1
|
Chen Q, Xiong Q, Zhou Z, Li X. Screening of oxytetracycline-degrading strains in the intestine of the black soldier fly larvae and their degradation characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124929. [PMID: 39260545 DOI: 10.1016/j.envpol.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The presence of excessive antibiotic residues poses a significant threat to human health and the environment. This study was designed to identify an effective oxytetracycline (OTC)-degrading strain through the screening of the intestine of black soldier fly larvae (BSFL). A strain designated "B2" was selected using a series of traditional microbial screening methods. It could be identified as Enterococcus faecalis by Gram staining and 16S rDNA sequencing, with a similarity of 99.93%. Its ability to degrade OTC was then assessed using high-performance liquid chromatography (HPLC). The degradation of the strain was characterized using a one-way test to assess the effects of the substrate concentration, inoculum amount, and initial pH on the degrading bacteria. The results indicate that strain B2 exhibited optimal OTC-degrading performance at a substrate concentration of 50 mg/L, with an inoculum amount of 6% and a pH value of 5.0. Specifically, strain B2 achieved degradation rates of 71.11%, 56.14%, and 45.03%. These findings demonstrate the effectiveness of strain B2 in degrading OTC, indicating its potential for use in environmental remediation efforts.
Collapse
Affiliation(s)
- Qian Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China; College of Pharmacy, Nanjing Tech University, Nanjing, 211800, China.
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| | - Zhihao Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
2
|
Sanhueza C, Pavéz M, Hermosilla J, Rocha S, Valdivia-Gandur I, Manzanares MC, Beltrán V, Acevedo F. Poly-3-hydroxybutyrate-silver nanoparticles membranes as advanced antibiofilm strategies for combatting peri-implantitis. Int J Biol Macromol 2024; 269:131974. [PMID: 38692546 DOI: 10.1016/j.ijbiomac.2024.131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Dental implant success is threatened by peri-implantitis, an inflammation leading to implant failure. Conventional treatments struggle with the intricate microbial and host factors involved. Antibacterial membranes, acting as barriers and delivering antimicrobials, may offer a promising solution. Thus, this study highlights the potential of developing antibacterial membranes of poly-3-hydroxybutyrate and silver nanoparticles (Ag Nps) to address peri-implantitis challenges, discussing design and efficacy against potential pathogens. Electrospun membranes composed of PHB microfibers and Ag Nps were synthesized in a blend of DMF/chloroform at three different concentrations. Various studies were conducted on the characterization and antimicrobial activity of the membranes. The synthesized Ag Nps ranged from 4 to 8 nm in size. Furthermore, Young's modulus decreased, reducing from 13.308 MPa in PHB membranes without Ag Nps to 0.983 MPa in PHB membranes containing higher concentrations of Ag Nps. This demonstrates that adding Ag Nps results in a less stiff membrane. An increase in elongation at break was noted with the rise in Ag Nps concentration, from 23.597 % in PHB membranes to 60.136 % in PHB membranes loaded with Ag Nps. The antibiotic and antibiofilm activity of the membranes were evaluated against Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Candida albicans. The results indicated that all PHB membranes containing Ag Nps exhibited potent antibacterial activity by inhibiting the growth of biofilms and planktonic bacteria. However, inhibition of C. albicans occurred only with the PHB-Ag Nps C membrane. These findings emphasize the versatility and potential of Ag Nps-incorporated membranes as a multifunctional approach for preventing and addressing microbial infections associated with peri-implantitis. The combination of antibacterial and antibiofilm properties in these membranes holds promise for improving the management and treatment of peri-implantitis-related complications.
Collapse
Affiliation(s)
- Claudia Sanhueza
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Mónica Pavéz
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jeyson Hermosilla
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Sebastián Rocha
- Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco, Chile
| | - Iván Valdivia-Gandur
- Biomedical Department, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - María-Cristina Manzanares
- Human Anatomy and Embryology Unit, Experimental Pathology and Therapeutics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Beltrán
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Clinical Investigation and Dental Innovation Center (CIDIC), Dental School, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
3
|
El-Newehy MH, Aldalbahi A, Thamer BM, Hameed MMA. Establishment and inactivation of mono-species biofilm in a semipilot-scale water distribution system using nanocomposite of silver nanoparticles/montmorillonite loaded cationic chitosan. Int J Biol Macromol 2024; 258:128874. [PMID: 38128797 DOI: 10.1016/j.ijbiomac.2023.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study presents a novel approach in the synthesis and characterization of nanocomposites comprising cationic chitosan (CCS) blended with varying concentrations of silver nanoparticles/montmorillonite (AgNPs/MMT). AgNPs/MMT was synthesized using soluble starch as a reducing and stabilizing agent. Subsequently, nanocomposites, namely CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, were developed by blending 2.5 g of CCS with 0, 0.5, 1.5, and 2.5 g of AgNPs/MMT, respectively, and the corresponding nanocomposites were prepared using ball milling technique. Transmission electron microscopy (TEM) analysis revealed the formation of nanocomposites that exhibiting nearly spherical morphologies. Dynamic light scattering (DLS) measurements displayed average particle sizes of 1183 nm, 131 nm, 140 nm, and 188 nm for CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, respectively. The narrow polydispersity index (~0.5) indicated uniform particle size distributions across the nanocomposites, affirming monodispersity. Moreover, the zeta potential values exceeding 30 mV across all nanocomposites that confirmed their stability against agglomeration. Notably, CCS/AgMMT-2.5 nanocomposite exhibited potent antibacterial and antibiofilm properties against diverse pipeline materials. Findings showed that after 15 days of incubation, the highest populations of biofilm cells, Pseudomonas aeruginosa biofilm, developed over UPVC, MDPE, DCI, and SS, with corresponding HPCs of 4.79, 6.38, 8.81, and 7.24 CFU/cm2. The highest cell densities of Enterococcus faecalis biofilm in the identical situation were 4.19, 5.89, 8.12, and 6.9 CFU/cm2. The nanocomposite CCS/AgMMT-2.5 exhibited the largest measured zone of inhibition (ZOI) against both P. aeruginosa and E. faecalis, with measured ZOI values of 19 ± 0.65 and 17 ± 0.21 mm, respectively. Remarkably, the research indicates that the youngest biofilm exhibited the most notable rate of inactivation when exposed to a dose of 150 mg/L, in comparison to the mature biofilm. These such informative findings could offer valuable insights into the development of effective antibiofilm agents and materials applicable in diverse sectors such as water treatment facilities, medical devices, and industrial pipelines.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Chan HE, Lim JY, Fazlina AH, Zhao L, Feng Q, Lim PQ, Ng LSY, Lim YY, Tan PT, Tan SH, Koo SH, Neo SK, Tan AKL, Chandran R, Lu PKS. Evaluation of the microbiological efficacy of cleaning agents for tracheostomy inner cannulas. Am J Otolaryngol 2024; 45:104073. [PMID: 37862880 DOI: 10.1016/j.amjoto.2023.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE Biofilms are a significant cause of morbidity in patients with indwelling medical devices. Biofilms pose a potential risk with reusable inner cannulas by increasing the risk of infections. Effective decontamination is thus vital in decreasing bioburden. The current guidelines for cleaning inner cannulas are varied, with multiple techniques being recommended, which are not supported by strong evidence. This randomized, controlled, cross-over study attempted to enumerate the bacterial count of inner cannulas used in tracheostomy patients (n = 60) pre-and post-decontamination with detergent (A) or sterile water (B). MATERIALS AND METHODS The patients were randomly allocated to sequence A > B or B > A in 1:1 fashion. The saline flushing of the inner cannulas was plated on trypticase soy agar with 5 % sheep blood to enumerate the bacterial count. RESULTS The mean ratio [Log (CFU)post/Log (CFU)pre]A/[Log (CFU)post/Log (CFU)pre]B based on 53 samples was 0.918 ± 0.470, two-sided 90 % confidence interval (CI) 0.812, 1.024. The equivalence criterion was met as the mean ratio after cleaning fell within the equivalence region of 0.8 and 1.25. CONCLUSION This study demonstrated the microbiological efficacy of both detergent and sterile water in the decontamination of inner cannulas, and that sterile water was not less effective than detergent in reducing the bacterial load for safe re-use of inner cannulas. This has the potential to promote cost savings for patients with tracheostomy, both in the hospital and the community. The study findings may also be relevant in formulating tracheostomy care policies. LEVEL OF EVIDENCE: 1
Collapse
Affiliation(s)
- Hong Eng Chan
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Jia Yan Lim
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Abdul Hathi Fazlina
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Liping Zhao
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Qi Feng
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Pei Qi Lim
- Clinical Trials and Research Unit, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Lily Siew Yong Ng
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | | | - Pei Ting Tan
- Clinical Trials and Research Unit, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Si Huei Tan
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Seok Hwee Koo
- Clinical Trials and Research Unit, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Soon Keow Neo
- Department of Nursing, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Alvin Kah Leong Tan
- Department of Otorhinolaryngology- Head and Neck Surgery, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Rajkumar Chandran
- Department of Anaesthesia and Surgical Intensive Care, Changi General Hospital, 2 Simei Street 3, 529889, Singapore.
| | - Peter Kuo Sun Lu
- Department of Otorhinolaryngology- Head and Neck Surgery, Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| |
Collapse
|
5
|
Oliver C, Ruiz P, Vidal JM, Carrasco C, Escalona CE, Barros J, Sepúlveda D, Urrutia H, Romero A. Effect of florfenicol on Piscirickettsia salmonis biofilm formed in materials used in salmonid nets, nylon and high-density polyethylene. JOURNAL OF FISH DISEASES 2024; 47:e13862. [PMID: 37776076 DOI: 10.1111/jfd.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.
Collapse
Affiliation(s)
- Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - José Miguel Vidal
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Ecombio Limitada, Concepción, Chile
| | - Carlos Carrasco
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Carla Estefanía Escalona
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Barros
- Departamento de Investigación y Desarrollo, Micbiotech Spa, Concepción, Chile
| | - Daniela Sepúlveda
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research, (INCAR), Concepción, Chile
| |
Collapse
|
6
|
Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 2023; 6:100160. [PMID: 37928619 PMCID: PMC10622848 DOI: 10.1016/j.bioflm.2023.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.
Collapse
Affiliation(s)
- Emily J. Vanderpool
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
7
|
Qi W, Skov PV, de Jesus Gregersen KJ, Pedersen LF. A novel method to estimate biofilm activity based on enzymatic oxygen release from hydrogen peroxide decomposition. Biofilm 2023; 5:100121. [PMID: 37090160 PMCID: PMC10119708 DOI: 10.1016/j.bioflm.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Biofilm is central for biological water treatment processes in recirculating aquaculture systems (RAS). A lack of suitable methods for quantifying biofilm activity, however, makes it difficult to assess and compare the microbial status of biofilm. This type of information of the biofilm will be useful to assess the colonization status of nitrifying biocarriers or to evaluate the effect of disinfectants on the biofilm activity. Here we introduce a novel assay for rapid assessment of microbial activities in the biofilm attached on bioelements from a RAS biofilter. The assay consisted of an intermittent respirometer platform where biofilter elements were exposed to 10 mg/L hydrogen peroxide (H2O2) for 1 h, following concurrent measurements of oxygen release from the decomposition of H2O2 caused by biofilm-associated enzymes. A different number of colonized, mature bioelements from a moving bed biofilter in a freshwater RAS were tested with repeated H2O2 exposure, and compared against their autoclaved forms. A substantial increase in dissolved oxygen (DO) concentration (0.92-2.31 mg O2/L) occurred with mature bioelements during 1 h of H2O2 exposure, compared to small amounts of DO release (≤0.27 mg O2/L) with autoclaved bioelements. This substantiates that H2O2 decomposition by biofilm is mainly governed by microbial enzymatic activities. A monomolecular model fitted well with the observed oxygen release profiles of tested mature bioelements after H2O2 exposure (R2 > 0.98). The kinetic rate constant of net oxygen release (k or , h-1) was proportional (R2 for linear fit = 0.99) to the number of mature bioelements tested. Repeated exposure of H2O2 to the same bioelements did not change k or , which indicates that 10 mg/L H2O2 with an exposure time of 1 h does not suppress enzymatic activity in biofilm. Our study provides a new rapid method that allows simple quantification of microbial activity in biofilm samples from aquaculture systems, which could potentially be also applied to study biofilm from wastewater treatment plants and other industries.
Collapse
Affiliation(s)
- Wanhe Qi
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Kim João de Jesus Gregersen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Lars-Flemming Pedersen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| |
Collapse
|
8
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
9
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
10
|
Yazdanpanah S, Sasanipoor F, Khodadadi H, Rezaei-Matehkolaei A, Jowkar F, Zomorodian K, Kharazi M, Mohammadi T, Nouripour-Sisakht S, Nasr R, Motamedi M. Quantitative analysis of in vitro biofilm formation by clinical isolates of dermatophyte and antibiofilm activity of common antifungal drugs. Int J Dermatol 2022; 62:120-127. [PMID: 35780324 DOI: 10.1111/ijd.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ability of dermatophytes to develop biofilm, as one of the virulence factors in fungal infections which contribute to antifungal resistance, is an outstanding aspect of dermatophytosis that has been noted recently. Because of the paucity of data about the biofilm formation by dermatophytes and their susceptibility to antifungal drugs, this study evaluated the biofilm formation by clinical isolates of dermatophytes and antibiofilm activity of common antifungals widely used to manage dermatophytosis. METHODS The ribosomal DNA internal transcribed spacer (ITS) regions sequencing for species identification of 50 clinical dermatophyte isolates was performed. The ability of isolates to form biofilm and inhibitory activity of itraconazole, terbinafine, and griseofulvin against biofilm formation was assayed by the crystal violet staining method. Optical microscopy and scanning electron microscopy (SEM) were applied for the visualization of the biofilm structures. RESULTS Trichophyton (T.) mentagrophytes (n: 14; 28%) and T. rubrum (n: 13;26%) were included in more than half of the dermatophyte isolates. Biofilm formation was observed in 37 out of 50 (74%) isolates that were classified as follows: nonproducers (n: 13; 26%), weak producers (n: 4; 8%), moderate producers (n: 16; 32%), and strong producers (n: 17; 34%) by comparison of the absorbance of biofilms produced by clinical strains with control. The mean IC50 values for terbinafine, griseofulvin, and itraconazole were 2.42, 3.18, and 3.78 μg/ml, respectively. CONCLUSIONS The results demonstrated that most of the clinical dermatophyte isolates are capable to form biofilm in vitro with variable strength. Moreover, terbinafine can be suggested as the first-line choice for the treatment of biofilm-formed dermatophytosis.
Collapse
Affiliation(s)
- Somayeh Yazdanpanah
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forozan Sasanipoor
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farideh Jowkar
- Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Kharazi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tooba Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Nasr
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Motamedi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Tamimi R, Kyazze G, Keshavarz T. Antifungal effect of triclosan on Aspergillus fumigatus: quorum quenching role as a single agent and synergy with liposomal amphotericin-B. World J Microbiol Biotechnol 2022; 38:142. [PMID: 35718814 PMCID: PMC9206924 DOI: 10.1007/s11274-022-03325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this research was to determine Aspergillus fumigatus conidial viability and its biofilm formation upon treatment with triclosan and amphotericin-B loaded liposomes. A. fumigatus was treated with the antimicrobials, triclosan and liposomal amphotericin-B (L-AMB), in single and combined supplementation. To quantify the cells’ viability upon treatments, resazurin-based viability assay was performed. Confocal laser scanning microscopy was done by applying FUN-1 stain to screen the role of the agents on extracellular polymeric substances. Total A. fumigatus biomass upon treatments was estimated by using crystal violet-based assay. To study the agents’ effect on the conidial viability, flow cytometry analysis was performed. Expression levels of A. fumigatus genes encoding cell wall proteins, α-(1,3)-glucans and galactosaminogalactan were analysed by real-time polymerase chain reaction assay. A synergistic interaction occurred between triclosan and L-AMB when they were added sequentially (triclosan + L-AMB) at their sub-minimum inhibitory concentrations, the triclosan and L-AMB MICs were dropped to 0.6 and 0.2 mg/L, respectively, from 2 to 1 mg/L. Besides, L-AMB and triclosan contributed to the down-regulation of α-(1,3)-glucan and galactosaminogalactan in A. fumigatus conidia and resulted in less conidia aggregation and mycelia adhesion to the biotic/abiotic surfaces; A. fumigatus conidia-became hydrophilic upon treatment, as a result of rodlet layer being masked by a hydrophilic layer or modified by the ionic strength of the rodlet layer. In A. fumigatus, the potential mechanisms of action for L-AMB might be through killing the cells and for triclosan through interrupting the cells’ development as a consequence of quorum quenching.
Collapse
Affiliation(s)
- Roya Tamimi
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Godfrey Kyazze
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK
| | - Tajalli Keshavarz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
12
|
Youn HY, Seo KH. Isolation and characterization of halophilic Kocuria
salsicia strains from cheese brine. Food Sci Anim Resour 2022; 42:252-265. [PMID: 35310564 PMCID: PMC8907793 DOI: 10.5851/kosfa.2022.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Kocuria salsicia can survive in extreme environments and cause
infections, including catheter-related bacteremia, in humans. Here, we
investigated and evaluated the characteristics of nine K.
salsicia strains (KS1–KS9) isolated from cheese brine from a
farmstead cheese-manufacturing plant in Korea from June to December, 2020.
Staphylococcus aureus American Type Culture Collection
(ATCC) 29213 was used as a positive control in the growth curve analysis and
biofilm-formation assays. All K. salsicia isolates showed
growth at 15% salt concentration and temperatures of 15°C,
25°C, 30°C, 37°C, and 42°C. KS6 and KS8 showed
growth at 5°C, suggesting that they are potential psychrotrophs. In the
biofilm-formation analysis via crystal violet staining, KS6 exhibited the
highest biofilm-forming ability at various temperatures and media [phosphate
buffered saline, nutrient broth (NB), and NB containing 15% sodium
chloride]. At 25°C and 30°C, KS3, KS6, and KS8 showed higher
biofilm-forming ability than S. aureus ATCC 29213. The
antimicrobial resistance of the isolates was evaluated using the
VITEK® 2 system; most isolates were resistant to
marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by
enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%)
showed multidrug resistance. Our study reports the abilities of K.
salsicia to grow in the presence of high salt concentrations and at
relatively low temperatures, along with its multidrug resistance and tendency to
form biofilms.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, College of
Veterinary Medicine, Department of Veterinary Public Health, Konkuk
University, Seoul 05029, Korea
| | - Kun-Ho Seo
- Center for One Health, College of
Veterinary Medicine, Department of Veterinary Public Health, Konkuk
University, Seoul 05029, Korea
- Corresponding author: Kun-Ho
Seo, Center for One Health, College of Veterinary Medicine, Department of
Veterinary Public Health, Konkuk University, Seoul 05029, Korea, Tel:
+82-2-450-4121, Fax: +82-2-3436-4128, E-mail:
| |
Collapse
|
13
|
Antibacterial Effect of a Short Peptide, VV18, from Calcineurin-A of Macrobrachium rosenbergii: Antibiofilm Agent Against Escherichia coli and a Bacterial Membrane Disruptor in Pseudomonas aeruginosa. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
do Canto Canabarro M, Meneghetti KL, Geimba MP, Corção G. Biofilm formation and antibiotic susceptibility of Staphylococcus and Bacillus species isolated from human allogeneic skin. Braz J Microbiol 2021; 53:153-160. [PMID: 34735709 DOI: 10.1007/s42770-021-00642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Human skin banks around the world face a serious problem with the high number of allogeneic skins that are discarded and cannot be used for grafting due to persistent bacterial contamination even after antibiotic treatment. The biofilm formation capacity of these microorganisms may contribute to the antibiotic tolerance; however, this is not yet widely discussed in the literature. Thisstudy analyzed bacterial strains isolated from allogeneic human skin samples,which were obtained from a hospital skin bank that had already been discardeddue to microbial contamination. Biofilm formation and susceptibility topenicillin, tetracycline, and gentamicin were evaluated by crystal violetbiomass quantification and determination of the minimum inhibitoryconcentration (MIC), minimum biofilm inhibitory concentration (MBIC), andminimum biofilm eradication concentration (MBEC) by the broth microdilutionmethod with resazurin dye. A total of 216 bacterial strains were evaluated, and204 (94.45%) of them were classified as biofilm formers with varying degrees ofadhesion. MBICs were at least 512 times higher than MICs, and MBECs were atleast 512 times higher than MBICs. Thus, the presence of biofilm in allogeneicskin likely contributes to the inefficiency of the applied treatments as antibiotictolerance is known to be much higher when bacteria are in the biofilmconformation. Thus, antibiotic treatment protocols in skin banks shouldconsider biofilm formation and should include compounds with antibiofilmaction.
Collapse
Affiliation(s)
- Micaela do Canto Canabarro
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Karine Lena Meneghetti
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Mercedes Passos Geimba
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
15
|
Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112297. [PMID: 34474848 DOI: 10.1016/j.msec.2021.112297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Peri-implantitis is a bacterially induced inflammatory disease which affects the hard and soft tissues around a dental implant. Microbial biofilm formation is an important causative factor in peri-implantitis. The aim of this study is to develop an effective multifunctional surface coating for antimicrobial property and to counteract oral biofilm-associated infections via a single polydopamine copper coating (PDAM@Cu) on titanium implant surface to regulate endogenous nitric oxide (NO) generation. METHODS PDAM@Cu coatings were made with different concentrations of CuCl2 on titanium surfaces with a simple dip coating technique. Coatings were characterised to evaluate Cu concentrations as well as NO release rates from the coatings. Further, salivary biofilms were made on the coatings using Brain Heart Infusion (BHI) media in an anaerobic chamber. Biofilms were prepared with three different mixtures, one of which was saliva only, the second had an addition of sheep's blood, and the third was prepared with NO donors S-nitrosoglutathione (GSNO) and L-glutathione (GSH) in the mixture of saliva and blood to evaluate the effects of endogenously produced NO on biofilms. The effectiveness of coated surfaces on biofilms were assessed using four different methods, namely, crystal violet assay, scanning electron microscopy imaging, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) metabolic assay, and live/dead staining. RESULTS NO release rates could be controlled with different Cu concentration in PDAM@Cu coatings. NO generated from the PDAM@Cu coatings effectively induced dispersal of biofilms shown by the reduction in biofilm biomass as well as reduced biofilm attachment in samples prepared with blood and NO donors. Cu ions released from the PDAM@Cu coatings resulted in killing of the dispersed bacteria, which was evidenced by the live/dead cell staining and reduced metabolic activity noted from the XTT assay. In contrast, samples prepared with saliva showed no significant reduction in biofilms, indicating the important effect of endogenously generated NO on biofilm dispersal. CONCLUSION In conclusion, PDAM@Cu coatings with NO generating surfaces have a dual anti-biofilm function, with a synergistic effect on biofilm dispersal from regulated NO generation and bactericidal effects from Cu ions from the coatings.
Collapse
|
16
|
Kia C, Cusano A, Messina J, Muench LN, Chadayammuri V, McCarthy MB, Umejiego E, Mazzocca AD. Effectiveness of topical adjuvants in reducing biofilm formation on orthopedic implants: an in vitro analysis. J Shoulder Elbow Surg 2021; 30:2177-2183. [PMID: 33529773 DOI: 10.1016/j.jse.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS The treatment of periprosthetic joint infection is complicated by the presence of residual biofilm, which resists eradication owing to bacterial adherence to orthopedic implants. The purpose of this study was to compare Bactisure (Zimmer Biomet, Warsaw, IN, USA), povidone-iodine (Betadine), and chlorhexidine gluconate solution (Irrisept; Irrimax, Gainesville, FL, USA) in reducing biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes inoculated on cobalt-chrome, titanium, and stainless steel disks, representing metals commonly used for shoulder arthroplasty. The hypothesis was that there would be no significant difference in biofilm reduction among the 3 topical adjuvants. METHODS Strains of S aureus (ATCC 35556), S epidermidis (ATCC 35984), and C acnes (LMG 16711) were grown on cobalt-chrome, titanium, and stainless steel disks. For each strain, the disks were divided into 4 groups: (1) control, (2) povidone-iodine (Betadine), (3) chlorhexidine gluconate (Irrisept), and (4) Bactisure. Bacteria were grown on 5% sheep blood agar plates. Biofilm eradication was quantified using adenosine triphosphate bioluminescence and compared with controls 48 and 72 hours after implementation of the topical adjuvant. RESULTS At 72 hours after implementation of the topical adjuvant, a statistically significant reduction in colony-forming units was observed for all topical adjuvants across all tested metals, as compared with their respective control. With respect to the topical adjuvants themselves, Bactisure more consistently demonstrated the most significant reduction in colony-forming units across all bacteria when the tested medium was adjusted for, with the exception of S aureus, which showed similar results to Betadine at 72 hours. CONCLUSION By use of commonly encountered topical adjuvants on S aureus-, S epidermidis-, and C acnes-inoculated disks of various implant metals, a significant reduction in biofilm production was observed. Bactisure, a recent Food and Drug Administration-approved topical adjuvant, demonstrated the overall greatest efficacy of the agents studied.
Collapse
Affiliation(s)
- Cameron Kia
- Department of Orthopedic Surgery, UConn Health, Farmington, CT, USA
| | - Antonio Cusano
- Department of Orthopedic Surgery, UConn Health, Farmington, CT, USA.
| | - James Messina
- Department of Orthopedic Surgery, UConn Health, Farmington, CT, USA
| | - Lukas N Muench
- Department of Orthopedic Surgery, UConn Health, Farmington, CT, USA; Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Biofilm viability checker: An open-source tool for automated biofilm viability analysis from confocal microscopy images. NPJ Biofilms Microbiomes 2021; 7:44. [PMID: 33990612 PMCID: PMC8121819 DOI: 10.1038/s41522-021-00214-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error. Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However, there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs. Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of novel strategies for preventing biofilm formation by ensuring comparability across studies.
Collapse
|
18
|
Lencova S, Svarcova V, Stiborova H, Demnerova K, Jencova V, Hozdova K, Zdenkova K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2277-2288. [PMID: 33284019 DOI: 10.1021/acsami.0c19016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospun polyamide (PA) nanofibers have great potential for medical applications (in dermatology as antimicrobial compound carriers or surgical sutures). However, little is known about microbial colonization on these materials. Suitable methods need to be chosen and optimized for the analysis of biofilms formed on nanofibers and the influence of their morphology on biofilm formation. We analyzed 11 PA nanomaterials, both nonfunctionalized and functionalized with AgNO3, and tested the formation of a biofilm by clinically relevant bacteria (Escherichia coli CCM 4517, Staphylococcus aureus CCM 3953, and Staphylococcus epidermidis CCM 4418). By four different methods, it was confirmed that all of these bacteria attached to the PAs and formed biofilms; however, it was found that the selected method can influence the outcomes. For studying biofilms formed by the selected bacteria, scanning electron microscopy, resazurin staining, and colony-forming unit enumeration provided appropriate and comparable results. The values obtained by crystal violet (CV) staining were misleading due to the binding of the CV dye to the PA structure. In addition, the effect of nanofiber morphology parameters (fiber diameter and air permeability) and AgNO3 functionalization significantly influenced biofilm maturation. Furthermore, the correlations between air permeability and surface density and fiber diameter were revealed. Based on the statistical analysis, fiber diameter was confirmed as a crucial factor influencing biofilm formation (p ≤ 0.01). The functionalization of PAs with AgNO3 (from 0.1 wt %) effectively suppressed biofilm formation. The PA functionalized with a concentration of 0.1 wt % AgNO3 influenced the biofilm equally as nonfunctionalized PA 8% 2 g/m2. Therefore, biofilm formation could be affected by the above-mentioned morphology parameters, and ultimately, the risk of infections from contaminated medical devices could be reduced.
Collapse
Affiliation(s)
- Simona Lencova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Viviana Svarcova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Hana Stiborova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Katerina Demnerova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, Liberec 1 461 17, Czech Republic
| | | | - Kamila Zdenkova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| |
Collapse
|
19
|
Krasowski G, Junka A, Paleczny J, Czajkowska J, Makomaska-Szaroszyk E, Chodaczek G, Majkowski M, Migdał P, Fijałkowski K, Kowalska-Krochmal B, Bartoszewicz M. In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. MEMBRANES 2021; 11:membranes11010062. [PMID: 33477349 PMCID: PMC7830887 DOI: 10.3390/membranes11010062] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds complicated with biofilm formed by pathogens remain one of the most significant challenges of contemporary medicine. The application of topical antiseptic solutions against wound biofilm has been gaining increasing interest among clinical practitioners and scientific researchers. This paper compares the activity of polyhexanide-, octenidine- and hypochlorite/hypochlorous acid-based antiseptics against biofilm formed by clinical strains of Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. The analyses included both standard techniques utilizing polystyrene plates and self-designed biocellulose-based models in which a biofilm formed by pathogens was formed on an elastic, fibrinous surface covered with a fibroblast layer. The obtained results show high antibiofilm activity of polihexanide- and octenidine-based antiseptics and lack or weak antibiofilm activity of hypochlorite-based antiseptic of total chlorine content equal to 80 parts per million. The data presented in this paper indicate that polihexanide- or octenidine-based antiseptics are highly useful in the treatment of biofilm, while hypochlorite-based antiseptics with low chlorine content may be applied for wound rinsing but not when specific antibiofilm activity is required.
Collapse
Affiliation(s)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-784-06-75
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| | - Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | | | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; (G.C.); (M.M.)
| | - Michał Majkowski
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; (G.C.); (M.M.)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Beata Kowalska-Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; (J.P.); (B.K.-K.); (M.B.)
| |
Collapse
|
20
|
Pereira FDO. A review of recent research on antifungal agents against dermatophyte biofilms. Med Mycol 2021; 59:313-326. [PMID: 33418566 DOI: 10.1093/mmy/myaa114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Dermatophytoses are inflammatory cutaneous mycoses caused by dermatophyte fungi of the genera Trichophyton, Microsporum, and Epidermophyton that affect both immunocompetent and immunocompromised individuals. With therapeutic failure, dermatophytoses can become chronic and recurrent. This is partly due to their ability to develop biofilms, microbial communities involved in a polymeric matrix attached to biotic or abiotic surfaces, contributing to fungal resistance. This review presents evidence accumulated in recent years on antidermatophyte biofilm activity. The following databases were used: Web of Science, Medline/PubMed (via the National Library of Medicine), Embase, and Scopus. Original articles published between 2011 and 2020, emphasizing the antifungal activity of conventional and new drugs against dermatophyte biofilms were eligible. A total of 11 articles met the inclusion criteria and were reviewed - the studies used in vitro and ex vivo (fragments of nails and hair) experimental models. The articles focused on reports of antibiofilm activity for conventional antifungals, natural drugs, and new therapeutic tools. The strains reported on were T. mentagrophytes, T. rubrum, T. tonsurans, M. canis, and M. gypseum. Between the studies, the wide variability of experimental conditions in vitro and ex vivo was observed. The data suggest the need for methodological standardization (at some minimum). This review systematically presents current studies involving agents that present antibiofilm activity against dermatophytes; and an overview of the ideal in vitro and ex vivo experimental conditions to guarantee biofilm formation that may assist future research. LAY ABSTRACT This review presents the current studies on the antibiofilm activities of drugs against dermatophytes and ideal experimental conditions, which might guarantee in vitro and ex vivo biofilm formation. It can be useful to examine the efficacy of new antimicrobial drugs against dermatophytes.
Collapse
|
21
|
Hertiani T, Utami D, Pratiwi ST, Haniastuti T. Eugenol and thymol as potential inhibitors for polymicrobial oral biofilms: An in vitro study. J Int Oral Health 2021. [DOI: 10.4103/jioh.jioh_247_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Pezzoni M, Pizarro RA, Costa CS. Evaluation of Viable Cells in Pseudomonas aeruginosa Biofilmsby Colony Count and Live/Dead Staining. Bio Protoc 2020; 10:e3762. [PMID: 33659420 DOI: 10.21769/bioprotoc.3762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/02/2022] Open
Abstract
Pseudomonas aeruginosa is a human pathogen capable to form robust biofilms. P. aeruginosa biofilms represent a serious problem because of the adverse effects on human health and industry, from sanitary and economic points of view. Typical strategies to break down biofilms have been long used, such as the use of disinfectants or antibiotics, but also, according to their high resistance to standard antimicrobial approaches, alternative strategies employing photocatalysis or control of biofilm formation by modifying surfaces, have been proposed. Colony forming units (cfu) counting and live/dead staining, two classic techniques used for biofilm quantification, are detailed in this work. Both methods assess cell viability, a key factor to analyze the microbial susceptibility to given treatment, then, they represent a good approach for evaluation of an antibiofilm strategy.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
23
|
Hussain N, Khalid H, AlMaimouni YK, Ikram S, Khan M, Din SU, Talal A, Khan AS. Microwave assisted urethane grafted nano-apatites for dental adhesives. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520956263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objectives were to synthesize urethane grafted nano-apatite in shortest possible time duration using the microwave irradiation method and to utilize them for synthesis of experimental dental adhesives. The structural, morphological, thermal, and mechanical behavior of synthesized grafted nano-apatite were investigated. Then, these grafted nano-apatite particles were incorporated in various concentrations that is, 5wt.%, 10wt.%, and 15wt.% into dimethacrylate resins to develop bioactive adhesives. The weight measurement analysis in deionized water and phosphate buffer saline, Knoop micro-hardness, and degree of conversion were evaluated. The bacterial adhesion was investigated with Streptococcus mutans at 6h, 24h, and 48h. Statistical analysis was conducted using one-way ANOVA. The urethane dimethacrylate was successfully grafted on the nano-apatite surface and spectroscopic analysis confirmed the presence of urethane and phosphate peaks. An inverse relationship was found in both media between the concentration of grafted fillers and weight loss. No significant difference was observed in the micro-hardness and degree of conversion among the groups, whereby the degree of conversion for all groups was in the range of 83% to 86%. The mean number of bacterial colonies was significantly lower in the 15wt.% group compared to 5wt.% and 10wt.%. The grafted nano-apatite presented favorable results for adhesive resin incorporation, where 15wt.% group comparatively showed superior results than other groups.
Collapse
Affiliation(s)
- Natasha Hussain
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samman Ikram
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Shahab Ud Din
- Dentistry and Allied Disciplines, Shaheed Zulfiqar Ali Bhutto Medical University/ Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Ahmed Talal
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
24
|
Ahn J, Jeon Y, Lee KW, Yi J, Kim SW, Kim DR. Bactericidal Lubricating Synthetic Materials for Three-Dimensional Additive Assembly with Controlled Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26464-26475. [PMID: 32395977 DOI: 10.1021/acsami.0c05764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D printable synthetic materials have been developed to realize desired surface and mechanical properties. Lubricating synthetic surfaces have broad technological impacts on many applications including food packaging, microfluidic systems, and biomedical devices. However, combining soft materials with lubricants leads to significant phase separation and swelling phenomena, together with lowered mechanical strength, impeding full utilization of lubricating synthetic surfaces with desired shapes in a highly controllable manner. Here, we report a new platform to create a 3D printable lubricant-polymer composite (3D-LUBRIC) for the seamless fabrication of multidimensional structures with diverse functionalities. The rationally designed lubricant-polymer mixtures including silica aerogel particles not only exhibit suitable rheological properties for direct ink writing without phase separation but also enable the deterministic additive assembly of heterogeneous materials, which have large mismatches of oil permeability, with no distinct shape distortion. While exhibiting excellent lubricating properties for a variety of liquids, 3D-LUBRIC shows tunable mechanical properties with desired functionalities, such as optical transparency, flexibility and stretchability, and anti-icing and antibacterial/bactericidal properties. We employ the proposed platform to fabricate self-cleanable containers and antibacterial/bactericidal medical tubes. Our platform can offer new opportunities for building low-adhesive, multifunctional synthetic materials with customized shapes for diverse applications.
Collapse
Affiliation(s)
- Jihoon Ahn
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kang Won Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sun Woo Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
25
|
Liao TY, Easton CD, Thissen H, Tsai WB. Aminomalononitrile-Assisted Multifunctional Antibacterial Coatings. ACS Biomater Sci Eng 2020; 6:3349-3360. [PMID: 33463165 DOI: 10.1021/acsbiomaterials.0c00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical device associated infections remain a significant problem for all classes of devices at this point in time. Here, we have developed a surface modification technique to fabricate multifunctional coatings that combine antifouling and antimicrobial properties. Zwitterionic polymers providing antifouling properties and quaternary ammonium containing polymers providing antimicrobial properties were combined in these coatings. Throughout this study, aminomalononitrile (AMN) was used to achieve one-step coatings incorporating different polymers. The characterization of coatings was carried out using static water contact angle (WCA) measurements, X-ray photoelectron spectroscopy (XPS), profilometry, and scanning electron microscopy (SEM), whereas the biological response in vitro was analyzed using Staphylococcus epidermidis and Escherichia coli as well as L929 fibroblast cells. Zwitterionic polymers synthesized from sulfobetaine methacrylate and 2-aminoethyl methacrylate were demonstrated to reduce bacterial attachment when incorporated in AMN assisted coatings. However, bacteria in suspension were not affected by this approach. On the other hand, alkylated polyethylenimine polymers, synthesized to provide quaternary ammonium groups, were demonstrated to have contact killing properties when incorporated in AMN assisted coatings. However, the high bacterial attachment observed on these surfaces may be detrimental in applications requiring longer-term bactericidal activity. Therefore, AMN-assisted coatings containing both quaternary and zwitterionic polymers were fabricated. These multifunctional coatings were demonstrated to significantly reduce the number of live bacteria not only on the modified surfaces, but also in suspension. This approach is expected to be of interest in a range of biomedical device applications.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | | | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Recupido F, Toscano G, Tatè R, Petala M, Caserta S, Karapantsios TD, Guido S. The role of flow in bacterial biofilm morphology and wetting properties. Colloids Surf B Biointerfaces 2020; 192:111047. [PMID: 32388030 DOI: 10.1016/j.colsurfb.2020.111047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
Biofilms are bacterial communities embedded in an extracellular matrix, able to adhere to surfaces. Different experimental set-ups are widely used for in vitro biofilm cultivation; however, a well-defined comparison among different culture conditions, especially suited to interfacial characterization, is still lacking in the literature. The main objective of this work is to study the role of flow on biofilm formation, morphology and interfacial properties. Three different in vitro setups, corresponding to stagnant, shaking, and laminar flow conditions (custom-made flow cell), are used in this work to grow single strain biofilms of Pseudomonas fluorescens AR 11 on glass coupons. Results show that flow conditions significantly influenced biofilm formation kinetics, affecting mass transfer and cell attachment/detachment processes. Distinct morphological patterns are found under different flow regimes. Static contact angle data do not depend significantly on biofilm growth conditions in the parametric range investigated in this work.
Collapse
Affiliation(s)
- Federica Recupido
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124, Thessaloniki, Greece; Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Giuseppe Toscano
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics: "A. Buzzati-Traverso" (IGB-CNR), Pietro Castellino 111, 80131, Naples, Italy
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy; CEINGE, Advanced Biotechnologies, 80145, Naples, Italy.
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124, Thessaloniki, Greece.
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy; CEINGE, Advanced Biotechnologies, 80145, Naples, Italy
| |
Collapse
|
27
|
Pishbin E, Kazemzadeh A, Chimerad M, Asiaei S, Navidbakhsh M, Russom A. Frequency dependent multiphase flows on centrifugal microfluidics. LAB ON A CHIP 2020; 20:514-524. [PMID: 31898702 DOI: 10.1039/c9lc00924h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The simultaneous flow of gas and liquids in large scale conduits is an established approach to enhance the performance of different working systems under critical conditions. On the microscale, the use of gas-liquid flows is challenging due to the dominance of surface tension forces. Here, we present a technique to generate common gas-liquid flows on a centrifugal microfluidic platform. It consists of a spiral microchannel and specific micro features that allow for temporal and local control of stratified and slug flow regimes. We investigate several critical parameters that induce different gas-liquid flows and cause the transition between stratified and slug flows. We have analytically derived formulations that are compared with our experimental results to deliver a general guideline for designing specific gas-liquid flows. As an application of the gas-liquid flows in enhancing microfluidic systems' performance, we show the acceleration of the cell growth of E. coli bacteria in comparison to traditional culturing methods.
Collapse
Affiliation(s)
- Esmail Pishbin
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Kazemzadeh
- Division of Nanobiotechnology, Department of Protein Sciences, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Mohammadreza Chimerad
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mahdi Navidbakhsh
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Sciences, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
28
|
de Oliveira RVD, Bonafé FSS, Spolidorio DMP, Koga-Ito CY, de Farias AL, Kirker KR, James GA, Brighenti FL. Streptococcus mutans and Actinomyces naeslundii Interaction in Dual-Species Biofilm. Microorganisms 2020; 8:microorganisms8020194. [PMID: 32023892 PMCID: PMC7074783 DOI: 10.3390/microorganisms8020194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
The study of bacterial interaction between Streptococcus mutans and Actinomyces naeslundii may disclose important features of biofilm interspecies relationships. The aim of this study was to characterize-with an emphasis on biofilm formation and composition and metabolic activity-single- and dual-species biofilms of S. mutans or A. naeslundii, and to use a drip flow reactor (DFR) to evaluate biofilm stress responses to 0.2% chlorhexidine diacetate (CHX). Single- and dual-species biofilms were grown for 24 h. The following factors were evaluated: cell viability, biomass and total proteins in the extracellular matrix, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide-"XTT"-reduction and lactic acid production. To evaluate stress response, biofilms were grown in DFR. Biofilms were treated with CHX or 0.9% sodium chloride (NaCl; control). Biofilms were plated for viability assessment. Confocal laser-scanning microscopy (CLSM) was also performed. Data analysis was carried out at 5% significance level. S. mutans viability and lactic acid production in dual-species biofilms were significantly reduced. S. mutans showed a higher resistance to CHX in dual-species biofilms. Total protein content, biomass and XTT reduction showed no significant differences between single- and dual-species biofilms. CLSM images showed the formation of large clusters in dual-species biofilms. In conclusion, dual-species biofilms reduced S. mutans viability and lactic acid production and increased S. mutans' resistance to chlorhexidine.
Collapse
Affiliation(s)
- Rosa Virginia Dutra de Oliveira
- School of Dentistry, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil; (R.V.D.d.O.); (F.S.S.B.); (D.M.P.S.); (A.L.d.F.)
| | - Fernanda Salloume Sampaio Bonafé
- School of Dentistry, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil; (R.V.D.d.O.); (F.S.S.B.); (D.M.P.S.); (A.L.d.F.)
| | | | - Cristiane Yumi Koga-Ito
- São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP 12245-000, Brazil;
| | - Aline Leite de Farias
- School of Dentistry, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil; (R.V.D.d.O.); (F.S.S.B.); (D.M.P.S.); (A.L.d.F.)
| | - Kelly R. Kirker
- Centre for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (K.R.K.); (G.A.J.)
| | - Garth A. James
- Centre for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (K.R.K.); (G.A.J.)
| | - Fernanda Lourenção Brighenti
- School of Dentistry, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil; (R.V.D.d.O.); (F.S.S.B.); (D.M.P.S.); (A.L.d.F.)
- Correspondence: ; Tel.: +55-16-3301-6551
| |
Collapse
|
29
|
Esteban Florez FL, Hiers RD, Zhao Y, Merritt J, Rondinone AJ, Khajotia SS. Optimization of a real-time high-throughput assay for assessment of Streptococcus mutans metabolism and screening of antibacterial dental adhesives. Dent Mater 2020; 36:353-365. [PMID: 31952798 PMCID: PMC7042092 DOI: 10.1016/j.dental.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Objective. The present work shows the optimization of a high-throughput bioluminescence assay to assess the metabolism of intact Streptococcus mutans biofilms and its utility as a screening method for nanofilled antibacterial dental materials. Methods. The assay was optimized by monitoring changes in bioluminescence mediated by variation of the experimental parameters investigated (growth media and sucrose concentration, inoculum:D-Luciferin ratio, dilution factor, inoculum volume, luminescence wavelength, replicate and luciferase metabolic activity). Confocal microscopy was then used to demonstrate the impact of biofilm growth conditions on the 3-D distribution of extracellular polymeric substance (EPS) within Streptococcus mutans biofilms and its implications as confounding factors in high-throughput studies (HTS). Results. Relative Luminescence Unit (RLU) values from the HTS optimization were analyzed by multivariate ANOVA (α = 0.05) and coefficients of variation, whereas data from 3-D structural parameters and RLU values of biofilms grown on experimental antibacterial dental adhesive resins were analyzed using General Linear Models and Student–Newman–Keuls post hoc tests (α = 0.05). Confocal microscopy demonstrated that biofilm growth conditions significantly influenced the quantity and distribution of EPS within the 3-D structures of the biofilms. An optimized HTS bioluminescence assay was developed and its applicability as a screening method in dentistry was demonstrated using nanofilled experimental antibacterial dental adhesive resins. Significance. The present study is anticipated to positively impact the direction of future biofilm research in dentistry, because it offers fundamental information for the design of metabolic-based assays, increases the current levels of standardization and reproducibility while offering a tool to decrease intra-study variability.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Rochelle Denise Hiers
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Yan Zhao
- The University of Oklahoma Health Sciences Center, Department of Biostatistics and Epidemiology, College of Public Health, 801 NE 13th Street, Oklahoma City, OK, 73126, USA.
| | - Justin Merritt
- Oregon Health & Science University, Department of Restorative Dentistry, School of Dentistry, MRB424, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Adam Justin Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA.
| | - Sharukh Soli Khajotia
- The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
30
|
Kot B, Sytykiewicz H, Sprawka I, Witeska M. Effect of trans-Cinnamaldehyde on Methicillin-Resistant Staphylococcus aureus Biofilm Formation: Metabolic Activity Assessment and Analysis of the Biofilm-Associated Genes Expression. Int J Mol Sci 2019; 21:ijms21010102. [PMID: 31877837 PMCID: PMC6981724 DOI: 10.3390/ijms21010102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 01/21/2023] Open
Abstract
The effects of trans-cinnamaldehyde (TC) on transcriptional profiles of biofilm-associated genes and the metabolic activity of two methicillin-resistant Staphylococcus aureus (MRSA) strains showing a different degree of adherence to polystyrene, were evaluated. Metabolic activity of S. aureus in biofilm was significantly decreased in the presence of TC at 1/2 minimum biofilm inhibition concentration (MBIC). Expression levels of the genes encoding laminin binding protein (eno), elastin binding protein (ebps) and fibrinogen binding protein (fib) in the presence of TC at 1/2 MBIC were lower than in untreated biofilm in both the weakly and strongly adhering strain. The highest decrease of expression level was observed in case of fib in the strongly adhering strain, in which the amount of fib transcript was 10-fold lower compared to biofilm without TC. In the presence of TC at 1/2 MBIC after 3, 6, 8 and 12 h, the expression level of icaA and icaD, that are involved in the biosynthesis of polysaccharide intercellular adhesin, was above half lower in the weakly adhering strain compared to biofilm without TC. In the strongly adhering strain the highest decrease in expression of these genes was observed after 3 and 6 h. This study showed that TC is a promising anti-biofilm agent for use in MRSA biofilm-related infections.
Collapse
|
31
|
Siebert C, Lindgren H, Ferré S, Villers C, Boisset S, Perard J, Sjöstedt A, Maurin M, Brochier-Armanet C, Couté Y, Renesto P. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg Microbes Infect 2019; 8:808-822. [PMID: 31164053 PMCID: PMC6566608 DOI: 10.1080/22221751.2019.1615848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Francisella tularensis is the causative agent in tularemia for which the high prevalence of treatment failure and relapse is a major concern. Directed-evolution experiments revealed that acquisition of fluoroquinolone (FQ) resistance was linked to factors in addition to mutations in DNA gyrase. Here, using F. tularensis live vaccine strain (LVS) as a model, we demonstrated that FupA/B (Fer-Utilization Protein) expression is linked to FQ susceptibility, and that the virulent strain F. tularensis subsp. tularensis SCHU S4 deleted for the homologous FupA protein exhibited even higher FQ resistance. In addition to an increased FQ minimal inhibitory concentration, LVSΔfupA/B displayed tolerance toward bactericidal compounds including ciprofloxacin and gentamicin. Interestingly, the FupA/B deletion was found to promote increased secretion of outer membrane vesicles (OMVs). Mass spectrometry-based quantitative proteomic characterization of vesicles from LVS and LVS∆fupA/B identified 801 proteins, including a subset of 23 proteins exhibiting differential abundance between both strains which may therefore contribute to the reduced antibiotic susceptibility of the FupA/B-deleted strain. We also demonstrated that OMVs are key structural elements of LVSΔfupA/B biofilms providing protection against FQ. These results provide a new basis for understanding and tackling antibiotic resistance and/or persistence of Francisella and other pathogenic members of the Thiotrichales class.
Collapse
Affiliation(s)
- Claire Siebert
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Helena Lindgren
- c Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology , Umeå University , Umeå , Sweden
| | - Sabrina Ferré
- d Université Grenoble Alpes, CEA, Inserm, IRIG-BGE , Grenoble , France
| | - Corinne Villers
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,e Université de Caen Normandie, EA4655 U2RM , Caen , France
| | - Sandrine Boisset
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Julien Perard
- f Université Grenoble Alpes, CNRS, CEA, BIG-LCBM , Grenoble , France
| | - Anders Sjöstedt
- c Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology , Umeå University , Umeå , Sweden
| | - Max Maurin
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Céline Brochier-Armanet
- g Laboratoire de Biométrie et Biologie Évolutive , Université Claude Bernard Lyon 1, CNRS, UMR5558 , Villeurbanne , France
| | - Yohann Couté
- d Université Grenoble Alpes, CEA, Inserm, IRIG-BGE , Grenoble , France
| | | |
Collapse
|
32
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
33
|
Savijoki K, Nyman TA, Kainulainen V, Miettinen I, Siljamäki P, Fallarero A, Sandholm J, Satokari R, Varmanen P. Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG. Front Microbiol 2019; 10:1272. [PMID: 31231350 PMCID: PMC6560171 DOI: 10.3389/fmicb.2019.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, Lactobacillus rhamnosus GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC pilus protein and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR, and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN, and PepA). The abundance of several known adhesins and candidate moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC, and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The mucus binding factor (MBF) was found most abundant in fructose grown biofilm cells whereas SpaC adhesin was identified specifically from planktonic cells growing on fructose. An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate mechanisms shaping the proteinaceous composition of GG cell surface, which potentially contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Pia Siljamäki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Jouko Sandholm
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
35
|
Uzoechi SC, Abu-Lail NI. The Effects of β-Lactam Antibiotics on Surface Modifications of Multidrug-Resistant Escherichia coli: A Multiscale Approach. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:135-150. [PMID: 30869575 PMCID: PMC6599534 DOI: 10.1017/s1431927618015696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Possible multidrug-resistant (MDR) mechanisms of four resistant strains of Escherichia coli to a model β-lactam, ampicillin, were investigated using contact angle measurements of wettability, crystal violet assays of permeability, biofilm formation, fluorescence imaging, and nanoscale analyses of dimensions, adherence, and roughness. Upon exposure to ampicillin, one of the resistant strains, E. coli A5, changed its phenotype from elliptical to spherical, maintained its roughness and biofilm formation abilities, decreased its length and surface area, maintained its cell wall integrity, increased its hydrophobicity, and decreased its nanoscale adhesion to a model surface of silicon nitride. Such modifications are suggested to allow these cells to conserve energy during metabolic dormancy. In comparison, resistant strains E. coli D4, A9, and H5 elongated their cells, increased their roughness, increased their nanoscale adhesion forces, became more hydrophilic, and increased their biofilm formation upon exposure to ampicillin. These results suggest that these strains resisted ampicillin through biofilm formation that possibly introduces diffusion limitations to antibiotics. Investigations of how MDR bacterial cells modify their surfaces in response to antibiotics can guide research efforts aimed at designing more effective antibiotics and new treatment strategies for MDR bacterial infections.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Nehal I. Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
36
|
Ananda A, Manukumar H, Krishnamurthy N, Nagendra B, Savitha K. Assessment of antibacterial efficacy of a biocompatible nanoparticle PC@AgNPs against Staphylococcus aureus. Microb Pathog 2019; 126:27-39. [DOI: 10.1016/j.micpath.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
|
37
|
Rinanda T, Isnanda RP, Zulfitri. Chemical Analysis of Red Ginger (Zingiber officinale Roscoe var rubrum) Essential Oil and Its Anti-biofilm Activity against Candida albicans. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilm formation is one of the virulence factors of Candida albicans, contributing to the development of resistance to various antifungal drugs. In order to combat resistant microbes such as C. albicans, the discovery and development of antifungal substances must explore the anti-biofilm activity of substances, which are extracted from traditional medicinal plants widely available in tropical countries such as Indonesia. One of the natural ingredients that can be developed is red ginger. This plant has been used empirically in the treatment of various infectious diseases, including fungal infections. The aim of this study is to determine the composition of chemical compounds in the essential oil of the red ginger rhizomes planted in Aceh, Indonesia and the anti-biofilm activity of the essential oil against C. albicans, isolated from a clinical sample. The chemical analysis of the essential oil was performed by Gas Chromatography-Mass Spectrophotometry (GC-MS). Anti-biofilm activity was observed through biofilm inhibition and degradation activities, determined by Cristal Violet assay. Data were analyzed using ANOVA test and Duncan's post hoc test with 99% CI. The GC-MS results showed that the essential oil used in this study contained high monoterpenes (60.55%) which is dominated by E-citral/geranial (11.97%) and 1.8 - cineole (15.10%). The highest sesquiterpenes derivative was αr-curcumene (16.86%). The significant inhibition of C. albicans biofilm formation was obtained at a concentration of 0.5% and the biofilm degradation was obtained at a concentration of 0.125%. The data indicates that the high monoterpenoids-red ginger essential oil used in this study has performed significant anti-biofilm activity against C. albicans.
Collapse
Affiliation(s)
- Tristia Rinanda
- Department of Microbiology, Faculty of Medicine, Syiah Kuala University, Aceh, Indonesia 23111
| | - Rizki Puji Isnanda
- Department of Microbiology, Faculty of Medicine, Syiah Kuala University, Aceh, Indonesia 23111
| | - Zulfitri
- Department of Biology, Faculty of Medicine, Syiah Kuala University, Aceh, Indonesia 23111
| |
Collapse
|
38
|
Baghini GS, Sepahi AA, Tabatabaei RR, Tahvildari K. The combined effects of ethanolic extract of Artemisia aucheri and Artemisia oliveriana on biofilm genes expression of methicillin resistant Staphylococcus aureus. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:417-423. [PMID: 30873270 PMCID: PMC6414741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVES One of the most important antibiotic-resistant bacteria is methicillin-resistant Staphylococcus aureus (MRSA) biofilm that has caused significant problems in treating the patients. Therefore, the aim of this study was to evaluate the levels of expression of genes involved in biofilm formation in MRSA (ATCC 33591) while being treated by a combination of Artemisia aucheri and Artemisia oliveriana. MATERIALS AND METHODS The minimum inhibitory concentration (MIC) of ethanolic extract of A. aucheri and A. oliveriana and also the minimum inhibitory concentration of combination of both extracts were 512, 1024 and 256 μg/ml, respectively; then at concentrations lower than the MIC, expression levels of the desired genes were determined by Real Time PCR. RESULTS Based on results, using a combination of two ethanolic extracts had a significant effect on expression of genes involved in biofilm formation in MRSA. The expression level of icaA at 4, 8, 16 h after being treated by herbal extracts of A. aucheri and A. oliveriana was 0.293, 0.121, 0.044, respectively. The expression level of icaD was 0.285, 0.097, 0.088, respectively, while that of ebps was 0.087, 0.042, 0.009 at 4, 8 and 16 h, respectively. CONCLUSION This study provided evidence that ethanol extract of A. oliveriava and A. aucheri can inhibit the biofilm formation of S. aureus. As a traditional Iranian medicine, A. oliveriava and A. aucheri extracts have a potential antibiofilm formation against MRSA strains.
Collapse
Affiliation(s)
- Ghazaleh Shojaei Baghini
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran,Corresponding author: Abbas Akhavan Sepahi, PhD, Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran. Tel: +98-21-22949793,
| | - Robab Rafiei Tabatabaei
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
dos Santos A, André CB, Martim GC, Schuquel ITA, Pfeifer CS, Ferracane JL, Tominaga TT, Khalil NM, Radovanovic E, Girotto EM. Methacrylate saccharide-based monomers for dental adhesive systems. INTERNATIONAL JOURNAL OF ADHESION & ADHESIVES 2018; 87:1-11. [PMID: 31130758 PMCID: PMC6533006 DOI: 10.1016/j.ijadhadh.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this in vitro study was to synthesize three new methacrylate monomers based on the modification of saccharides structures (glucose-Gluc, sucrose-Sucr and chitosan-Chit) with glycidyl methacrylate, and to use them in the composition of dental adhesives. Three methacrylate saccharide monomers were synthesized and characterized by mid-IR, 1H and 13C NMR, antioxidant activity and cytotoxic effect. Monomers included: one monosaccharide - Gluc-MA; one disaccharide - Sucr-MA; and one polysaccharide - Chit-MA. Primers containing HEMA, methacrylate saccharide monomers at concentrations of 0 (control), 1, 2 or 4 wt%, 60 wt% ethanol aqueous solution (pH3.0) and initiator system were formulated. Primers were used in conjunction with a bond step and composite paste to restore caries-free third molars, and dentin bond strength (24 hours and 6 month of storage in water), and antimicrobial activity (Alamar Blue test) were tested. Degree of conversion (DC) and maximum rate of polymerization (Rpmax) of the primers themselves were also analyzed. The mid-IR, 1H and 13C spectrum confirmed the presence of vinyl group on the structure of saccharides. Chit-MA showed low antioxidant activity and did not present a cytotoxic effect. Gluc-MA and Sucr-MA possess antioxidant and cytotoxic activity, concentration dependent. In the presence of methacrylate saccharide monomers, the primers showed DC comparable to the control group, except Gluc-MA4%, Sucr-MA4% and Chit-MA1%, which showed a range of 64.6 from 58.5 %DC. Rpmax was not statistically different for all the groups (p = 0.01). The bond strength of Sucr-MA1% increased from 25.7 (±2.8) to 40.6 (±5.3) MPa after 6 months of storage. All the synthesized monomers showed some antimicrobial activity after polymerization. Gluc-MA and Chit-MA 4% and Sucr-MA 1, 2 and 4% led to decrease bacterial metabolism. Sucr-MA 1% showed better results regarding the decrease in bacterial metabolism and increasing the bond strength after 6 months of storage.
Collapse
Affiliation(s)
- Andressa dos Santos
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Carolina B. André
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Limeira Avenue, 901, Piracicaba, SP, Brazil
| | - Gedalias C. Martim
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Ivania T. A. Schuquel
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Jack L. Ferracane
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Tania T. Tominaga
- Department of Physics, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Najeh M. Khalil
- Department of Pharmacy, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Eduardo Radovanovic
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Emerson M. Girotto
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| |
Collapse
|
40
|
Thomsen H, Graf FE, Farewell A, Ericson MB. Exploring photoinactivation of microbial biofilms using laser scanning microscopy and confined 2-photon excitation. JOURNAL OF BIOPHOTONICS 2018; 11:e201800018. [PMID: 29785840 DOI: 10.1002/jbio.201800018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
One pertinent complication in bacterial infection is the growth of biofilms, that is, communities of surface-adhered bacteria resilient to antibiotics. Photodynamic inactivation (PDI) has been proposed as an alternative to antibiotic treatment; however, novel techniques complementing standard efficacy measures are required. Herein, we present an approach employing multiphoton microscopy complemented with Airyscan super-resolution microscopy, to visualize the distribution of curcumin in Staphylococcus epidermidis biofilms. The effects of complexation of curcumin with hydroxypropyl-γ-cyclodextrin (HPγCD) were studied. It was shown that HPγCD curcumin demonstrated higher bioavailability in the biofilms compared to curcumin, without affecting the subcellular uptake. Spectral quantification following PDI demonstrates a method for monitoring elimination of biofilms in real time using noninvasive 3D imaging. Additionally, spatially confined 2-photon inactivation was demonstrated for the first time in biofilms. These results support the feasibility of advanced optical microscopy as a sensitive tool for evaluating treatment efficacy in biofilms toward improved mechanistic studies of PDI.
Collapse
Affiliation(s)
- Hanna Thomsen
- Biomedical Photonics, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- CARe, Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Fabrice E Graf
- CARe, Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anne Farewell
- CARe, Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marica B Ericson
- Biomedical Photonics, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr Rev Food Sci Food Saf 2018; 17:1261-1276. [DOI: 10.1111/1541-4337.12378] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fabián González-Rivas
- Faculty of Health Sciences at Manresa; Univ. of Vic Central Univ. of Catalonia; Manresa Spain
| | - Carolina Ripolles-Avila
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Fabio Fontecha-Umaña
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Abel Guillermo Ríos-Castillo
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - José Juan Rodríguez-Jerez
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| |
Collapse
|
42
|
Cattò C, Villa F, Cappitelli F. Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Crit Rev Microbiol 2018; 44:633-652. [DOI: 10.1080/1040841x.2018.1489369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
43
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
44
|
Ernest EP, Machi AS, Karolcik BA, LaSala PR, Dietz MJ. Topical adjuvants incompletely remove adherent Staphylococcus aureus from implant materials. J Orthop Res 2018; 36:1599-1604. [PMID: 29139579 PMCID: PMC5953801 DOI: 10.1002/jor.23804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
Adjuvant treatments including Betadine, Dakin's solution (sodium hypochlorite), or hydrogen peroxide (H2 O2 ) have been attempted to eradicate prosthetic joint infection caused by biofilm or intracellular bacteria. The purpose of this study was to evaluate the in vitro abilities of chemical adjuvants to decrease Staphylococcus aureus (S. aureus) biofilm presence on orthopaedic implant grade materials, including titanium, stainless steel, and cobalt chrome. S. aureus biofilms were grown for 48 h and evaluated for baseline colony forming units/centimeter squared (CFU/cm2 ) and compared to treatments with Betadine, Dakin's solution, H2 O2 , or 1% chlorine dioxide (ClO2 ). Control discs (n = 18) across all metals had an average of 4.2 × 107 CFU/cm2 . All treatments had statistically significant reductions in CFU/cm2 when compared to respective control discs (p < 0.05). For all metals combined, the most efficacious treatments were Betadine and H2 O2 , with an average 98% and 97% CFU/cm2 reduction, respectively. There were no significant differences between reductions seen with Betadine and H2 O2 , but both groups had statistically greater reductions than Dakin's solution and ClO2 . There was no change in antibiotic resistance patterns after treatment. Analysis of S. aureus biofilms demonstrated a statistically significant reduction in biofilm after a five-minute treatment with the modalities, with an average two log reduction in CFU/cm2 . Statement of clinical significance: While statistically significant reductions in CFU/cm2 were accomplished with chemical adjuvant treatments, the overall concentration of bacteria never fell below 105 CFU/cm2 , leading to questionable clinical significance. Further techniques to eradicate biofilm should be investigated. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1599-1604, 2018.
Collapse
Affiliation(s)
- Emily P. Ernest
- Robert C. Byrd Health Sciences Center, Department of Orthopaedics, West Virginia University School of Medicine, P.O. Box 9196, Morgantown, West Virginia 26506-9196
| | - Anthony S. Machi
- Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, P.O. Box 9100, Morgantown, West Virginia 26506-9100
| | - Brock A. Karolcik
- Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, P.O. Box 9100, Morgantown, West Virginia 26506-9100
| | - Paul R. LaSala
- Robert C. Byrd Health Sciences Center, Department of Pathology, West Virginia University School of Medicine, P.O. Box 9203, Morgantown, West Virginia 26506-9203
| | - Matthew J. Dietz
- Robert C. Byrd Health Sciences Center, Department of Orthopaedics, West Virginia University School of Medicine, P.O. Box 9196, Morgantown, West Virginia 26506-9196
| |
Collapse
|
45
|
Puspita M, Déniel M, Widowati I, Radjasa OK, Douzenel P, Marty C, Vandanjon L, Bedoux G, Bourgougnon N. Total phenolic content and biological activities of enzymatic extracts from Sargassum muticum (Yendo) Fensholt. JOURNAL OF APPLIED PHYCOLOGY 2017; 29:2521-2537. [PMID: 32214664 PMCID: PMC7088061 DOI: 10.1007/s10811-017-1086-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 06/02/2023]
Abstract
Seaweeds are potentially excellent sources of bioactive metabolites that could represent useful leads in the development of new functional ingredients in pharmaceutical and cosmetic industries. In the last decade, new marine bioprocess technologies have allowed the isolation of substances with biological properties. The brown alga Sargassum muticum (Yendo) Fensholt (Ochrophyta) was enzymatically hydrolyzed to prepare water-soluble extracts by using six different commercially available carbohydrate-degrading enzymes and two proteases. Evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) antioxidant, tyrosinase, elastase, and biofilm inhibition, antibacterial and antiviral activities as well as evaluation of cytotoxicity were realized for each extract. Total phenolic content was measured for extract characterization, and solid-phase extraction was useful to purify the enzymatic extract. Soluble total phenolic content of S. muticum Viscozyme extract was highest with 6.4% of dry weight. Enzymatic Celluclast and Viscozyme extracts had the lowest value of DPPH IC50 indicating a strong antiradical activity, 0.6 mg mL-1, in comparison with other enzymes. The ferric reducing antioxidant power ranged between 48.7 μM Fe2+ Eq, digested with Viscozyme, and 60.8 μM Fe2+ Eq, digested with Amyloglucosidase. Tyrosinase inhibition activity of S. muticum Neutrase extract was 41.3% higher compared to other enzymes. Elastase inhibition activity of S. muticum Shearzyme extract had highest activity (32.8%). All enzymatic extracts showed no cytotoxic effect towards the kidney Vero cells. Meanwhile, only S. muticum Neutrase and Alcalase extracts exhibited potential antiviral activity. In addition, S. muticum Viscozyme and Shearzyme extracts showed promising activity in suppressing the biofilm formation against Pseudomonas aeruginosa and Escherichia coli, respectively. Purification of S. muticum Viscozyme extracts by solid-phase extraction managed to concentrate the phenolic content and improve the bioactivity. These results indicate the promising potential of enzyme-assisted followed by solid-phase extraction in recovering phenolic content and in improving its bioactivity.
Collapse
Affiliation(s)
- Maya Puspita
- Université Bretagne Sud, EA 3884, LBCM, IUEM, 56000, Vannes, France
- Faculty of Fisheries and Marine Science, Marine Science Department, Diponegoro University, Semarang, 50275 Indonesia
| | - Maureen Déniel
- Université Bretagne Sud, EA 3884, LBCM, IUEM, 56000, Vannes, France
- Université de Nantes, GEPEA-UMR CNRS, 6144 Saint-Nazaire, France
| | - Ita Widowati
- Faculty of Fisheries and Marine Science, Marine Science Department, Diponegoro University, Semarang, 50275 Indonesia
| | - Ocky Karna Radjasa
- Faculty of Fisheries and Marine Science, Marine Science Department, Diponegoro University, Semarang, 50275 Indonesia
| | | | - Christel Marty
- Université Bretagne Sud, EA 3884, LBCM, IUEM, 56000, Vannes, France
| | - Laurent Vandanjon
- Université Bretagne Sud, EA 3884, LBCM, IUEM, 56000, Vannes, France
- Université de Nantes, GEPEA-UMR CNRS, 6144 Saint-Nazaire, France
| | - Gilles Bedoux
- Université Bretagne Sud, EA 3884, LBCM, IUEM, 56000, Vannes, France
| | | |
Collapse
|
46
|
Swar S, Zajícová V, Rysová M, Lovětinská-Šlamborová I, Voleský L, Stibor I. Biocompatible surface modification of poly(ethylene terephthalate) focused on pathogenic bacteria: Promising prospects in biomedical applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.44990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sumita Swar
- Department of New Technologies and Applied Informatics; Faculty of Mechatronics and Interdisciplinary Studies, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Nanomaterials in Natural Sciences; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| | - Veronika Zajícová
- Department of Nanomaterials in Natural Sciences; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Chemistry; Faculty of Science, Humanities and Education, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| | - Miroslava Rysová
- Department of New Technologies and Applied Informatics; Faculty of Mechatronics and Interdisciplinary Studies, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Nanomaterials in Natural Sciences; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| | - Irena Lovětinská-Šlamborová
- Department of Chemistry; Faculty of Science, Humanities and Education, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Microbiology; Faculty of Health Studies, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| | - Lukáš Voleský
- Department of Nanomaterials in Natural Sciences; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Materials; Faculty of Mechanical Engineering, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| | - Ivan Stibor
- Department of Nanomaterials in Natural Sciences; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
- Department of Chemistry; Faculty of Science, Humanities and Education, Technical University of Liberec; Studentská 1402/2 Liberec 1 46117 Czech Republic
| |
Collapse
|
47
|
An improved protocol for harvesting Bacillus subtilis colony biofilms. J Microbiol Methods 2017; 134:7-13. [PMID: 28069469 DOI: 10.1016/j.mimet.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible. To address this problem, we developed a readily applicable method to culture Bacillus subtilis biofilms on a membrane filter. The method results in biofilms with highly reproducible characteristics, and which can be readily analyzed by a variety of methods with little further manipulation. This biofilm preparation method simplifies routine generation of B. subtilis biofilms for molecular and cellular analysis, and could be applicable to other microbial systems.
Collapse
|
48
|
Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, Gallo MT, Pimpinelli F, Bordignon V, Bernardi T, Ensoli F. Development of an in vitro Assay, Based on the BioFilm Ring Test ®, for Rapid Profiling of Biofilm-Growing Bacteria. Front Microbiol 2016; 7:1429. [PMID: 27708625 PMCID: PMC5030256 DOI: 10.3389/fmicb.2016.01429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023] Open
Abstract
Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.
Collapse
Affiliation(s)
- Enea G Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Christian Provot
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome Rome, Italy
| | - Isabella Sperduti
- Biostatistics, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Maria T Gallo
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Thierry Bernardi
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| |
Collapse
|
49
|
The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community. PLoS Comput Biol 2016; 12:e1005079. [PMID: 27623159 PMCID: PMC5021341 DOI: 10.1371/journal.pcbi.1005079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/25/2016] [Indexed: 01/12/2023] Open
Abstract
The activity of a biological community is the outcome of complex processes involving interactions between community members. It is often unclear how to accurately incorporate these interactions into predictive models. Previous work has shown a range of positive and negative metabolic pairwise interactions between species. Here we examine the ability of a modified general Lotka-Volterra model with cell-cell interaction coefficients to predict the overall metabolic rate of a well-mixed microbial community comprised of four heterotrophic natural isolates, experimentally quantifying the strengths of two, three, and four-species interactions. Within this community, interactions between any pair of microbial species were positive, while higher-order interactions, between 3 or more microbial species, slightly modulated community metabolism. For this simple community, the metabolic rate of can be well predicted only with taking into account pairwise interactions. Simulations using the experimentally determined interaction parameters revealed that spatial heterogeneity in the distribution of cells increased the importance of multispecies interactions in dictating function at both the local and global scales. Many wild microbial ecosystems contain hundreds to thousands of species, suggesting that interactions between species likely play an important role in regulating the behavior of such complex cellular networks. Predicting how these interactions impact the overall activity of microbial communities remains a challenge. Here we quantify the contribution of interactions between more than two species to the overall metabolic rate of a mixture of four freshwater bacteria. We systematically measure interactions between these species and use theoretical models to examine the influence cell-cell interactions on spatially non-uniform microbial populations. Our results demonstrate that although interactions between species are key regulators of system behavior, only considering interactions between pairs of species is sufficient to predict ecosystem activity. Simulations demonstrate that activity at both the single-cell and population level would be strongly influenced by how microbes are distributed in space. These findings improve our understanding of how best to examine groups of microbes that coexist in environments such as soil, water, and the human body.
Collapse
|
50
|
Baumgartner M, Neu TR, Blom JF, Pernthaler J. Protistan predation interferes with bacterial long-term adaptation to substrate restriction by selecting for defence morphotypes. J Evol Biol 2016; 29:2297-2310. [PMID: 27488245 DOI: 10.1111/jeb.12957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022]
Abstract
Bacteria that are introduced into aquatic habitats face a low substrate environment interspersed with rare productive 'hotspots', as well as high protistan grazing. Whereas the former condition should select for growth performance, the latter should favour traits that reduce predation mortality, such as the formation of large cell aggregates. However, protected morphotypes often convey a growth disadvantage, and bacteria thus face a trade-off between investing in growth or defence traits. We set up an evolutionary experiment with the freshwater isolate Sphingobium sp. strain Z007 that conditionally increases aggregate formation in supernatants from a predator-prey coculture. We hypothesized that low substrate levels would favour growth performance and reduce the aggregated subpopulation, but that the concomitant presence of a flagellate predator might conserve the defence trait. After 26 (1-week) growth cycles either with (P+) or without (P-) predators, bacteria had evolved into strikingly different phenotypes. Strains from P- had low numbers of aggregates and increased growth yield, both at the original rich growth conditions and on various single carbon sources. By contrast, isolates from the P+ treatment formed elevated proportions of defence morphotypes, but exhibited lower growth yield and metabolic versatility. Moreover, the evolved strains from both treatments had lost phenotypic plasticity of aggregate formation. In summary, the (transient) residence of bacteria at oligotrophic conditions may promote a facultative oligotrophic life style, which is advantageous for survival in aquatic habitats. However, the investment in defence against predation mortality may constrain microbial adaptation to the abiotic environment.
Collapse
Affiliation(s)
- M Baumgartner
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland
| | - T R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - J F Blom
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland
| | - J Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland.
| |
Collapse
|