Wiczenbach P, Wisniewska K, Gaffke L, Pierzynowska K, Mański A, Wegrzyn G. Sanfilippo Syndrome: Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:2097-2110. [PMID: 36158637 PMCID: PMC9505362 DOI: 10.2147/jmdh.s362994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a disease grouping five genetic disorders, four of them occurring in humans and one known to date only in a mouse model. In every subtype of MPS III (designed A, B, C, D or E), a lack or drastically decreased activity of an enzyme involved in the degradation of heparan sulfate (HS) (a compound from the group of glycosaminoglycans (GAGs)) arises from a genetic defect. This leads to primary accumulation of HS, and secondary storage of other compounds, combined with changes in expressions of hundreds of genes and many defects in organelles and various biochemical processes in the cell. As a result, dysfunctions of tissues and organs occur, leading to severe symptoms in patients. Although changes in somatic organs are considerable, the central nervous system is especially severely affected, and neurological, cognitive and behavioral disorders are the most significant changes, making the disease enormously burdensome for patients and their families. In the light of the current lack of any registered therapy for Sanfilippo syndrome (despite various attempts of many research groups to develop effective treatment, still no specific drug or procedure is available for MPS III), optimizing care with a multidisciplinary approach is crucial for managing this disease and making quality of patients’ life passable. This includes efforts to make/organize (i) accurate diagnosis as early as possible (which is not easy due to various possible misdiagnosis events caused by similarity of MPS III symptoms to those of other diseases and variability of patients), (ii) optimized symptomatic treatment (which is challenging because of complexity of symptoms and often untypical responses of MPS III patients to various drugs), and (iii) psychological care (for both patients and family members and/or caregivers). In this review article, we focus on these approaches, summarizing and discussing them.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | | | - Karolina Wisniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Arkadiusz Mański
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdansk, Gdansk, 80-309, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
19
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
20
|
Pan X, Taherzadeh M, Bose P, Heon-Roberts R, Nguyen AL, Xu T, Pará C, Yamanaka Y, Priestman DA, Platt FM, Khan S, Fnu N, Tomatsu S, Morales CR, Pshezhetsky AV. Glucosamine amends CNS pathology in mucopolysaccharidosis IIIC mouse expressing misfolded HGSNAT. J Exp Med 2022; 219:e20211860. [PMID: 35704026 PMCID: PMC9204472 DOI: 10.1084/jem.20211860] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023] Open
Abstract
The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.
Collapse
Affiliation(s)
- Xuefang Pan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Mahsa Taherzadeh
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Poulomee Bose
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Rachel Heon-Roberts
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Annie L.A. Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - TianMeng Xu
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Camila Pará
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci 2022; 25:688-701. [PMID: 35654956 PMCID: PMC9174056 DOI: 10.1038/s41593-022-01084-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aβ/APP-βCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aβ-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar β-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.
Collapse
|
22
|
Wiśniewska K, Wolski J, Gaffke L, Cyske Z, Pierzynowska K, Węgrzyn G. Misdiagnosis in mucopolysaccharidoses. J Appl Genet 2022; 63:475-495. [PMID: 35562626 DOI: 10.1007/s13353-022-00703-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of 13 hereditary metabolic diseases identified in humans (or 14 diseases if considering one MPS type described to date only in mice) in which an enzymatic defect results in the accumulation of glycosaminoglycans (GAG) in the lysosomes of cells. First of all, as a result of GAG storage, the proper functioning of the lysosome is disturbed; then, the cells, and finally, tissue, organs, and the whole organism malfunctions are observed. Due to the rarity, heterogeneity, and multi-systemic and progressive nature of MPS, they present a major diagnostic challenge. Due to the wide variation in symptoms and their similarity to other diseases, MPS is often misdiagnosed, usually as neurological diseases (like autism spectrum disorders, psychomotor hyperactivity, and intellectual disability) or rheumatology and orthopedic disorders (like juvenile idiopathic arthritis, Perthes disease, rickets, and muscular dystrophy). In this review article, we present the problems associated with the possibility of misdiagnosing MPS, discuss what diseases they can be confused with, and suggest ways to reduce these problems in the future.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdańsk, Polanki 117, 80-305, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
23
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
24
|
Splicing Modulation as a Promising Therapeutic Strategy for Lysosomal Storage Disorders: The Mucopolysaccharidoses Example. Life (Basel) 2022; 12:life12050608. [PMID: 35629276 PMCID: PMC9146820 DOI: 10.3390/life12050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, the many functions of RNA have become more evident. This molecule has been recognized not only as a carrier of genetic information, but also as a specific and essential regulator of gene expression. Different RNA species have been identified and novel and exciting roles have been unveiled. Quite remarkably, this explosion of novel RNA classes has increased the possibility for new therapeutic strategies that tap into RNA biology. Most of these drugs use nucleic acid analogues and take advantage of complementary base pairing to either mimic or antagonize the function of RNAs. Among the most successful RNA-based drugs are those that act at the pre-mRNA level to modulate or correct aberrant splicing patterns, which are caused by specific pathogenic variants. This approach is particularly tempting for monogenic disorders with associated splicing defects, especially when they are highly frequent among affected patients worldwide or within a specific population. With more than 600 mutations that cause disease affecting the pre-mRNA splicing process, we consider lysosomal storage diseases (LSDs) to be perfect candidates for this type of approach. Here, we introduce the overall rationale and general mechanisms of splicing modulation approaches and highlight the currently marketed formulations, which have been developed for non-lysosomal genetic disorders. We also extensively reviewed the existing preclinical studies on the potential of this sort of therapeutic strategy to recover aberrant splicing and increase enzyme activity in our diseases of interest: the LSDs. Special attention was paid to a particular subgroup of LSDs: the mucopolysaccharidoses (MPSs). By doing this, we hoped to unveil the unique therapeutic potential of the use of this sort of approach for LSDs as a whole.
Collapse
|
25
|
Sabitha KR, Chandran D, Shetty AK, Upadhya D. Delineating the neuropathology of lysosomal storage diseases using patient-derived induced pluripotent stem cells. Stem Cells Dev 2022; 31:221-238. [PMID: 35316126 DOI: 10.1089/scd.2021.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSD) are inherited metabolic diseases caused due to deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of iPSC technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood brain barrier dysfunction, neurodegeneration, gliosis, altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation corrected lines identified using patient-derived iPSCs for different LSDs.
Collapse
Affiliation(s)
- K R Sabitha
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Divya Chandran
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Ashok K Shetty
- Texas A&M University College Station, 14736, College of Medicine, Institute for Regenerative Medicine, College Station, Texas, United States;
| | - Dinesh Upadhya
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| |
Collapse
|
26
|
Arbabi A, Spencer Noakes L, Vousden D, Dazai J, Spring S, Botelho O, Keshavarzian T, Mattingly M, Ellegood JE, Nutter LMJ, Wissmann R, Sled JG, Lerch JP, Henkelman RM, Nieman BJ. Multiple-mouse magnetic resonance imaging with cryogenic radiofrequency probes for evaluation of brain development. Neuroimage 2022; 252:119008. [PMID: 35245675 DOI: 10.1016/j.neuroimage.2022.119008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple-mouse magnetic resonance imaging (MRI) increases scan throughput by imaging several mice simultaneously in the same magnet bore, enabling multiple images to be obtained in the same time as a single scan. This increase in throughput enables larger studies than otherwise feasible and is particularly advantageous in longitudinal study designs where frequent imaging time points result in high demand for MRI resources. Cryogenically-cooled radiofrequency probes (CryoProbes) have been demonstrated to have significant signal-to-noise ratio benefits over comparable room temperature coils for in vivo mouse imaging. In this work, we demonstrate implementation of a multiple-mouse MRI system using CryoProbes, achieved by mounting four such coils in a 30-cm, 7-Tesla magnet bore. The approach is demonstrated for longitudinal quantification of brain structure from infancy to early adulthood in a mouse model of Sanfilippo syndrome (mucopolysaccharidosis type III), generated by knockout of the Hgsnat gene. We find that Hgsnat-/- mice have regionally increased growth rates compared to Hgsnat+/+ mice in a number of brain regions, notably including the ventricles, amygdala and superior colliculus. A strong sex dependence was also noted, with the lateral ventricle volume growing at an accelerated rate in males, but several structures in the brain parenchyma growing faster in females. This approach is broadly applicable to other mouse models of human disease and the increased throughput may be particularly beneficial in studying mouse models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A Arbabi
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - L Spencer Noakes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - D Vousden
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; DataKind UK, London, UK
| | - J Dazai
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - S Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - O Botelho
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - T Keshavarzian
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - M Mattingly
- Bruker BioSpin Corporation, Billerica, MA, United States
| | - J E Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - L M J Nutter
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - R Wissmann
- Bruker BioSpin Corporation, Ettlingen, Germany
| | - J G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - R M Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - B J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
27
|
Veraldi N, Dentand Quadri I, de Agostini A. Characterization of a spontaneous cell line from primary mouse fibroblasts as a model to study Sanfilippo syndrome. Int J Biochem Cell Biol 2022; 142:106119. [PMID: 34823007 DOI: 10.1016/j.biocel.2021.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
To evaluate a new approach to Mucopolysaccharidosis type IIIA (MPS-IIIA), work was initiated on primary fibroblasts from a well-known mouse model in which sulfamidase deficiency correlates with the accumulation of heparan sulfate - the hallmark of this disease. Once the culture of fibroblasts was established, we observed continuous proliferation with a rapid growth rate, loss of contact inhibition and late passage stability, corresponding to a spontaneously immortalized cell line. The presence of the single point D31N mutation was verified and both rapid and abundant intracellular accumulation of low molecular weight HS was observed, confirming both genotype and phenotype. This cell line is a potential in vitro model system for future studies of MPS-IIIA prior to employing animal models.
Collapse
Affiliation(s)
- Noemi Veraldi
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| | - Ariane de Agostini
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, 1211 Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland.
| |
Collapse
|
28
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
29
|
Kong W, Wu S, Zhang J, Lu C, Ding Y, Meng Y. Global epidemiology of mucopolysaccharidosis type III (Sanfilippo syndrome): an updated systematic review and meta-analysis. J Pediatr Endocrinol Metab 2021; 34:1225-1235. [PMID: 34271605 DOI: 10.1515/jpem-2020-0742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/20/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Mucopolysaccharidosis III, an autosomal recessive lysosomal storage disorder, is characterized by progressive mental retardation and behavioral problems. Meta-analysis of global mucopolysaccharidosis III epidemiology, which serves as a fundamental reference for public health decision-making, was not available prior to this study. To provide a systematic review and meta-analysis of birth prevalence of mucopolysaccharidosis III in multiple countries. METHODS MEDLINE and EMBASE databases were searched for original research articles on the epidemiology of mucopolysaccharidosis III from inception until 1st July, 2020. A checklist adapted from STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) was used to assess the quality of all studies involved. Meta-analysis, adopting a random effects logistic model, was performed to estimate pooled birth prevalence of mucopolysaccharidosis III and its subtypes. RESULTS Twenty-five studies screened out of 1,826 records were included for data extraction. The pooled global mucopolysaccharidosis III birth prevalence was 0.76 cases (95% CI: 0.57-0.96) per 100,000 live births. The pooled global birth prevalence of mucopolysaccharidosis III subtypes (A, B, and C) was 0.52 cases (95% CI: 0.33-0.72), 0.21 cases (95% CI: 0.12-0.30) and 0.01 cases (95% CI: 0.005-0.02) per 100,000 live births, respectively. CONCLUSIONS Based on the global population size (7.8 billion) and the life span of patients, there would be 12-19 thousand mucopolysaccharidosis III patients worldwide. To our knowledge, this is the first comprehensive systematic review that presented quantitative data fundamental for evidence-based public health decision-making by evaluating global epidemiology of mucopolysaccharidosis III.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wu
- Department of Clinical Epidemiology and EBM, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. Int J Mol Sci 2021; 22:ijms22179200. [PMID: 34502108 PMCID: PMC8430935 DOI: 10.3390/ijms22179200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.
Collapse
|
31
|
De Pasquale V, Scerra G, Scarcella M, D'Agostino M, Pavone LM. Competitive binding of extracellular accumulated heparan sulfate reduces lysosomal storage defects and triggers neuronal differentiation in a model of Mucopolysaccharidosis IIIB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119113. [PMID: 34329663 DOI: 10.1016/j.bbamcr.2021.119113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of inherited lysosomal storage disorders associated with the deficiency of lysosomal enzymes involved in glycosaminoglycan (GAG) degradation. The resulting cellular accumulation of GAGs is responsible for widespread tissue and organ dysfunctions. The MPS III, caused by mutations in the genes responsible for the degradation of heparan sulfate (HS), includes four subtypes (A, B, C, and D) that present significant neurological manifestations such as progressive cognitive decline and behavioral disorders. The established treatments for the MPS III do not cure the disease but only ameliorate non-neurological clinical symptoms. We previously demonstrated that the natural variant of the hepatocyte growth factor NK1 reduces the lysosomal pathology and reactivates impaired growth factor signaling in fibroblasts from MPS IIIB patients. Here, we show that the recombinant NK1 is effective in rescuing the morphological and functional dysfunctions of lysosomes in a neuronal cellular model of the MPS IIIB. More importantly, NK1 treatment is able to stimulate neuronal differentiation of neuroblastoma SK-NBE cells stable silenced for the NAGLU gene causative of the MPS IIIB. These results provide the basis for the development of a novel approach to possibly correct the neurological phenotypes of the MPS IIIB as well as of other MPSs characterized by the accumulation of HS and progressive neurodegeneration.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80127 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
32
|
Barone R, Fiumara A, Gulisano M, Cirnigliaro L, Cocuzza MD, Guida C, Pettinato F, Greco F, Elia M, Rizzo R. Electroclinical Features of Epilepsy in Mucopolysaccharidosis III: Outcome Description in a Cohort of 15 Italian Patients. Front Neurol 2021; 12:705423. [PMID: 34349725 PMCID: PMC8326392 DOI: 10.3389/fneur.2021.705423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis III (Sanfilippo syndromes) types A-D are rare lysosomal storage disorders characterized by heparan sulfate accumulation and neurodegeneration. Patients with MPS III present with developmental stagnation and/or regression, sleep disturbance, and behavioral abnormalities usually in the first years of life. Epilepsy may occur in a proportion of patients during the disease course. However, the progression of epilepsy and EEG changes in MPS III have not been systematically investigated. We report electroclinical features in a cohort of patients with MPS III over a follow-up period ranging from 6.5 to 22 years. Participants include 15 patients (11 females; aged 7-31 years) with MPS III A (n = 7, 47%), MPS III B (n = 5, 34%), MPS III C (n = 2, 13%), and MPS III D (n = 1, 6%). At the time of this study, 8 out of 15 patients (53%) had epilepsy. Epilepsy occurred in patients with advanced disease even in the first decade of life (mean age at onset: 12.1 ± 6.7 years). However, seizure onset may also be associated with abrupt worsening of the neurobehavioral phenotype. The main epilepsy types observed were generalized (four out of eight, 50%), followed by focal (three out of eight, 37%) and combined (two out of eight, 25%) epilepsy and status epilepticus (one out of eight, 12.5%). Seizures were generally controlled by one antiepileptic drug (AED) and most patients (seven out of eight, 87%) were still on therapy after a median follow-up period of 5 years (range: 1-9 years). A total of 66 EEGs were analyzed with a median EEG follow-up duration of 7 years (range: 6 months-14 years). Slowing of the background activity occurred in 7 (46%) patients aged 4-19 years. Epileptiform EEG abnormalities were observed in 10 patients at a mean age of 9.6 ± 2.9 years. EEG epileptiform discharges were not unavoidably linked to epilepsy. Early recognition and careful monitoring of electroclinical features in MPS III is necessary for appropriate care and for the detection of disease progression.
Collapse
Affiliation(s)
- Rita Barone
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Regional Referral Centre for Inborn Errors Metabolism, University Children Hospital, Policlinico San Marco, Catania, Italy
| | - Agata Fiumara
- Regional Referral Centre for Inborn Errors Metabolism, University Children Hospital, Policlinico San Marco, Catania, Italy.,Paediatric Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mariangela Gulisano
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lara Cirnigliaro
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Donatella Cocuzza
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Claudia Guida
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Filippo Greco
- Paediatric Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maurizio Elia
- Oasi Research Institute, Istituto di Ricerca a Carattere Scientifico (IRCCS), Troina, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Section, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021; 22:ijms22115948. [PMID: 34073041 PMCID: PMC8197930 DOI: 10.3390/ijms22115948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Jason Henry
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Sebastian-Alexander Stamatis
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
- Correspondence: ; Tel.: +61-3-9902-9613; Fax: +61-3-9902-9729
| |
Collapse
|
34
|
Gougeon ML, Poirier-Beaudouin B, Ausseil J, Zérah M, Artaud C, Heard JM, Deiva K, Tardieu M. Cell-Mediated Immunity to NAGLU Transgene Following Intracerebral Gene Therapy in Children With Mucopolysaccharidosis Type IIIB Syndrome. Front Immunol 2021; 12:655478. [PMID: 34040605 PMCID: PMC8141743 DOI: 10.3389/fimmu.2021.655478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients’ CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Jérome Ausseil
- Service de Biochimie Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Michel Zérah
- Pediatric Neurosurgery Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker; Institut Imagine, Université René Descartes; NeuroGenCell, Institut du cerveau et de la moelle, Paris, France
| | - Cécile Artaud
- Institut Pasteur, Centre for Translational Science, Clinical Core, Paris, France
| | - Jean-Michel Heard
- Institut Pasteur, Biotherapy and Neurodegenerative Diseases Unit, Neuroscience Department, INSERM U1115, Paris, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| | - Marc Tardieu
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| |
Collapse
|
35
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
36
|
Abramova AA, Attarian HP, Dolgova SM, Belyakova-Bodina AI, Iakovenko EV, Broutian AG. Sleep-related hypermotor epilepsy in a patient with mucopolysaccharidosis type III. Sleep Sci 2021; 14:97-100. [PMID: 34917281 PMCID: PMC8663726 DOI: 10.5935/1984-0063.20200113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Both non-epileptic sleep disturbances and epilepsy are common in patients with mucopolysaccharidoses (MPS), so diagnosis of sleep-related hypermotor epilepsy in these patients is a tackling issue. We present a case of an adult patient with MPS IIIB (Sanfilippo syndrome), who presented with numerous nocturnal events of sudden awakening and hypermotor behavior, which had been previously regarded as parasomnias. Overnight video-EEG captured numerous stereotypical seizures with ictal pattern in the frontal regions, which led the diagnosis of SHE. The patient was started with carbamazepine, which resulted in a substantial reduction in the number of seizures. Our report provides further support for use of overnight video-EEG in the differential diagnosis of sleep-related disorders in MPS, yet true incidence of SHE in MPS patients remains unknown.
Collapse
Affiliation(s)
- Anna A. Abramova
- Research Center of Neurology, Epilepsy Unit with Laboratory of Clinical Neurophysiology - Moscow - Russia
| | - Hrayr P. Attarian
- Northwestern University Feinberg School of Medicine, Center for Sleep Disorders - Chicago - Illinois - United States
| | - Snezhana M. Dolgova
- Research Center of Neurology, Epilepsy Unit with Laboratory of Clinical Neurophysiology - Moscow - Russia
| | | | - Elena V. Iakovenko
- Research Center of Neurology, Department of Neurogenetics - Moscow - Russia
| | - Amayak G. Broutian
- Research Center of Neurology, Epilepsy Unit with Laboratory of Clinical Neurophysiology - Moscow - Russia
| |
Collapse
|
37
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
38
|
The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:133-162. [PMID: 33485481 DOI: 10.1016/bs.apcsb.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron transport in the central nervous system (CNS) is a highly regulated process in which several important proteins participate to ensure this important metal reaches its sites of action. However, iron accumulation has been shown to be a common factor in different neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple Sclerosis, and Sanfilippo syndrome. This review is divided into four parts. The first part describes brain iron transport in homeostasis, mentioning the main proteins involved, whereas the second part contrasts the consequences of iron dysregulation, elaborating on its role in the aforementioned neurodegenerative diseases. The third part details the functions of the main proteins involved in brain iron homeostasis and their role in neurodegeneration. In the fourth part, in order to highlight the importance of transport proteins, the focus is set on human serum transferrin, the main iron transport protein. This final part describes perspectives about the mechanisms and chemical properties of human transferrin for the development of potential targeted drug delivery systems across the blood-brain barrier (BBB) or enhancers for the treatment of neurological diseases.
Collapse
|
39
|
Kong W, Yao Y, Zhang J, Lu C, Ding Y, Meng Y. Update of treatment for mucopolysaccharidosis type III (sanfilippo syndrome). Eur J Pharmacol 2020; 888:173562. [DOI: 10.1016/j.ejphar.2020.173562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022]
|
40
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
41
|
Pierzynowska K, Mański A, Limanówka M, Wierzba J, Gaffke L, Anikiej P, Węgrzyn G. Untypically mild phenotype of a patient suffering from Sanfilippo syndrome B with the c.638C>T/c.889C>T (p.Pro213Leu/p.Arg297Ter) mutations in the NAGLU gene. Mol Genet Genomic Med 2020; 8:e1356. [PMID: 32578945 PMCID: PMC7507323 DOI: 10.1002/mgg3.1356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Sanfilippo syndrome B (or mucopolysaccharidosis type IIIB [MPS IIIB]) is a severe inherited metabolic disorder caused by mutations in the NAGLU gene, encoding α‐N‐acetylglucosaminidase. Dysfunction of this enzyme results in impaired degradation of heparan sulfate, one of glycosaminoglycans, and accumulation of this complex carbohydrate in lysosomes. Severe symptoms occurring in this disease are related to progressive neurodegeneration and include extreme hyperactivity, sleeping problems, aggressive‐like behavior, reduced fear, and progressive mental and cognitive deterioration. No cure is currently available for Sanfilippo disease. Methods Clinical characterization of the patient's symptoms has been performed. Biochemical analyses included glycosaminoglycan level determination and measurement of α‐N‐acetylglucosaminidase activity. Molecular analyses included exome sequencing and detailed analysis of the NAGLU gene. Psychological tests included assessment of attention, communication and behavior. Results We describe a patient with an untypically mild phenotype, who was diagnosed at the age of 13 years. Many cognitive, communication, and motoric functions were preserved in this patient, contrary to vast majority of those suffering from MPS IIIB. The patient is a compound heterozygote (c.638C>T/c.889C>T) in the NAGLU gene, and relatively high residual activity (about 25%) of α‐N‐acetylglucosaminidase was measured in serum (while no activity of this enzyme could be detected in dry blood spot). Conclusions We suggest that the mild phenotype might arise from the partially preserved function of the mutant enzyme (p.Pro213Leu), suggesting the genotype‐phenotype correlation in this case.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdansk, Poland
| | - Arkadiusz Mański
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdańsk, Gdansk, Poland
| | - Monika Limanówka
- Departement of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdansk, Poland
| | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Medical University of Gdańsk, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdansk, Poland
| | - Paulina Anikiej
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdańsk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdansk, Poland
| |
Collapse
|
42
|
De Pasquale V, Caterino M, Costanzo M, Fedele R, Ruoppolo M, Pavone LM. Targeted Metabolomic Analysis of a Mucopolysaccharidosis IIIB Mouse Model Reveals an Imbalance of Branched-Chain Amino Acid and Fatty Acid Metabolism. Int J Mol Sci 2020; 21:ijms21124211. [PMID: 32545699 PMCID: PMC7352355 DOI: 10.3390/ijms21124211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are inherited disorders of the glycosaminoglycan (GAG) metabolism. The defective digestion of GAGs within the intralysosomal compartment of affected patients leads to a broad spectrum of clinical manifestations ranging from cardiovascular disease to neurological impairment. The molecular mechanisms underlying the progression of the disease downstream of the genetic mutation of genes encoding for lysosomal enzymes still remain unclear. Here, we applied a targeted metabolomic approach to a mouse model of PS IIIB, using a platform dedicated to the diagnosis of inherited metabolic disorders, in order to identify amino acid and fatty acid metabolic pathway alterations or the manifestations of other metabolic phenotypes. Our analysis highlighted an increase in the levels of branched-chain amino acids (BCAAs: Val, Ile, and Leu), aromatic amino acids (Tyr and Phe), free carnitine, and acylcarnitines in the liver and heart tissues of MPS IIIB mice as compared to the wild type (WT). Moreover, Ala, Met, Glu, Gly, Arg, Orn, and Cit amino acids were also found upregulated in the liver of MPS IIIB mice. These findings show a specific impairment of the BCAA and fatty acid catabolism in the heart of MPS IIIB mice. In the liver of affected mice, the glucose-alanine cycle and urea cycle resulted in being altered alongside a deregulation of the BCAA metabolism. Thus, our data demonstrate that an accumulation of BCAAs occurs secondary to lysosomal GAG storage, in both the liver and the heart of MPS IIIB mice. Since BCAAs regulate the biogenesis of lysosomes and autophagy mechanisms through mTOR signaling, impacting on lipid metabolism, this condition might contribute to the progression of the MPS IIIB disease.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Roberta Fedele
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
- Correspondence: ; Tel.: +39-081-3737850
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
| |
Collapse
|
43
|
Pathogenesis of Mucopolysaccharidoses, an Update. Int J Mol Sci 2020; 21:ijms21072515. [PMID: 32260444 PMCID: PMC7178160 DOI: 10.3390/ijms21072515] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.
Collapse
|
44
|
Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med 2020; 9:jcm9030616. [PMID: 32106459 PMCID: PMC7141115 DOI: 10.3390/jcm9030616] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.
Collapse
|