1
|
Krüger-Genge A, Harb K, Braune S, Jung CHG, Westphal S, Bär S, Mauger O, Küpper JH, Jung F. Effects of Arthrospira platensis on Human Umbilical Vein Endothelial Cells. Life (Basel) 2024; 14:1253. [PMID: 39459553 PMCID: PMC11508656 DOI: 10.3390/life14101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Atherosclerosis is initiated by injury or damage to the vascular endothelial cell monolayer. Therefore, the early repair of the damaged vascular endothelium by a proliferation of neighbouring endothelial cells is important to prevent atherosclerosis and thrombotic events. Arthrospira platensis (AP) has been used as a dietary supplement, mainly due to its high content of vitamins, minerals, amino acids, and pigments such as chlorophylls, carotenoids, and phycocyanin, ingredients with antioxidant, anti-inflammatory, and anti-thrombotic properties. Therefore, in this prospective, placebo-controlled, data-driven, sample-size-estimated in vitro study, we tested whether an aqueous extract of AP at different concentrations (50, 100, and 200 µg/mL) had an effect on the different cellular parameters of human umbilical vein endothelial cells. Therefore, cell impedance measurement and cell proliferation were measured to investigate the monolayer formation. In addition, cell viability, integrity, and metabolism were analysed to evaluate singular cellular functions, especially the antithrombotic state. Furthermore, cell-cell and cell-substrate interactions were observed. The highest proliferation was achieved after the addition of 100 µg/mL. This was consistently confirmed by two independent optical experiments in cell cultures 48 h and 85 h after seeding and additionally by an indirect test. At this concentration, the activation or dysfunction of HUVECs was completely prevented, as confirmed by prostacyclin and interleukin-6 levels. In conclusion, in this study, AP induced a significant increase in HUVEC proliferation without inducing an inflammatory response but altered the hemostasiological balance in favour of prostacyclin over thromboxane, thereby creating an antithrombotic state. Thus, APE could be applied in the future as an accelerator of endothelial cell proliferation after, e.g., stent placement or atherosclerosis.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Kudor Harb
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Conrad H. G. Jung
- Carbon Biotech, Social Enterprise Stiftungs AG, 01968 Senftenberg, Germany
| | - Sophia Westphal
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Stefanie Bär
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Olivia Mauger
- Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany; (K.H.); (S.W.); (S.B.); (O.M.)
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Carbon Biotech, Social Enterprise Stiftungs AG, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany (J.-H.K.); (F.J.)
| |
Collapse
|
2
|
Perić A, Gaćeša D, Kovačević SV, Perić AV, Vojvodić D, Georgiou S, Protopapadakis E, Alevizopoulos K. The effect of nasal douching by hypertonic 2.3 per cent sea water with algae extracts on the concentration of epidermal growth factor, transforming growth factor-α and interleukin-8 in nasal secretions of patients with nasal polyposis following endoscopic surgical treatment. J Laryngol Otol 2024; 138:520-526. [PMID: 38380493 PMCID: PMC11063653 DOI: 10.1017/s0022215123001974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 02/22/2024]
Abstract
OBJECTIVE To investigate epidermal growth factor, transforming growth factor-α and interleukin-8 production in nasal mucosa irrigated with hypertonic 2.3 per cent solution with algae extracts, in comparison to 0.9 per cent NaCl during the first two weeks after surgery for nasal polyposis, in relation to symptoms and local findings. METHODS This prospective study included 20 nasal polyposis patients postoperatively irrigated with hypertonic solution and 20 nasal polyposis patients postoperatively irrigated with isotonic solution. We evaluated nasal symptom score, endoscopic score and mediator levels in nasal secretions before and after irrigation. RESULTS Following treatment, nasal symptom score and endoscopic score were significantly lower in the hypertonic solution group (p = 0.023; p < 0.001, respectively). The increase in the epidermal growth factor and the decrease in the transforming growth factor-α and interleukin-8 concentration were higher in the hypertonic group (p < 0.001 for all mediators). CONCLUSION Irrigation with a hypertonic solution was found to be more effective than an isotonic solution in nasal mucosa reparation.
Collapse
Affiliation(s)
- Aleksandar Perić
- Department of Otorhinolaryngology, Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | | | - Sandra Vezmar Kovačević
- Department of Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University in Belgrade, Belgrade, Serbia
| | - Aneta V. Perić
- Institute for Pharmacy, Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Danilo Vojvodić
- Institute for Medical Research, Division of Clinical and Experimental Immunology, University of Defense, Belgrade, Serbia
| | - Stella Georgiou
- Research and Development Department, Gerolymatos International S.A., Athens, Greece
| | | | | |
Collapse
|
3
|
Fang D, Xue D, Liu X, Cao L, Zhang J, Gong C. Concurrent production of ferulic acid and glucose from wheat bran by catalysis of a putative bifunctional enzyme. BIORESOURCE TECHNOLOGY 2023; 369:128393. [PMID: 36442604 DOI: 10.1016/j.biortech.2022.128393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work is to study a bifunctional endoglucanase/carboxylesterase in Sphingobacterium soilsilvae Em02 and express it in soluble form in engineered Escherichia coli. The molecular weight of the recombinant protein of the bifunctional enzyme was 41 KDa. This research also determined the enzymatic activities of the bifunctional enzymes using microcrystalline cellulose and p-nitrophenyl butyrate as substrates and found 40 °C as the optimum temperature for their enzymatic activities. The optimal pH in dual function was 6.0 for endoglucanase and 7.0 for carboxylesterase. The bifunctional enzyme also exhibited enzymatic activities on the natural biomass by generating up to 3.94 mg of glucose and 49.4 μg of ferulic acid from 20 mg of destarched wheat bran. This indicates the broad application prospects of the bifunctional enzyme in agriculture and industry.
Collapse
Affiliation(s)
- Donglai Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaoji Liu
- CECEP (Feixi) WTE CO., LTD., Hefei 230001, PR China
| | - Liping Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
4
|
Oliveira CR, Carvalho J, Olímpio F, Vieira R, Aimbire F, Polonini H. Transfer factors peptides (Imuno TF ®) modulate the lung inflammation and airway remodeling in allergic asthma. Front Immunol 2023; 13:1030252. [PMID: 36685604 PMCID: PMC9846599 DOI: 10.3389/fimmu.2022.1030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background Allergic asthma is a chronic lung disease in which the lung inflammation and airway remodeling are orchestrated by both the inflammatory and the immune cells that creates a lung millieu that favors the perpetuation of clinical symptoms. The cell signaling in asthma involves the mast cells activation during initial contact with the allergen and, principally, the participation of eosinophils as well as Th2 cells which determine increased levels of IgE, exaggerated secretion of mucus and collagen, and bronchial hyperreactivity. Moreover, allergic asthma presents lower level of cytokines associated to the both Th1 and Treg cells response, and it implies in deficiency of anti-inflammatory response to counterregulate the exaggerated inflammation against allergen. Therefore, the equilibrium between cytokines as well as transcription factors associated to Th2, Th1, and Treg cells is compromised in allergic asthma. Imuno TF® is a food supplement with ability to interfere in immune system pathways. It has been previously demonstrated that Imuno TF® upregulated Th1 cell response whilst downregulated Th2 cell response in human lymphocytes. Objective For this reason, we hypothesized that the Imuno TF effect could be restore the balance between Th1/Th2 CD4 T cells response in murine allergic asthma. Methods Initially, animals were sensitized with OVA via i.p. and challenged with OVA i.n. on days 14, 15 and 16. Treatment with Imuno TF once a day was performed via orogastric from day 17 to day 20. Mice were euthanized on day 21. Results The Imuno TF reduced eosinophilia, mucus production, and airway remodeling (collagen deposition) in asthma mice. Imuno TF influenced cellular signaling associated to allergic asthma once downregulated STAT6 expression as well as decreased IL-4, IL-5, and IL-13 in lung and serum. In addition, Imuno TF restored T-bet and Foxp3 expression as well as increased IL-12, IFN-ɣ, and IL-10. Conclusion Ultimately, Imuno TF mitigated the allergic asthma due to the restoration of balance between the responses of Th1/Th2 as well as Treg cells, and their respective transcription factors the T-bet/STAT6 and Foxp3.
Collapse
Affiliation(s)
- Carlos Rocha Oliveira
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos, São Paulo, Brazil
- Postgraduate Program in Biomedical Engineering, Anhembi Morumbi University, Sao Jose dos Campos, São Paulo, Brazil
| | - Jessica Carvalho
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Fabiana Olímpio
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Rodolfo Vieira
- Post-Graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Sao Jose dos Campos, Brazil
- Post-Graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (Unievangelica), Anapolis, Brazil
| | - Flavio Aimbire
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | | |
Collapse
|
5
|
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:237-258. [PMID: 36855527 PMCID: PMC9948797 DOI: 10.1007/s43450-023-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00367-w.
Collapse
|
6
|
Manna PR, Gray ZC, Sikdar M, Reddy H. COVID-19 and its genomic variants: Molecular pathogenesis and therapeutic interventions. EXCLI JOURNAL 2022; 21:1196-1221. [PMID: 36381644 PMCID: PMC9650701 DOI: 10.17179/excli2022-5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Coronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin converting enzyme 2 receptors that are expressed in a variety of tissues, but predominantly in the lungs, heart, and blood vessels. Patients afflicted with COVID-19 may be asymptomatic or present with critical symptoms possibly due to diverse lifestyles, immune responses, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, with immunocompromised conditions, are most vulnerable to severe COVID-19 associated infections, complications, and mortalities. Notably, whereas immunomodulation, involving nutritional consumption, is essential to protecting an individual from COVID-19, immunosuppression is detrimental to a person with this aggressive disease. As such, immune health is inversely correlated to COVID-19 severity and resulting consequences. Advances in genomic and proteomic technologies have helped us to understand the molecular events underlying symptomatology, transmission and, pathogenesis of COVID-19 and its genomic variants. Accordingly, there has been development of a variety of therapeutic interventions, ranging from mask wearing to vaccination to medication. This review summarizes the current understanding of molecular pathogenesis of COVID-19, effects of comorbidities on COVID-19, and prospective therapeutic strategies for the prevention and treatment of this contagious disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,*To whom correspondence should be addressed: Pulak R. Manna, Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Tel: +1-806-743-3573, Fax: +1-806-743-3143, E-mail:
| | - Zackery C. Gray
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Malabika Sikdar
- Department of Zoology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Public Health Department of the Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA,Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Dioguardi M, Spirito F, Sovereto D, Ballini A, Alovisi M, Lo Muzio L. Application of the Extracts of Uncaria tomentosa in Endodontics and Oral Medicine: Scoping Review. J Clin Med 2022; 11:jcm11175024. [PMID: 36078953 PMCID: PMC9457483 DOI: 10.3390/jcm11175024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The main purpose of endodontic treatment is to eliminate the bacteria that are responsible for the contamination and infection of the internal surfaces in order to resolve any pulp or periapical pathology. In fact, some bacteria, such as Enterococcus faecalis, can escape the action of root canal irrigants by aggregating into a biofilm and penetrating deeply into the dentinal tubules. Uncaria tomentosa is a plant belonging to the Rubiaceae family and also commonly known as cat’s claw due to the shape and position of the spines; it is a traditional Peruvian medicinal plant of Amazonian origin. Applications in the dental field have been described both in the prevention and treatment of stomatitis and as an antibacterial and anti-inflammatory agent; it has also been investigated as an additive in irrigants and specifically as gels in endodontic cements. The aim of this scoping review is to summarize all the scientific evidence on the possible applications of Uncaria tomentosa extracts in endodontics and, more generally, in oral medicine, in order to understand whether the active ingredients extracted from Uncaria tomentosa can bring a real advantage in endodontics, in the reduction of endodontic failures and in the onset of recurrent endodontic lesions. Methods: The scoping review was carried out strictly following the PRISMA-ScR checklist; the search was carried out on five databases (PubMed, Scopus, Science Direct, EBSCO and Web of Science) and a register (Cochrane library). Results: The research produced a number of bibliographic sources totaling 2104. With the removal of duplicates, 670 were obtained; potentially eligible articles amounted to 23, of which only seven in vitro studies (four microbiological studies), five clinical studies (three randomized trials) and a case report were included. Conclusions: From the data in the literature, it can be stated that the active ingredients present in Uncaria tomentosa could represent an interesting product to be used in the endodontic field, both in endocanalary cements and as a gel.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
- Correspondence:
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10127 Turin, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| |
Collapse
|
8
|
Hwang HJ, Lee SR, Yoon JG, Moon HR, Zhang J, Park E, Yoon SI, Cho JA. Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11081448. [PMID: 35892649 PMCID: PMC9331426 DOI: 10.3390/antiox11081448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelial barrier is the primary and most significant defense barrier against ingested toxins and pathogenic bacteria. When the intestinal epithelium barrier is breached, inflammatory response is triggered. GWAS data showed that endoplasmic reticulum (ER) stress markers are elevated in Inflammatory Bowel Disease (IBD) patients, which suggests ER stress regulation might alleviate IBD symptoms. Ferulic acid (FA) is a polyphenol that is abundant in plants and has antioxidant and anti-inflammatory properties, although it is unclear whether FA has these effects on the intestine. Therefore, we investigated the effect of FA in vitro and in vivo. It was found that FA suppressed ER stress, nitric oxide (NO) generation, and inflammation in polarized Caco-2 and T84 cells, indicating that the ER stress pathway was implicated in its anti-inflammatory activities. The permeability of polarized Caco-2 cells in the presence and absence of proinflammatory cytokines were decreased by FA, and MUC2 mRNA was overexpressed in the intestines of mice fed a high-fat diet (HFD) supplemented with FA. These results suggest that FA has a protective effect on intestinal tight junctions. In addition, mouse intestine organoids proliferated significantly more in the presence of FA. Our findings shed light on the molecular mechanism responsible for the antioxidant effects of FA and its protective benefits on the health of the digestive system.
Collapse
Affiliation(s)
- Hye-Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Ju-Gyeong Yoon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Hye-Ri Moon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Jingnan Zhang
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, 1646, Yuseung-daero, Yusung-gu, Daejeon 34054, Korea;
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
- Correspondence: ; Tel.: +82-42-821-6833
| |
Collapse
|
9
|
The influence of physical activity level on the length of stay in hospital in older men survivors of COVID-19. SPORT SCIENCES FOR HEALTH 2022; 18:1483-1490. [PMID: 35730029 PMCID: PMC9187887 DOI: 10.1007/s11332-022-00948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to verify the influence of physical activity level on the length of hospital stay in older men recovered from COVID-19. In total, 126 older men diagnosed with COVID-19 were admitted to the hospital between September and December 2020. Among them, 70 survived, of which 39 older men were included in the study. Within 30 days after discharge, patients answered the International Physical Activity Questionnaire to measure their physical activity level through phone contact, with questions corresponding to the week before symptom onset. Clinical and laboratorial data from admission, days between onset of symptoms and admission, length of stay, computed tomography abnormalities, and the need for the intensive care unit were collected. The groups (active × sedentary) were compared using the Student t test or Mann-Whitney test for quantitative data and chi-square test was used for categorical data. There is no difference between the groups in characteristics of admission (p > 0.05), except by potassium level. Active older men had a shorter length of stay (6.50 ± 3.46 vs 11.48 ± 7.63 days; p = 0.03), disease duration (15.71 ± 4.84 vs 21.09 ± 7.69 days; p = 0.02), and lower frequency of lung damage when compared to their sedentary counterparts. In conclusion, being physically active prior to infection can attenuate length of hospital stay in older men with COVID-19.
Collapse
|
10
|
Anastassopoulou C, Hatziantoniou S, Boufidou F, Patrinos GP, Tsakris A. The Role of Oral Antivirals for COVID-19 Treatment in Shaping the Pandemic Landscape. J Pers Med 2022; 12:439. [PMID: 35330439 PMCID: PMC8953396 DOI: 10.3390/jpm12030439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Several vaccines against coronavirus disease 2019 (COVID-19) were developed and made available in a record time, just over a year after the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [...].
Collapse
Affiliation(s)
- Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| |
Collapse
|
11
|
Healthy Immunity on Preventive Medicine for Combating COVID-19. Nutrients 2022; 14:nu14051004. [PMID: 35267980 PMCID: PMC8912522 DOI: 10.3390/nu14051004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Immunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many organs, cellular structures, and signaling molecules. A balanced diet, rich in vitamins, minerals, and antioxidants, is key to a strengthened immune system and, thus, crucial to proper functioning of various physiological activities. Conversely, deficiencies of these micronutrients, involving impaired immunity, are linked to numerous health complications, along with a host of pathologies. Coronavirus disease 2019 (COVID-19) is a dangerous infectious disease caused by a β-form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its genomic variants, which enter host cells upon binding to the angiotensin converting enzyme 2 receptors, and is associated with substantial morbidities and mortalities globally. Patients afflicted with COVID-19 display asymptomatic to severe symptoms, occurrences of which are multifactorial and include diverse immune responses, sex and gender differences, aging, and underlying medical conditions. Geriatric populations, especially men in comparison to women, regardless of their states, are most vulnerable to severe COVID-19-associated infections and complications, with fatal outcomes. Advances in genomic and proteomic technologies help one understand molecular events, including host–pathogen interactions and pathogenesis of COVID-19 and, subsequently, have developed a variety of preventive measures urgently, ranging from mask wearing to vaccination to medication. Despite these approaches, no unique strategy is available today that can effectively prevent and/or treat this hostile disease. As a consequence, the maintenance of a boosted immune system could be considered a high priority of preventive medicine for combating COVID-19. Herein, we discuss the current level of understanding underlining the contribution of healthy immunity and its relevance to COVID-19 molecular pathogenesis, and potential therapeutic strategies, in the management of this devastating disease.
Collapse
|
12
|
Souid I, Korchef A, Souid S. In silico evaluation of Vitis amurensis Rupr. polyphenol compounds for their inhibition potency against CoVID-19 main enzymes Mpro and RdRp. Saudi Pharm J 2022; 30:570-584. [PMID: 35250347 PMCID: PMC8883852 DOI: 10.1016/j.jsps.2022.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid transmission of the pneumonia (COVID-19) emerged as an entire worldwide health concern and it was declared as pandemic by the World Health Organization (WHO) as a consequence of the increasing reported infections number. COVID-19 disease is caused by the novel SARS-CoV-2 virus, and unfortunatly no drugs are currently approved against this desease. Accordingly, it is of outmost importance to review the possible therapeutic effects of naturally-occuring compounds that showed approved antiviral activities. The molecular docking approach offers a rapid prediction of a possible inhibition of the main enzymes Mpro and RdRp that play crucial role in the SARS-CoV-2 replication and transcription. In the present work, we review the anti-viral activities of polyphenol compounds (phenolic acids, flavonoids and stilbene) derived from the traditional Chinese medicinal Vitis amurensis. Recent molecular docking studies reported the possible binding of these polyphenols on SARS-CoV-2 enzymes Mpro and RdRp active sites and showed interesting inhibitory effects. This antiviral activity was explained by the structure-activity relationships of the studied compounds. Also, pharmacokinetic analysis of the studied molecules is simulated in the present work. Among the studied polyphenol compounds, only five, namely caffeic acid, ferulic acid, quercetin, naringenin and catechin have drug-likeness characteristics. These five polyphenols derived from Vitis amurensis are promising drug candidates for the COVID-19 treatment.
Collapse
|
13
|
Lu Y, Shi J, Zhao X, Song Y, Qin Y, Liu Y. Improvement of the Biosynthesis of Resveratrol in Endophytic Fungus ( Alternaria sp. MG1) by the Synergistic Effect of UV Light and Oligomeric Proanthocyanidins. Front Microbiol 2021; 12:770734. [PMID: 34745078 PMCID: PMC8567136 DOI: 10.3389/fmicb.2021.770734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural polyphenol compound with multiple bioactivities, is widely used in food and pharmaceutical industry. Endophytic fungus Alternaria sp. MG1, as a native producer of resveratrol, shows increasing potential application. However, strategies for improvement of the biosynthesis of resveratrol in this species are still scarce. In this study, different elicitors were used to investigate their effect on the biosynthesis of resveratrol in MG1 and the induction mechanism. Ultrasound and sodium butyrate had no effect and slight inhibition on the resveratrol production and related gene expression, respectively. UV radiation and co-culture with Phomopsis sp. XP-8 significantly promoted the biosynthesis of resveratrol with the highest production (240.57μg/l) coming from UV 20min. Co-culture altered the profiles of secondary metabolites in MG1 by promoting and inhibiting the synthesis of stilbene and lignin compounds, respectively, and generating new flavonoids ((+/-)-taxifolin, naringin, and (+)-catechin). Oligomeric proanthocyanidins (OPC) also showed an obviously positive influence, leading to an increase in resveratrol production by 10 to 60%. Two calcium-dependent protein kinases (CDPK) were identified, of which CDPK1 was found to be an important regulatory factor of OPC induction. Synergistic treatment of UV 20min and 100μm OPC increased the production of resveratrol by 70.37% compared to control and finally reached 276.31μg/l.
Collapse
Affiliation(s)
- Yao Lu
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xixi Zhao
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| |
Collapse
|
14
|
Zheng W, Wu H, Liu C, Yan Q, Wang T, Wu P, Liu X, Jiang Y, Zhan S. Identification of COVID-19 and Dengue Host Factor Interaction Networks Based on Integrative Bioinformatics Analyses. Front Immunol 2021; 12:707287. [PMID: 34394108 PMCID: PMC8356054 DOI: 10.3389/fimmu.2021.707287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The outbreak of Coronavirus disease 2019 (COVID-19) has become an international public health crisis, and the number of cases with dengue co-infection has raised concerns. Unfortunately, treatment options are currently limited or even unavailable. Thus, the aim of our study was to explore the underlying mechanisms and identify potential therapeutic targets for co-infection. Methods To further understand the mechanisms underlying co-infection, we used a series of bioinformatics analyses to build host factor interaction networks and elucidate biological process and molecular function categories, pathway activity, tissue-specific enrichment, and potential therapeutic agents. Results We explored the pathologic mechanisms of COVID-19 and dengue co-infection, including predisposing genes, significant pathways, biological functions, and possible drugs for intervention. In total, 460 shared host factors were collected; among them, CCL4 and AhR targets were important. To further analyze biological functions, we created a protein-protein interaction (PPI) network and performed Molecular Complex Detection (MCODE) analysis. In addition, common signaling pathways were acquired, and the toll-like receptor and NOD-like receptor signaling pathways exerted a significant effect on the interaction. Upregulated genes were identified based on the activity score of dysregulated genes, such as IL-1, Hippo, and TNF-α. We also conducted tissue-specific enrichment analysis and found ICAM-1 and CCL2 to be highly expressed in the lung. Finally, candidate drugs were screened, including resveratrol, genistein, and dexamethasone. Conclusions This study probes host factor interaction networks for COVID-19 and dengue and provides potential drugs for clinical practice. Although the findings need to be verified, they contribute to the treatment of co-infection and the management of respiratory disease.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengxin Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shaofeng Zhan
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Adams DP, García Hernández JL, González-Bernal J, González-Gross M. Glycophosphopeptical AM3 Food Supplement: A Potential Adjuvant in the Treatment and Vaccination of SARS-CoV-2. Front Immunol 2021; 12:698672. [PMID: 34220861 PMCID: PMC8248499 DOI: 10.3389/fimmu.2021.698672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
The world is currently experiencing the coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-2 (SARS-CoV-2). Its global spread has resulted in millions of confirmed infections and deaths. While the global pandemic continues to grow, the availability of drugs to treat COVID-19 infections remains limited to supportive treatments. Moreover, the current speed of vaccination campaigns in many countries has been slow. Natural substrates with biological immunomodulatory activity, such as glucans, may represent an adjuvant therapeutic agent to treat SARS-CoV-2. AM3, a natural glycophosphopeptical, has previously been shown to effectively slow, with no side effects, the progression of infectious respiratory diseases by regulating effects on innate and adaptive immunity in experimental models. No clinical studies, however, exist on the use of AM3 in SARS-CoV-2 infected patients. This review aims to summarize the beneficial effects of AM3 on respiratory diseases, the inflammatory response, modulation of immune response, and attenuation of muscle. It will also discuss its potential effects as an immune system adjuvant for the treatment of COVID-19 infections and adjuvant for SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Cesar I. Fernandez-Lazaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Soria, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
- Nutrition, Exercise and Healthy Lifestyle Research Group (ImFINE) Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-National Institute of Physical Education (INEF), Polytechnic University of Madrid, Madrid, Spain
| | - David P. Adams
- Dual Enrollment Program, Point University, Savannah, GA, United States
| | | | | | - Marcela González-Gross
- Nutrition, Exercise and Healthy Lifestyle Research Group (ImFINE) Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-National Institute of Physical Education (INEF), Polytechnic University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Al-kuraishy HM, Al-Gareeb AI, Alqarni M, Cruz-Martins N, El-Saber Batiha G. Pleiotropic Effects of Tetracyclines in the Management of COVID-19: Emerging Perspectives. Front Pharmacol 2021; 12:642822. [PMID: 33967777 PMCID: PMC8103613 DOI: 10.3389/fphar.2021.642822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 15% of severe cases require an intensive care unit (ICU) admission and mechanical ventilation due to development of acute respiratory distress syndrome (ARDS). Tetracyclines (TCs) are a group of bacteriostatic antibiotics, like tetracycline, minocycline, and doxycycline, effective against aerobic and anaerobic bacteria as well as Gram-positive and Gram-negative bacteria. Based on available evidences, TCs may be effective against coronaviruses and thus useful to treat COVID-19. Thus, this review aims to provide a brief overview on the uses of TCs for COVID-19 management. SARS-CoV-2 and other coronaviruses depend mainly on the matrix metalloproteinases (MMPs) for their proliferation, cell adhesion, and infiltration. The anti-inflammatory mechanisms of TCs are linked to different pathways. Briefly, TCs inhibit mitochondrial cytochrome c and caspase pathway with improvement of lymphopenia in early COVID-19. Specifically, minocycline is effective in reducing COVID-19-related complications, through attenuation of cytokine storm as apparent by reduction of interleukin (IL)-6, IL-1, and tumor necrosis factor (TNF)-α. Different clinical trials recommend the replacement of azithromycin by minocycline in the management of COVID-19 patients at high risk due to two main reasons: 1) minocycline does not prolong the QT interval and even inhibits ischemia-induced arrhythmia; 2) minocycline displays synergistic effect with chloroquine against SARS-CoV-2. Taken together, the data presented here show that TCs, mainly doxycycline or minocycline, may be potential partners in COVID-19 management, derived pneumonia, and related complications, such as acute lung injury (ALI) and ARDS.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, BaghdadIraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, BaghdadIraq
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
17
|
Bobcakova A, Petriskova J, Vysehradsky R, Kocan I, Kapustova L, Barnova M, Diamant Z, Jesenak M. Immune Profile in Patients With COVID-19: Lymphocytes Exhaustion Markers in Relationship to Clinical Outcome. Front Cell Infect Microbiol 2021; 11:646688. [PMID: 33937096 PMCID: PMC8082075 DOI: 10.3389/fcimb.2021.646688] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
The velocity of the COVID-19 pandemic spread and the variable severity of the disease course has forced scientists to search for potential predictors of the disease outcome. We examined various immune parameters including the markers of immune cells exhaustion and activation in 21 patients with COVID-19 disease hospitalised in our hospital during the first wave of the COVID-19 pandemic in Slovakia. The results showed significant progressive lymphopenia and depletion of lymphocyte subsets (CD3+, CD4+, CD8+ and CD19+) in correlation to the disease severity. Clinical recovery was associated with significant increase in CD3+ and CD3+CD4+ T-cells. Most of our patients had eosinopenia on admission, although no significant differences were seen among groups with different disease severity. Non-survivors, when compared to survivors, had significantly increased expression of PD-1 on CD4+ and CD8+ cells, but no significant difference in Tim-3 expression was observed, what suggests possible reversibility of immune paralysis in the most severe group of patients. During recovery, the expression of Tim-3 on both CD3+CD4+ and CD3+CD8+ cells significantly decreased. Moreover, patients with fatal outcome had significantly higher proportion of CD38+CD8+ cells and lower proportion of CD38+HLA-DR+CD8+ cells on admission. Clinical recovery was associated with significant decrease of proportion of CD38+CD8+ cells. The highest AUC values within univariate and multivariate logistic regression were achieved for expression of CD38 on CD8+ cells and expression of PD1 on CD4+ cells alone or combined, what suggests, that these parameters could be used as potential biomarkers of poor outcome. The assessment of immune markers could help in predicting outcome and disease severity in COVID-19 patients. Our observations suggest, that apart from the degree of depletion of total lymphocytes and lymphocytes subsets, increased expression of CD38 on CD3+CD8+ cells alone or combined with increased expression of PD-1 on CD3+CD4+ cells, should be regarded as a risk factor of an unfavourable outcome in COVID-19 patients. Increased expression of PD-1 in the absence of an increased expression of Tim-3 on CD3+CD4+ and CD3+CD8+ cells suggests potential reversibility of ongoing immune paralysis in patients with the most severe course of COVID-19.
Collapse
Affiliation(s)
- Anna Bobcakova
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Jela Petriskova
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
| | - Robert Vysehradsky
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ivan Kocan
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Lenka Kapustova
- Centre for Primary Immunodeficiencies, Clinic of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Martina Barnova
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Milos Jesenak
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
- Centre for Primary Immunodeficiencies, Clinic of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| |
Collapse
|
18
|
Chen O, Mah E, Dioum E, Marwaha A, Shanmugam S, Malleshi N, Sudha V, Gayathri R, Unnikrishnan R, Anjana RM, Krishnaswamy K, Mohan V, Chu Y. The Role of Oat Nutrients in the Immune System: A Narrative Review. Nutrients 2021; 13:1048. [PMID: 33804909 PMCID: PMC8063794 DOI: 10.3390/nu13041048] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal nutrition is the foundation for the development and maintenance of a healthy immune system. An optimal supply of nutrients is required for biosynthesis of immune factors and immune cell proliferation. Nutrient deficiency/inadequacy and hidden hunger, which manifests as depleted nutrients reserves, increase the risk of infectious diseases and aggravate disease severity. Therefore, an adequate and balanced diet containing an abundant diversity of foods, nutrients, and non-nutrient chemicals is paramount for an optimal immune defense against infectious diseases, including cold/flu and non-communicable diseases. Some nutrients and foods play a larger role than others in the support of the immune system. Oats are a nutritious whole grain and contain several immunomodulating nutrients. In this narrative review, we discuss the contribution of oat nutrients, including dietary fiber (β-glucans), copper, iron, selenium, and zinc, polyphenolics (ferulic acid and avenanthramides), and proteins (glutamine) in optimizing the innate and adaptive immune system's response to infections directly by modulating the innate and adaptive immunity and indirectly by eliciting changes in the gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Oliver Chen
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Eunice Mah
- Biofortis Research, Mérieux NutriSciences, Addison, IL 60101, USA;
| | - ElHadji Dioum
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| | - Ankita Marwaha
- PepsiCo Health & Nutrition Sciences, AMESA, Gurgaon 122101, India;
| | - Shobana Shanmugam
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Nagappa Malleshi
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Vasudevan Sudha
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Rajagopal Gayathri
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Kamala Krishnaswamy
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Chennai, Tamil Nadu 600086, India; (S.S.); (N.M.); (V.S.); (R.G.); (R.U.); (R.M.A.); (K.K.); (V.M.)
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health & Nutrition Sciences, Barrington, IL 60010, USA; (E.D.); (Y.C.)
| |
Collapse
|
19
|
The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6679761. [PMID: 33680061 PMCID: PMC7929665 DOI: 10.1155/2021/6679761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, the WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48 h of treatment, U. tomentosa showed an inhibition of 92.7% of SARS-CoV-2 at 25.0 μg/mL (p < 0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa induced a reduction of 98.6% (p=0.02) and 92.7% (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 μg/mL and 12.5 μg/mL, respectively. The EC50 calculated for the U. tomentosa extract by plaque reduction assay was 6.6 μg/mL (4.89–8.85 μg/mL) for a selectivity index of 4.1. The EC50 calculated for the U. tomentosa extract by TCID50 assay was 2.57 μg/mL (1.05–3.75 μg/mL) for a selectivity index of 10.54. These results showed that U. tomentosa, known as cat's claw, has an antiviral effect against SARS-CoV-2, which was observed as a reduction in the viral titer and CPE after 48 h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark could be promising in the development of new therapeutic strategies against SARS-CoV-2.
Collapse
|
20
|
Silva RGLD, Iriart JAB. Como a comunidade internacional da medicina de precisão tem se posicionado diante dos desafios impostos pela pandemia da COVID-19? CAD SAUDE PUBLICA 2021. [DOI: 10.1590/0102-311x00296920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Medicina de precisão pode ser definida como um movimento de transformação da biomedicina contemporânea que orienta a atividade de pesquisa acadêmica, modelos de negócios e o desenvolvimento de produtos e serviços de saúde desenhados individualmente para o usuário, baseado em informações genéticas e outros marcadores biomédicos dos pacientes. Ao longo dos últimos anos, essa comunidade tem sido bastante atuante no cenário científico internacional. No entanto, durante a pandemia da COVID-19 ainda não ficou claro quais posicionamentos ou estratégias têm sido adotadas por esses grupos para o enfrentamento da crise sanitária. O objetivo deste artigo é compreender como a comunidade internacional da medicina de precisão está reagindo à pandemia da COVID-19, e em que estão baseadas as suas abordagens e potenciais soluções sugeridas para a mitigação dos efeitos negativos causados pelo aumento das infecções pelo novo coronavírus. Para tanto, foi feita pesquisa documental em 28 documentos provenientes de 18 fontes selecionadas, em que analisou-se as narrativas difundidas pelos profissionais da medicina de precisão em artigos científicos, editoriais, comentários, perspectivas, notícias de jornais e boletins e conferência virtual da Coalizão de Medicina Personalizada (PMC, em inglês). Com isso, buscou-se compreender como esses grupos imaginam uma nova configuração sociotécnica para o enfrentamento da pandemia e de seus efeitos.
Collapse
|
21
|
Grant WB, Lahore H, Rockwell MS. The Benefits of Vitamin D Supplementation for Athletes: Better Performance and Reduced Risk of COVID-19. Nutrients 2020; 12:E3741. [PMID: 33291720 PMCID: PMC7761895 DOI: 10.3390/nu12123741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is having major economic and personal consequences for collegiate and professional sports. Sporting events have been canceled or postponed, and even when baseball and basketball seasons resumed in the United States recently, no fans were in attendance. As play resumed, several players developed COVID-19, disrupting some of the schedules. A hypothesis now under scientific consideration is that taking vitamin supplements to raise serum 25-hydroxyvitamin D [25(OH)D] concentrations could quickly reduce the risk and/or severity of COVID-19. Several mechanisms have been identified through which vitamin D could reduce the risks of infection and severity, death, and long-haul effects of COVID-19: (1) inducing production of cathelicidin and defensins to reduce the survival and replication of the SARS-CoV-2 virus; (2) reducing inflammation and the production of proinflammatory cytokines and risk of the "cytokine storm" that damages the epithelial layer of the lungs, heart, vascular system, and other organs; and (3) increasing production of angiotensin-converting enzyme 2, thus limiting the amount of angiotensin II available to the virus to cause damage. Clinical trials have confirmed that vitamin D supplementation reduces risk of acute respiratory tract infections, and approximately 30 observational studies have shown that incidence, severity, and death from COVID-19 are inversely correlated with serum 25(OH)D concentrations. Vitamin D supplementation is already familiar to many athletes and sports teams because it improves athletic performance and increases playing longevity. Thus, athletes should consider vitamin D supplementation to serve as an additional means by which to reduce risk of COVID-19 and its consequences.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Henry Lahore
- VitaminDWiki, 2289 Highland Loop, Port Townsend, WA 98368, USA;
| | - Michelle S. Rockwell
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA;
- Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
| |
Collapse
|
22
|
Goddek S. Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate. Int J Infect Dis 2020; 99:286-290. [PMID: 32768697 PMCID: PMC7406600 DOI: 10.1016/j.ijid.2020.07.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
The world is desperately seeking for a sustainable solution to combat the coronavirus strain SARS-CoV-2 (COVID-19). Recent research indicated that optimizing Vitamin D blood levels could offer a solution approach that promises a heavily reduced fatality rate as well as solving the public health problem of counteracting the general vitamin D deficiency. This paper dived into the immunoregulatory effects of supplementing Vitamin D3 by elaborating a causal loop diagram. Together with D3, vitamin K2 and magnesium should be supplemented to prevent long-term health risks. Follow up clinical randomized trials are required to verify the current circumstantial evidence.
Collapse
Affiliation(s)
- Simon Goddek
- Mathematical and Statistical Methods (Biometris), Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|