1
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
2
|
Jaswal K, Todd OA, Flores Audelo RC, Santus W, Paul S, Singh M, Miao J, Underhill DM, Peters BM, Behnsen J. Commensal Yeast Promotes Salmonella Typhimurium Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606421. [PMID: 39211098 PMCID: PMC11360897 DOI: 10.1101/2024.08.08.606421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enteric pathogens engage in complex interactions with the host and the resident microbiota to establish gut colonization. Although mechanistic interactions between enteric pathogens and bacterial commensals have been extensively studied, whether and how commensal fungi affect pathogenesis of enteric infections remains largely unknown. Here we show that colonization with the common human gut commensal fungus Candida albicans worsened infections with the enteric pathogen Salmonella enterica serovar Typhimurium. Presence of C. albicans in the mouse gut increased Salmonella cecum colonization and systemic dissemination. We investigated the underlying mechanism and found that Salmonella binds to C. albicans via Type 1 fimbriae and uses its Type 3 Secretion System (T3SS) to deliver effector proteins into C. albicans . A specific effector, SopB, was sufficient to manipulate C. albicans metabolism, triggering increased arginine biosynthesis in C. albicans and the release of millimolar amounts of arginine into the extracellular environment. The released arginine, in turn, induced T3SS expression in Salmonella , increasing its invasion of epithelial cells. C. albicans deficient in arginine production was unable to increase Salmonella virulence in vitro or in vivo . In addition to modulating pathogen invasion, arginine also directly influenced the host response to infection. Arginine-producing C. albicans dampened the inflammatory response during Salmonella infection, whereas C. albicans deficient in arginine production did not. Arginine supplementation in the absence of C. albicans increased the systemic spread of Salmonella and decreased the inflammatory response, phenocopying the presence of C. albicans . In summary, we identified C. albicans colonization as a susceptibility factor for disseminated Salmonella infection, and arginine as a central metabolite in the cross-kingdom interaction between fungi, bacteria, and host.
Collapse
|
3
|
Park J, Xiang Z, Liu Y, Li CH, Chen C, Nagaraj H, Nguyen T, Nabawy A, Koo H, Rotello VM. Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37613-37622. [PMID: 39007413 DOI: 10.1021/acsami.4c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Zhenting Xiang
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tiffany Nguyen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
- Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, 240 S 40th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 S 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Shaik MR, Kandaswamy K, Guru A, Khan H, Giri J, Mallik S, Shah MA, Arockiaraj J. Piperine-coated zinc oxide nanoparticles target biofilms and induce oral cancer apoptosis via BCl-2/BAX/P53 pathway. BMC Oral Health 2024; 24:715. [PMID: 38907185 PMCID: PMC11191213 DOI: 10.1186/s12903-024-04399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.
Collapse
Affiliation(s)
- Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| | - Haroon Khan
- Department of Pharmacy, Abdul wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Saurav Mallik
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Mohd Asif Shah
- Department of Economics, Kebri Dehar University, 250, Kebri Dehar, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
6
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
7
|
Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, Agrawal R, Mat KB, Arockiaraj J. Multifunctional curcumin mediated zinc oxide nanoparticle enhancing biofilm inhibition and targeting apoptotic specific pathway in oral squamous carcinoma cells. Mol Biol Rep 2024; 51:423. [PMID: 38489102 DOI: 10.1007/s11033-024-09407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Madhu Priya
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, 600 077, Tamil Nadu, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, 281001, Uttar Pradesh, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, 281001, Uttar Pradesh, India
| | - Khairiyah Binti Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Dühring S, Schuster S. Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory. PLoS One 2024; 19:e0297307. [PMID: 38446770 PMCID: PMC10917284 DOI: 10.1371/journal.pone.0297307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Mixed-species biofilms of Candida albicans and Staphylococcus aureus pose a significant clinical challenge due to their resistance to the human immune system and antimicrobial therapy. Using evolutionary game theory and nonlinear dynamics, we analyse the complex interactions between these organisms to understand their coexistence in the human host. We determine the Nash equilibria and evolutionary stable strategies of the game between C. albicans and S. aureus and point out different states of the mixed-species biofilm. Using replicator equations we study the fungal-bacterial interactions on a population level. Our focus is on the influence of available nutrients and the quorum sensing molecule farnesol, including the potential therapeutic use of artificially added farnesol. We also investigate the impact of the suggested scavenging of C. albicans hyphae by S. aureus. Contrary to common assumptions, we confirm the hypothesis that under certain conditions, mixed-species biofilms are not universally beneficial. Instead, different Nash equilibria occur depending on encountered conditions (i.e. varying farnesol levels, either produced by C. albicans or artificially added), including antagonism. We further show that the suggested scavenging of C. albicans' hyphae by S. aureus does not influence the overall outcome of the game. Moreover, artificially added farnesol strongly affects the dynamics of the game, although its use as a medical adjuvant (add-on medication) may pose challenges.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
9
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
10
|
Baharvand R, Fallah F, Jafari P, Azimi L. Co-colonization of methicillin-resistant Staphylococcus aureus and Candida spp. in children with malignancies. AMB Express 2024; 14:22. [PMID: 38351284 PMCID: PMC10864235 DOI: 10.1186/s13568-024-01667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to evaluate the interaction between methicillin-resistant Staphylococcus aureus(MRSA) and Candida spp. in the oral cavity of children with malignancies under chemotherapy. We evaluated the expression level of Als3p and mecA in Candida spp. and MRSA strains in both single colonization and co-colonization condition. Oral and nasal samples were collected by dry sponge swabs in 10 ml of sterile phosphate-buffered saline. The MRSA and Candida spp. was confirmed using the PCR method and mecA and Als3p genes, respectively. The SYBR Green-based quantitative real-time PCR was used to evaluate the relative expression levels of mecA and Als3p genes in MRSA and Candida spp., respectively. The frequency of S. aureus in oral-only and nasal-only swab samples were 14.1% (n = 24/170). 58.3% (n = 14/24) and 29.2% (n = 7/24) of S. aureus isolated from oral and nasal samples were MRSA, respectively. Among Candida species, C. albicans (n = 28/170; 16.5%) had the highest frequency. The oral co-colonization of MRSA and Candida spp. was detected in 4.7% (n = 8/170) patients. The overall average of gene expression levels among all Candida spp. and MRSA isolates indicated that the mecA and Als3p genes expression increased six and two times in co-colonization conditions compared to single colonization conditions, respectively. Our findings revealed the importance of polymicrobial infection in clinical settings and stated that it is possible that Candida spp. facilitates the infection of S. aureus and can lead to systemic infection in co-colonized patients.
Collapse
Affiliation(s)
- Raziyeh Baharvand
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak branch, Arak, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Jafari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak branch, Arak, Iran.
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Grygorcewicz B, Gliźniewicz M, Jabłońska J, Augustyniak A, Olszewska P, Wojciuk B, Miłek D, Serwin N, Czajkowski A, Cecerska-Heryć E, Rakoczy R, Cymbaluk-Płoska A. Bacteriophage-based approach for treatment of urinary tract infections: a quick outlook. APMIS 2024; 132:81-93. [PMID: 38031200 DOI: 10.1111/apm.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections affecting millions worldwide. The increasing emergence of antibiotic-resistant bacteria has become a serious concern in managing UTIs. Therefore, there is a growing interest in using bacteriophages as an alternative or adjunct therapy for UTIs. Bacteriophages are viruses that infect and kill bacteria, making them a promising tool for treating UTIs caused by antibiotic-resistant bacteria. This article provides a quick outlook on using bacteriophages to treat UTIs. We summarize the current understanding of the biology of bacteriophages, the challenges associated with developing phage-based therapies, and the promising results of several case reports and clinical trials. We also highlight the potential of phage therapy as a valuable tool in the fight against antibiotic-resistant UTIs. This quick outlook on a bacteriophage-based approach for treating UTIs offers a timely and informative summary of the current research in this field.
Collapse
Affiliation(s)
- Bartłomiej Grygorcewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
| | - Marta Gliźniewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Germany, Berlin, Germany
- Institute of Biology, University of Szczecin, Szczecin, Poland
| | - Patrycja Olszewska
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Wojciuk
- Department of Immunology Diagnostics, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Dominika Miłek
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Natalia Serwin
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Artur Czajkowski
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
12
|
da Silva CR, Rebouças JDDO, Cabral VPDF, Rodrigues DS, Barbosa AD, Moreira LEA, Barroso FDD, Coutinho TDNP, de Lima EA, de Andrade CR, de Andrade Neto JB, Lima ISP, Nobre Júnior HV, Gurgel do Amaral Valente Sá L. Promising activity of etomidate against mixed biofilms of fluconazole-resistant Candida albicans and methicillin-resistant Staphylococcus aureus. J Med Microbiol 2024; 73. [PMID: 38385528 DOI: 10.1099/jmm.0.001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Elaine Aires de Lima
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Iri Sandro Pampolha Lima
- Department of Pharmacology, School of Medicine, Federal University of Ceará, Barbalha, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
13
|
Baxter KJ, Sargison FA, Fitzgerald JR, McConnell G, Hoskisson PA. Time-lapse mesoscopy of Candida albicans and Staphylococcus aureus dual-species biofilms reveals a structural role for the hyphae of C. albicans in biofilm formation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001426. [PMID: 38261525 PMCID: PMC10866020 DOI: 10.1099/mic.0.001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.
Collapse
Affiliation(s)
- Katherine J. Baxter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Fiona A. Sargison
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
14
|
Cox CA, Manavathu EK, Wakade S, Myntti M, Vazquez JA. Efficacy of biofilm disrupters against Candida auris and other Candida species in monomicrobial and polymicrobial biofilms. Mycoses 2024; 67:e13684. [PMID: 38214428 DOI: 10.1111/myc.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Candida species are now considered global threats by the CDC and WHO. Candida auris specifically is on the critical pathogen threat list along with Candida albicans. In addition, it is not uncommon to find Candida spp. in a mixed culture with bacterial organisms, especially Staphylococcus aureus producing polymicrobial infections. To eradicate these organisms from the environment and from patient surfaces, surface agents such as chlorhexidine (CHD) and Puracyn are used. Biofilm disrupters (BDs) are novel agents with a broad spectrum of antimicrobial activity and have been used in the management of chronic wounds and to sterilise environmental surfaces for the past several years. The goal of this study was to evaluate BDs (BlastX, Torrent, NSSD) and CHD against Candida spp. and S. aureus using zone of inhibition assays, biofilm and time-kill assays. All BDs and CHD inhibited C. auris growth effectively in a concentration-dependent manner. Additionally, CHD and the BDs showed excellent antimicrobial activity within polymicrobial biofilms. A comparative analysis of the BDs and CHD against C. auris and C. albicans using biofilm kill-curves showed at least 99.999% killing. All three BDs and CHD have excellent activity against different Candida species, including C. auris. However, one isolate of C. auris in a polymicrobial biofilm assay showed resistance/tolerance to CHD, but not to the BDs. The fungicidal activity of these novel agents will be valuable in eradicating surface colonisation of Candida spp, especially C. auris from colonised environmental surfaces and from wounds in colonised patients.
Collapse
Affiliation(s)
- Claudia A Cox
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elias K Manavathu
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
15
|
Clemente LM, Ribeiro AB, Fortes CV, Ribeiro AB, Oliveira VDC, Macedo AP, Salgado HC, da Silva CHL. Risk factors and immunological biomarkers in denture stomatitis: An observational cross-sectional study. Arch Oral Biol 2023; 155:105799. [PMID: 37672969 DOI: 10.1016/j.archoralbio.2023.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Assess risk factors, local and systemic immunological biomarkers in healthy individuals and with Denture Stomatitis (DS). DESIGN For this observational transversal study, 27 participants without DS (Group 0), 24 with moderate DS (Group 1), and 25 with severe DS (Group 2) were assessed for sociodemographic, behavioral, and clinical parameters, microbial load of Candida spp., Staphylococcus spp., Streptococcus mutans, Pseudomonas spp., and enterobacteria, and cytokine and C-reactive protein levels. ANOVA, Fisher's exact, Kruskal-Wallis, Mann-Whitney, Wilcoxon and Pearson's chi-square tests were used for data analysis (α = 0.05). RESULTS Group 1 had a significantly higher mean age compared to the other groups (P = 0.018), but no correlation was identified between age and DS (P = 0.830; r = 0.025). No significant differences were found among the groups for other sociodemographic and behavioral characteristics. Group 1 had significantly older upper and lower dentures; however, no correlation was identified between age of upper (P = 0.522; r = 0.075) and lower (P = 0.143; r = 0.195) dentures and DS. The microbial load of Candida albicans on the dentures (P = 0.035) and Candida spp. on the palate (P = 0.008) of the groups 1 and 2 was higher than group 0. Group 1 and 2 had higher Candida spp. counts on denture (P = 0.003) than group 0. There was no difference among groups for bacterial analyzed. Group 1 showed higher and Group 2 intermediate salivary levels of IL-6 compared to Group 0. There was no difference in the C-reactive protein levels among groups. CONCLUSIONS Microbial load of Candida spp. is the factor with the strongest relationship with DS, with capacity for local signaling through IL-6.
Collapse
Affiliation(s)
- Lorena Mosconi Clemente
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirao Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Adriana Barbosa Ribeiro
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Caroline Vieira Fortes
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirao Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Hélio César Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Cláudia Helena Lovato da Silva
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
16
|
Felix L, Whitely C, Tharmalingam N, Mishra B, Vera-Gonzalez N, Mylonakis E, Shukla A, Fuchs BB. Auranofin coated catheters inhibit bacterial and fungal biofilms in a murine subcutaneous model. Front Cell Infect Microbiol 2023; 13:1135942. [PMID: 37313344 PMCID: PMC10258325 DOI: 10.3389/fcimb.2023.1135942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023] Open
Abstract
Microbe entry through catheter ports can lead to biofilm accumulation and complications from catheter-related bloodstream infection and ultimately require antimicrobial treatment and catheter replacement. Although strides have been made with microbial prevention by applying standardized antiseptic techniques during catheter implantation, both bacterial and fungal microbes can present health risks to already sick individuals. To reduce microbial adhesion, murine and human catheters were coated with polyurethane and auranofin using a dip coating method and compared to non-coated materials. Upon passage of fluid through the coated material in vitro, flow dynamics were not impacted. The unique antimicrobial properties of the coating material auranofin has shown inhibitory activity against bacteria such as Staphylococcus aureus and fungi such as Candida albicans. Auranofin coating on catheters at 10mg/mL reduced C. albicans accumulation in vitro from 2.0 x 108 to 7.8 x 105 CFU for mouse catheters and from 1.6 x 107 to 2.8 x 106 for human catheters, showing an impact to mature biofilms. Assessment of a dual microbe biofilm on auranofin-coated catheters resulted in a 2-log reduction in S. aureus and a 3-log reduction in C. albicans compared to uncoated catheters. In vivo assessment in a murine subcutaneous model demonstrated that catheters coated with 10 mg/mL auranofin reduced independent S. aureus and C. albicans accumulation by 4-log and 1-log, respectively, compared to non-coated catheters. In conclusion, the auranofin-coated catheters demonstrate proficiency at inhibiting multiple pathogens by decreasing S. aureus and C. albicans biofilm accumulation.
Collapse
Affiliation(s)
- LewisOscar Felix
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Cutler Whitely
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Biswajit Mishra
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Noel Vera-Gonzalez
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| |
Collapse
|
17
|
Gaálová-Radochová B, Kendra S, Jordao L, Kursawe L, Kikhney J, Moter A, Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12030441. [PMID: 36978309 PMCID: PMC10044556 DOI: 10.3390/antibiotics12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The natural bioactive molecule farnesol (FAR) is widely studied mainly for its antibiofilm and antimicrobial properties. In addition, it increases the effectiveness of some antimicrobial substances, which makes it interesting for the development of combined therapy. In the present work, the effect of FAR either alone or in combination with oxacillin (OXA) on mixed biofilms formed by clinically relevant pathogens, Candida albicans and Staphylococcus aureus, was studied. S. aureus isolates used for biofilm formation originated from blood cultures and central venous catheters (CVC) were characterized in terms of antimicrobial resistance. The minimal biofilm inhibitory concentration (MBIC50) for FAR of 48 h mixed biofilms formed by the C. albicans and methicillin-sensitive S. aureus (MSSA) was determined to be 125 μM, and for the mixed biofilms with methicillin-resistant S. aureus (MRSA) was determined to be 250 μM. Treatment of mixed biofilms with OXA (2 mg/mL) showed ≤4% inhibition; however, the combination of OXA (2 mg/mL) and FAR (300 μM) resulted in 80% inhibition of biofilms. In addition, planktonic cells of S. aureus exhibited an increased susceptibility to OXA, cefoxitin and kanamycin in the presence of FAR (150 and 300 μM). Scanning electron microscopy (SEM) micrographs confirmed patchy biofilm and lack of candidal hyphae in the samples treated with FAR and FAR/OXA in comparison to control and mixed biofilms treated only with OXA. Intriguingly, in a pilot experiment using fluorescence in situ hybridization (FISH), considerable differences in activity (as indicated by ribosome content) of staphylococcal cells were detected. While the activity rate of the staphylococci in mixed biofilms treated with FAR was high, no FISH-positive signal for staphylococcal cells was found in the biofilm treated with FAR/OXA.
Collapse
Affiliation(s)
- Barbora Gaálová-Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9480
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Laura Kursawe
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
- Moter Diagnostics, Marienplatz 9, 12207 Berlin, Germany
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
18
|
Bose S, Singh DV, Adhya TK, Acharya N. Escherichia coli, but Not Staphylococcus aureus, Functions as a Chelating Agent That Exhibits Antifungal Activity against the Pathogenic Yeast Candida albicans. J Fungi (Basel) 2023; 9:jof9030286. [PMID: 36983454 PMCID: PMC10057578 DOI: 10.3390/jof9030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Humans are colonized by diverse populations of microbes. Infections by Candida albicans, an opportunistic fungal pathogen, are a result of imbalances in the gut microbial ecosystem and are due to the suppressed immunity of the host. Here, we explored the potential effects of the polymicrobial interactions of C. albicans with Staphylococcus aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-negative bacterium, in dual and triple in vitro culture systems on their respective growth, morphology, and biofilms. We found that S. aureus promoted the fungal growth and hyphal transition of C. albicans through cell-to-cell contacts; contrarily, both the cell and cell-free culture filtrate of E. coli inhibited fungal growth. A yet to be identified secretory metabolite of E. coli functionally mimicked EDTA and EGTA to exhibit antifungal activity. These findings suggested that E. coli, but not S. aureus, functions as a chelating agent and that E. coli plays a dominant role in regulating excessive growth and, potentially, the commensalism of C. albicans. Using animal models of systemic candidiasis, we found that the E. coli cell-free filtrate suppressed the virulence of C. albicans. In general, this study unraveled a significant antimicrobial activity and a potential role in the nutritional immunity of E. coli, and further determining the underlying processes behind the E. coli–C. albicans interaction could provide critical information in understanding the pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- KIIT School of Biotechnology, Bhubaneswar 751021, India
| | - Durg Vijai Singh
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | | | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- Correspondence: ; Tel.: +91-674-230-4278; Fax: +91-674-230-0728
| |
Collapse
|
19
|
Yu H, Li L, Huffman A, Beverley J, Hur J, Merrell E, Huang HH, Wang Y, Liu Y, Ong E, Cheng L, Zeng T, Zhang J, Li P, Liu Z, Wang Z, Zhang X, Ye X, Handelman SK, Sexton J, Eaton K, Higgins G, Omenn GS, Athey B, Smith B, Chen L, He Y. A new framework for host-pathogen interaction research. Front Immunol 2022; 13:1066733. [PMID: 36591248 PMCID: PMC9797517 DOI: 10.3389/fimmu.2022.1066733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed.
Collapse
Affiliation(s)
- Hong Yu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | - Li Li
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Anthony Huffman
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - John Beverley
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
- Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Eric Merrell
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
| | - Hsin-hui Huang
- University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yang Wang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yingtong Liu
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edison Ong
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Liang Cheng
- Department of Bioinformatics, Harbin Medical University, Harbin, Helongjian, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingsong Zhang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengpai Li
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhiping Liu
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, China
| | | | - Jonathan Sexton
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kathryn Eaton
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerry Higgins
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gilbert S. Omenn
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brian Athey
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Barry Smith
- Department of Philosophy, University at Buffalo, Buffalo, NY, United States
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yongqun He
- University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Mahmoud RY, Trizna EY, Sulaiman RK, Pavelyev RS, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Frolova LL, Kutchin AV, Guseva GB, Antina EV, Berezin MB, Nikitina LE, Kayumov AR. Increasing the Efficacy of Treatment of Staphylococcus aureus- Candida albicans Mixed Infections with Myrtenol. Antibiotics (Basel) 2022; 11:1743. [PMID: 36551400 PMCID: PMC9774912 DOI: 10.3390/antibiotics11121743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by various nosocomial microorganisms affect worldwide both immunocompromised and relatively healthy persons. Bacteria and fungi have different tools to evade antimicrobials, such as hydrolysis damaging the drug, efflux systems, and the formation of biofilm that significantly complicates the treatment of the infection. Here, we show that myrtenol potentiates the antimicrobial and biofilm-preventing activity of conventional drugs against S. aureus and C. albicans mono- and dual-species cultures. In our study, the two optical isomers, (-)-myrtenol and (+)-myrtenol, have been tested as either antibacterials, antifungals, or enhancers of conventional drugs. (+)-Myrtenol demonstrated a synergistic effect with amikacin, fluconazole, and benzalkonium chloride on 64-81% of the clinical isolates of S. aureus and C. albicans, including MRSA and fluconazole-resistant fungi, while (-)-myrtenol increased the properties of amikacin and fluconazole to repress biofilm formation in half of the S. aureus and C. albicans isolates. Furthermore, myrtenol was able to potentiate benzalkonium chloride up to sixteen-fold against planktonic cells in an S. aureus-C. albicans mixed culture and repressed the adhesion of S. aureus. The mechanism of both (-)-myrtenol and (+)-myrtenol synergy with conventional drugs was apparently driven by membrane damage since the treatment with both terpenes led to a significant drop in membrane potential similar to the action of benzalkonium chloride. Thus, due to the low toxicity of myrtenol, it seems to be a promising agent to increase the efficiency of the treatment of infections caused by bacteria and be fungi of the genus Candida as well as mixed fungal-bacterial infections, including resistant strains.
Collapse
Affiliation(s)
- Ruba Y. Mahmoud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y. Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Rand K. Sulaiman
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Roman S. Pavelyev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilmir R. Gilfanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Varnishes and Paints Department, Kazan National Research Technological University, 420015 Kazan, Russia
| | - Svetlana A. Lisovskaya
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
- Scientific Research Institute of Epidemiology and Microbiology, 420015 Kazan, Russia
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Larisa L. Frolova
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Alexander V. Kutchin
- Institute of Chemistry, Federal Research Center “Komi Scientific Centre”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia
| | - Galina B. Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Elena V. Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Mikhail B. Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Liliya E. Nikitina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Faculty of Medicine and Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
21
|
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière MF. Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022; 10:microorganisms10071437. [PMID: 35889156 PMCID: PMC9323190 DOI: 10.3390/microorganisms10071437] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Denture-related Candida stomatitis, which has been described clinically in the literature, is either localized or generalized inflammation of the oral mucosa in connection with a removable prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune response play an essential role. Among microorganisms of this mixed biofilm, the Candida species proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation, the relationship between the Candida spp. and the host is influenced by the presence of the denture and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is able to hijack the innate immune system of its host to cause infection. Additionally, older edentulous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity. Under these conditions, the immune deficiency of these aging patients often promotes the spread of commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive immune responses of patients with denture stomatitis and more particularly the involvement of Candida albicans sp. associated with this pathology.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Correspondence: authors:
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Octave Nadile Bandiaky
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Marie-France de La Cochetière
- EA 3826 Thérapeutiques Cliniques Et expérimentales des Infections, Faculté de Médecine, CHU Hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France;
| |
Collapse
|
22
|
Tran VN, Khan F, Han W, Luluil M, Truong VG, Yun HG, Choi S, Kim YM, Shin JH, Kang HW. Real-time monitoring of mono- and dual-species biofilm formation and eradication using microfluidic platform. Sci Rep 2022; 12:9678. [PMID: 35690659 PMCID: PMC9188611 DOI: 10.1038/s41598-022-13699-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
In a human host, bacterial Staphylococcus aureus and fungal Candida albicans pathogens form a mixed biofilm that causes severe mortality and morbidity. However, research on the formation and eradication of mixed biofilms under dynamic conditions is lacking. Thus, this study employed a microfluidic technique to analyze the real-time formation of mono- and dual-species (S. aureus and C. albicans) biofilms and noninvasive optical treatment of the established mature biofilm using 405-nm laser light. A herringbone mixer thoroughly mixed both bacterial and fungal cells in the growth media before being injected into the observation channels on the microfluidic chip. At a flow rate of 1.0 µL/min of growth media for 24 h, the bacterial biofilm coverage was up to 15% higher than that of the fungal biofilm (50% for bacteria vs. 35% for fungus). On the other hand, the dual-species biofilm yielded the highest coverage of ~ 96.5% because of the collective interaction between S. aureus and C. albicans. The number of cell proliferation events in S. aureus was higher than that of C. albicans for 12 h, which indicates that the S. aureus biofilm was developed faster than C. albicans. The novel in situ test platform showed a significant bactericidal effect (80%) of the 405-nm laser light at 1080 J/cm2 towards the established S. aureus biofilm, whereas the same treatment removed approximately 69% of the mixed cells in the dual-species biofilm. This study revealed that the developed microfluidic platform could be utilized to monitor the formation of dual-species biofilms in real-time and laser-induced antimicrobial effects on dual-species biofilms.
Collapse
Affiliation(s)
- Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering and Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, 48513, South Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, South Korea
| | - Won Han
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Maknuna Luluil
- Industry 4.0 Convergence Bionics Engineering and Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, 48513, South Korea
| | - Van Gia Truong
- Industry 4.0 Convergence Bionics Engineering and Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, 48513, South Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering and Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, 48513, South Korea. .,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea.
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering and Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, 48513, South Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, South Korea. .,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
23
|
Bouchelaghem S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J Biol Sci 2022; 29:1936-1946. [PMID: 35531223 PMCID: PMC9072893 DOI: 10.1016/j.sjbs.2021.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023] Open
Abstract
Propolis is a plant-based sticky substance that is produced by honeybees. It has been used traditionally by ancient civilizations as a folk medicine, and is known to have many pharmaceutical properties including antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and antitumour effects. Worldwide, researchers are still studying the complex composition of propolis to unveil its biological potential, and especially its antimicrobial activity against a variety of multidrug-resistant microorganisms. This review explores scientific reports published during the last decade on the characterization of different types of propolis, and evaluates their antimicrobial activities against Staphylococcus aureus and Candida albicans. Propolis can be divided into different types depending on their chemical composition and physical properties associated with geographic origin and plant sources. Flavonoids, phenols, diterpenes, and aliphatic compounds are the main chemicals that characterize the different types of propolis (Poplar, Brazilian, and Mediterranean), and are responsible for their antimicrobial activity. The extracts of most types of propolis showed greater antibacterial activity against Gram-positive bacteria: particularly on S. aureus, as well as on C. albicans, as compared to Gram-negative pathogens. Propolis acts either by directly interacting with the microbial cells or by stimulating the immune system of the host cells. Some studies have suggested that structural damage to the microorganisms is a possible mechanism by which propolis exhibits its antimicrobial activity. However, the mechanism of action of propolis is still unclear, due to the synergistic interaction of the ingredients of propolis, and this natural substance has multi-target activity in the cell. The broad-spectrum biological potentials of propolis present it as an ideal candidate for the development of new, potent, and cost-effective antimicrobial agents.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
24
|
Mitra S, Mallick A, Priyadarshini S. Effect of polymicrobial interactions on antimicrobial resistance: an in vitro analysis in human ocular infections. Future Microbiol 2022; 17:491-504. [PMID: 35315292 DOI: 10.2217/fmb-2021-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose: Investigate the effect of polymicrobial interactions on antimicrobial resistance (AMR) of ocular pathogens in polymicrobial settings, compared with monomicrobial infections. Methods: Polymicrobial interactions were labeled as antagonistic, synergistic or indifferent based on a reduction, an increase or no change, respectively, in antibiotics' MIC by the Vitek 2 compact system, compared with monomicrobial pathogens. Results: Staphylococcus epidermidis showed antagonistic polymicrobial interactions (22.6%); Pseudomonas aeruginosa showed synergistic interactions (62.5%); multidrug-resistant Acinetobacter baumannii showed increased susceptibility to select antibiotics; Serratia ficaria (inherently colistin resistant) became colistin-susceptible in polymicrobial combinations. Conclusion: Both antagonistic and synergistic interactions exist among human pathogens in polymicrobial settings. Gram-positive pathogens had significantly higher antagonistic polymicrobial interactions (increased MICs: 20.4%) compared with Gram-negative ones (synergistic: 59.4%).
Collapse
Affiliation(s)
- Sanchita Mitra
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Aparajita Mallick
- Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Shilpa Priyadarshini
- Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| |
Collapse
|
25
|
|
26
|
Eichelberger KR, Cassat JE. Metabolic Adaptations During Staphylococcus aureus and Candida albicans Co-Infection. Front Immunol 2021; 12:797550. [PMID: 34956233 PMCID: PMC8692374 DOI: 10.3389/fimmu.2021.797550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Successful pathogens require metabolic flexibility to adapt to diverse host niches. The presence of co-infecting or commensal microorganisms at a given infection site can further influence the metabolic processes required for a pathogen to cause disease. The Gram-positive bacterium Staphylococcus aureus and the polymorphic fungus Candida albicans are microorganisms that asymptomatically colonize healthy individuals but can also cause superficial infections or severe invasive disease. Due to many shared host niches, S. aureus and C. albicans are frequently co-isolated from mixed fungal-bacterial infections. S. aureus and C. albicans co-infection alters microbial metabolism relative to infection with either organism alone. Metabolic changes during co-infection regulate virulence, such as enhancing toxin production in S. aureus or contributing to morphogenesis and cell wall remodeling in C. albicans. C. albicans and S. aureus also form polymicrobial biofilms, which have greater biomass and reduced susceptibility to antimicrobials relative to mono-microbial biofilms. The S. aureus and C. albicans metabolic programs induced during co-infection impact interactions with host immune cells, resulting in greater microbial survival and immune evasion. Conversely, innate immune cell sensing of S. aureus and C. albicans triggers metabolic changes in the host cells that result in an altered immune response to secondary infections. In this review article, we discuss the metabolic programs that govern host-pathogen interactions during S. aureus and C. albicans co-infection. Understanding C. albicans-S. aureus interactions may highlight more general principles of how polymicrobial interactions, particularly fungal-bacterial interactions, shape the outcome of infectious disease. We focus on how co-infection alters microbial metabolism to enhance virulence and how infection-induced changes to host cell metabolism can impact a secondary infection.
Collapse
Affiliation(s)
- Kara R. Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Kara R. Eichelberger, ; James E. Cassat,
| | - James E. Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Kara R. Eichelberger, ; James E. Cassat,
| |
Collapse
|
27
|
Santana TDS, Leite ARP, Pasquini D, Pero AC. Effect of the incorporation of cellulose nanocrystals into a microwave‐polymerized denture base resin: Cellulose nanocrystals into a denture base resin. STARCH-STARKE 2021. [DOI: 10.1002/star.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thais de Sousa Santana
- Department of Dental Materials and Prosthodontics Araraquara Dental School Univ Estadual Paulista (UNESP) Araraquara São Paulo Brazil
| | - Andressa Rosa Perin Leite
- Department of Dental Materials and Prosthodontics Araraquara Dental School Univ Estadual Paulista (UNESP) Araraquara São Paulo Brazil
| | - Daniel Pasquini
- Chemistry Institute Universidade Federal de Uberlândia Campus Santa Mônica Uberlândia Minas Gerais Brazil
| | - Ana Carolina Pero
- Department of Dental Materials and Prosthodontics Araraquara Dental School Univ Estadual Paulista (UNESP) Araraquara São Paulo Brazil
| |
Collapse
|
28
|
Dias KDC, Barbugli PA, Vergani CE. Insights into the activation of oral keratinocyte cell death by Candida albicans and Staphylococcus aureus biofilms. BIOFOULING 2021; 37:975-983. [PMID: 34708675 DOI: 10.1080/08927014.2021.1994959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polymicrobial biofilms comprising Candida albicans and Staphylococcus aureus can increase the frequency and severity of oral diseases. This study assessed oral keratinocyte cell death, apoptosis and/or necrosis, promoted by soluble factors from single and dual biofilms of S. aureus and C. albicans. The soluble factors were obtained from the 16-h biofilm growth media. Cell viability was assessed by MTT and cell membrane damage by LDH. SEM was used for morphology changes. Assessment of apoptosis and necrosis was performed using annexin V and propidium iodide and caspases -2, -3, -6, -8 and -9. Statistical analysis was conducted with ANOVA and Tukey tests (α = 5%). Dual biofilms promoted the greatest harmful effect on oral cells, with a viability rate of 31.76%, damage to cell membranes and LDH released. Dual biofilms also induced higher percentages of necrotic cells (24.95%). Apoptosis was associated with caspases -2, -3, -6 and -8 activation.
Collapse
Affiliation(s)
- Kassia de Carvalho Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
29
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
30
|
Escobar IE, Possamai Rossatto FC, Kim SM, Kang MH, Kim W, Mylonakis E. Repurposing Kinase Inhibitor Bay 11-7085 to Combat Staphylococcus aureus and Candida albicans Biofilms. Front Pharmacol 2021; 12:675300. [PMID: 34025434 PMCID: PMC8133364 DOI: 10.3389/fphar.2021.675300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus and Candida spp. are commonly linked with topical biofilm-associated infections such as those found on chronic wounds. These biofilms are notoriously difficult to treat, highlighting the grave need to discover and study new broad-spectrum agents to combat associated infections. Here we report that the kinase inhibitor Bay 11-7085 exhibited bactericidal activity against multidrug-resistant S. aureus with a minimum inhibitory concentration (MIC) of 4 μg/ml. In addition, S. aureus strain MW2 did not acquire resistance to antibiotic pressure. Furthermore, Bay 11-7085 exhibited potency against Candida albicans and the emerging pathogen Candida auris with a MIC of 0.5–1 μg/ml. Bay 11-7085 partially inhibited and eradicated biofilm formation of various pathogens, such as VRSA (vancomycin-resistant S. aureus), as well as antifungal-resistant Candida spp. isolates. Notably, Bay 11-7085 partially inhibited initial cell attachment and formation of a VRSA-C. albicans polymicrobial biofilm in vitro. In contrast to C. albicans, inhibition of VRSA biofilm was linked to initial cell attachment independent of its bactericidal activity. Finally, Bay 11-7085 was effective in vivo at increasing the lifespan of C. elegans during an S. aureus and a C. albicans infection. Our work proposes kinase inhibitor Bay 11-7085 as a potential compound capable of combating biofilms associated with primary multidrug-resistant bacteria and yeast pathogens associated with wound infections.
Collapse
Affiliation(s)
- Iliana E Escobar
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Fernanda Cristina Possamai Rossatto
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States.,Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Min Hee Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
31
|
Sartini S, Permana AD, Mitra S, Tareq AM, Salim E, Ahmad I, Harapan H, Emran TB, Nainu F. Current State and Promising Opportunities on Pharmaceutical Approaches in the Treatment of Polymicrobial Diseases. Pathogens 2021; 10:245. [PMID: 33672615 PMCID: PMC7924209 DOI: 10.3390/pathogens10020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the emergence of newly identified acute and chronic infectious disorders caused by diverse combinations of pathogens, termed polymicrobial diseases, has had catastrophic consequences for humans. Antimicrobial agents have been clinically proven to be effective in the pharmacological treatment of polymicrobial diseases. Unfortunately, an increasing trend in the emergence of multi-drug-resistant pathogens and limited options for delivery of antimicrobial drugs might seriously impact humans' efforts to combat polymicrobial diseases in the coming decades. New antimicrobial agents with novel mechanism(s) of action and new pharmaceutical formulations or delivery systems to target infected sites are urgently required. In this review, we discuss the prospective use of novel antimicrobial compounds isolated from natural products to treat polymicrobial infections, mainly via mechanisms related to inhibition of biofilm formation. Drug-delivery systems developed to deliver antimicrobial compounds to both intracellular and extracellular pathogens are discussed. We further discuss the effectiveness of several biofilm-targeted delivery strategies to eliminate polymicrobial biofilms. At the end, we review the applications and promising opportunities for various drug-delivery systems, when compared to conventional antimicrobial therapy, as a pharmacological means to treat polymicrobial diseases.
Collapse
Affiliation(s)
- Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; or
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, North Sumatera 20155, Indonesia;
| | - Islamudin Ahmad
- Faculty of Pharmacy, Universitas Mulawarman, East Kalimantan 75119, Indonesia;
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| |
Collapse
|
32
|
Khalid S, Keller NP. Chemical signals driving bacterial-fungal interactions. Environ Microbiol 2021; 23:1334-1347. [PMID: 33511714 DOI: 10.1111/1462-2920.15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Microorganisms reside in diverse environmental communities where interactions become indispensable due to close physical associations. These interactions are driven by chemical communication among different microbial kingdoms, particularly between fungi and bacteria. Knowledge about these communication signals provides useful information about the nature of microbial interactions and allows predictions of community development in diverse environments. Here, we provide an update on the role of small signalling molecules in fungal-bacterial interactions with focus on agricultural and medicinal environments. This review highlights the range of - and response to - diverse biochemicals produced by both kingdoms with view to harnessing their properties towards drug discovery applications.
Collapse
Affiliation(s)
- Saima Khalid
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Clinical Implications of Polymicrobial Synergism Effects on Antimicrobial Susceptibility. Pathogens 2021; 10:pathogens10020144. [PMID: 33535562 PMCID: PMC7912749 DOI: 10.3390/pathogens10020144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
With the development of next generation sequencing technologies in recent years, it has been demonstrated that many human infectious processes, including chronic wounds, cystic fibrosis, and otitis media, are associated with a polymicrobial burden. Research has also demonstrated that polymicrobial infections tend to be associated with treatment failure and worse patient prognoses. Despite the importance of the polymicrobial nature of many infection states, the current clinical standard for determining antimicrobial susceptibility in the clinical laboratory is exclusively performed on unimicrobial suspensions. There is a growing body of research demonstrating that microorganisms in a polymicrobial environment can synergize their activities associated with a variety of outcomes, including changes to their antimicrobial susceptibility through both resistance and tolerance mechanisms. This review highlights the current body of work describing polymicrobial synergism, both inter- and intra-kingdom, impacting antimicrobial susceptibility. Given the importance of polymicrobial synergism in the clinical environment, a new system of determining antimicrobial susceptibility from polymicrobial infections may significantly impact patient treatment and outcomes.
Collapse
|
34
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
35
|
Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. Am J Transl Res 2020; 12:6988-7001. [PMID: 33312346 PMCID: PMC7724324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans is a major opportunistic fungal pathogen of humans, especially in the oral cavity it involves in precancerous lesions. Numerous transcriptional regulators and hypha-specific genes involved in the morphogenesis mechanisms have been identified. Its virulence is predominantly attributed to the potentiality of morphological switching from yeast and pseudohyphae to hyphal growth. Giving attention in farnesol for prevention or intervention of its virulence sense and possible etiologic role in some uncovered premalignant diseases, in addition, to be a quorum-sensing signal molecule and relationship with HOG pathway, although its morphological switching inhibiting function has attracted high attention and got great progress in being elucidated, their exact mode of action is not completely understood. This report provides a review of characteristic aspects of farnesol signaling and HOG pathway during hyphal development. It also includes other associated pathways, molecules, and novel drug development based on the latest researches over the last decade. Furthermore, farnesol as immunomodulatory to host is an important inferring.
Collapse
Affiliation(s)
- Xueting Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Hong He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou 310020, Zhejiang, China
| | - Jiamei Liu
- Zhejiang HospitalHangzhou 310013, Zhejiang, China
| | - Shangfeng Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang UniversityHangzhou 310012, Zhejiang, China
| |
Collapse
|
36
|
Gao S, Zhang S, Zhang S. Enhanced in vitro antimicrobial activity of amphotericin B with berberine against dual-species biofilms of Candida albicans and Staphylococcus aureus. J Appl Microbiol 2020; 130:1154-1172. [PMID: 32996236 DOI: 10.1111/jam.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
AIMS Multi-species biofilms formed by fungi and bacteria are clinically common and confer the commensal micro-organisms with protection against antimicrobial therapies. Previously, the plant alkaloid berberine was reported to show antimicrobial efficacy to eliminate bacterial and fungal biofilms. In this study, the combination of berberine and amphotericin B, an antifungal agent, was evaluated against dual-species Candida albicans/Staphylococcus aureus biofilms. METHODS AND RESULTS Combinatorial treatment by berberine and amphotericin B significantly reduced the biomass and viability of residing species in biofilms. Moreover, morphological examination revealed hyphal filamentation of C. albicans and coadhesion between C. albicans/S. aureus were considerably impaired by the treatment. These effects coincided with the reduced expression of cell surface components and quorum-sensing-related genes in both C. albicans and S. aureus. Additionally, in C. albicans, the core transcription factors for controlling biofilm formation together with a crucial component of dual-species biofilms were also downregulated. CONCLUSIONS These results demonstrated synergistic effects of berberine and amphotericin B against C. albicans/S. aureus dual-species biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirms the potential of berberine and amphotericin B for treating the C. albicans/S. aureus biofilms related infections and reveals molecular basis for the efficacy of combinatorial treatment.
Collapse
Affiliation(s)
- S Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - S Zhang
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - S Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Lara HH, Lopez-Ribot JL. Inhibition of Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 2020; 9:E784. [PMID: 32992727 PMCID: PMC7600790 DOI: 10.3390/pathogens9100784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Both bacterial and fungal organisms display the ability to form biofilms; however, mixed bacterial/fungal biofilms are particularly difficult to control and eradicate. The opportunistic microbial pathogens Candida albicans and Staphylococcus aureus are among the most frequent causative agents of healthcare-acquired infections, and are often co-isolated forming mixed biofilms, especially from contaminated catheters. These mixed species biofilms display a high level of antibiotic resistance; thus, these infections are challenging to treat resulting in excess morbidity and mortality. In the absence of effective conventional antibiotic treatments, nanotechnology-based approaches represent a promising alternative for the treatment of highly recalcitrant polymicrobial biofilm infections. Our group has previously reported on the activity of pure positively charged silver nanoparticles synthesized by a novel microwave technique against single-species biofilms of C. albicans and S. aureus. Here, we have expanded our observations to demonstrate that that silver nanoparticles display dose-dependent activity against dual-species C. albicans/S. aureus biofilms. Moreover, the same nanoparticles were used to functionalize catheter materials, leading to the effective inhibition of the mixed fungal/bacterial biofilms. Overall, our results indicate the potent activity of silver nanoparticles against these cross-kingdom biofilms. More studies are warranted to examine the ability of functionalized catheters in the prevention of catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
38
|
Butrico CE, Cassat JE. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins (Basel) 2020; 12:toxins12080516. [PMID: 32806558 PMCID: PMC7471978 DOI: 10.3390/toxins12080516] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of infecting nearly every vertebrate organ. Among these tissues, invasive infection of bone (osteomyelitis) is particularly common and induces high morbidity. Treatment of osteomyelitis is notoriously difficult and often requires debridement of diseased bone in conjunction with prolonged antibiotic treatment to resolve infection. During osteomyelitis, S. aureus forms characteristic multicellular microcolonies in distinct niches within bone. Virulence and metabolic responses within these multicellular microcolonies are coordinated, in part, by quorum sensing via the accessory gene regulator (agr) locus, which allows staphylococcal populations to produce toxins and adapt in response to bacterial density. During osteomyelitis, the Agr system significantly contributes to dysregulation of skeletal homeostasis and disease severity but may also paradoxically inhibit persistence in the host. Moreover, the Agr system is subject to complex crosstalk with other S. aureus regulatory systems, including SaeRS and SrrAB, which can significantly impact the progression of osteomyelitis. The objective of this review is to highlight Agr regulation, its implications on toxin production, factors that affect Agr activation, and the potential paradoxical influences of Agr regulation on disease progression during osteomyelitis.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-936-6494
| |
Collapse
|
39
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
40
|
Novel 2,4-Disubstituted-1,3-Thiazole Derivatives: Synthesis, Anti- Candida Activity Evaluation and Interaction with Bovine Serum Albumine. Molecules 2020; 25:molecules25051079. [PMID: 32121062 PMCID: PMC7179180 DOI: 10.3390/molecules25051079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Herein we report the synthesis of two novel series of 1,3-thiazole derivatives having a lipophilic C4-substituent on account of the increasing need for novel and versatile antifungal drugs for the treatment of resistant Candida sp.-based infections. Following their structural characterization, the anti-Candida activity was evaluated in vitro while using the broth microdilution method. Three compounds exhibited lower Minimum Inhibitory Concentration (MIC) values when compared to fluconazole, being used as the reference antifungal drug. An in silico molecular docking study was subsequently carried out in order to gain more insight into the antifungal mechanism of action, while using lanosterol-C14α-demethylase as the target enzyme. Fluorescence microscopy was employed to further investigate the cellular target of the most promising molecule, with the obtained results confirming its damaging effect towards the fungal cell membrane integrity. Finally, the distribution and the pharmacological potential in vivo of the novel thiazole derivatives was investigated through the study of their binding interaction with bovine serum albumin, while using fluorescence spectroscopy.
Collapse
|
41
|
Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. MICROBIOLOGY-SGM 2020; 166:375-385. [PMID: 32068530 PMCID: PMC7377259 DOI: 10.1099/mic.0.000892] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study detailed the responses of Galleria mellonella larvae to disseminated infection caused by co-infection with Candida albicans and Staphylococcus aureus. Doses of C. albicans (1×105 larva-1) and S. aureus (1×104 larva-1) were non-lethal in mono-infection but when combined significantly (P<0.05) reduced larval survival at 24, 48 and 72 h relative to larvae receiving S. aureus (2×104 larva-1) alone. Co-infected larvae displayed a significantly higher density of S. aureus larva-1 compared to larvae infected solely with S. aureus. Co-infection resulted in dissemination throughout the host and the appearance of large nodules. Co-infection of larvae with C. albicans and S. aureus (2×104 larva-1) resulted in an increase in the density of circulating haemocytes compared to that in larvae infected with only S. aureus. Proteomic analysis of co-infected larval haemolymph revealed increased abundance of proteins associated with immune responses to bacterial and fungal infection such as cecropin-A (+45.4-fold), recognition proteins [e.g. peptidoglycan-recognition protein LB (+14-fold)] and proteins associated with nodule formation [e.g. Hdd11 (+33.3-fold)]. A range of proteins were also decreased in abundance following co-infection, including apolipophorin (-62.4-fold), alpha-esterase 45 (-7.7-fold) and serine proteinase (-6.2-fold). Co-infection of larvae resulted in enhanced proliferation of S. aureus compared to mono-infection and an immune response showing many similarities to the innate immune response of mammals to infection. The utility of G. mellonella larvae for studying polymicrobial infection is highlighted.
Collapse
Affiliation(s)
- Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Tully
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin A Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
42
|
Zainal M, Mohamad Zain N, Mohd Amin I, Ahmad VN. The antimicrobial and antibiofilm properties of allicin against Candida albicans and Staphylococcus aureus - A therapeutic potential for denture stomatitis. Saudi Dent J 2020; 33:105-111. [PMID: 33551624 PMCID: PMC7848799 DOI: 10.1016/j.sdentj.2020.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
The objective of this study is to determine the therapeutic efficacy of allicin against Candida albicans (C. albicans) and Staphylococcus aureus (S. aureus), the common etiological agents for denture stomatitis (DS). The minimum inhibitory concentration (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentration (MFCs) of allicin were determined by the broth microdilution method followed by checkerboard microdilution method for a synergistic interaction between allicin + nystatin and allicin + CHX. The potential of allicin to eradicate C. albicans and S. aureus biofilms was assessed by treating biofilm formed on self- polymerized acrylic resin with allicin at a sub-MIC concentration for 5 min. The commercial denture cleanser (brand X) was used as a positive control. A Kruskal-Wallis test followed by the post-hoc Mann-Whitney U test was applied (SPSS 20.0), and the level of significance was set at P < 0.05. Allicin exhibited antimicrobial activity against C. albicans (MIC:8 µg/ml and MFC:16 µg/ml) and S. aureus (MIC:8 µg/ml and MBC:8 µg/ml). A synergistic interaction was observed between allicin + nystatin and allicin + CHX (FICI ≤ 0.5). Allicin exhibited significant biofilm eradication against C. albicans and S. aureus biofilms with percentages of 50.0% and 52.6%, respectively. The results of this study suggest a possible application of allicin in treating C. albicans and S. aureus infection in DS.
Collapse
Affiliation(s)
- Mukarramah Zainal
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA Selangor, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Nurhayati Mohamad Zain
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA Selangor, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Indah Mohd Amin
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA Selangor, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Vivi Noryati Ahmad
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA Selangor, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
43
|
Fidel PL, Noverr MC. Special Issue: Fungal-Bacterial Interactions-Current Knowledge and Future Perspectives. J Fungi (Basel) 2019; 5:jof5040089. [PMID: 31554148 PMCID: PMC6958456 DOI: 10.3390/jof5040089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA.
| | - Mairi C Noverr
- Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|