1
|
Wang Y, Liu Y, Chen S, Francis Siu MF, Liu C, Bai J, Wang M. Enhancing bone regeneration through 3D printed biphasic calcium phosphate scaffolds featuring graded pore sizes. Bioact Mater 2025; 46:21-36. [PMID: 39734570 PMCID: PMC11681834 DOI: 10.1016/j.bioactmat.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration. In this study, uniform pore size scaffolds and PSG scaffolds were designed using the gyroid unit of triply periodic minimal surface (TPMS), with small pores (400 μm) in the periphery and large pores (400, 600, 800 or 1000 μm) in the center of BTE scaffolds (designated as 400-400, 400-600, 400-800, and 400-1000 scaffold, respectively). All scaffolds maintained the same porosity of 70 vol%. BTE scaffolds were subsequently fabricated through digital light processing (DLP) 3D printing with the use of biphasic calcium phosphate (BCP). The results showed that DLP 3D printing could produce PSG BCP scaffolds with high fidelity. The PSG BCP scaffolds possessed improved biocompatibility and mass transport properties as compared to uniform pore size BCP scaffolds. In particular, the 400-800 PSG scaffolds promoted osteogenesis in vitro and enhanced new bone formation and vascularization in vivo while they displayed favorable compressive properties and permeability. This study has revealed the importance of structural design and optimization of BTE scaffolds for achieving balanced mechanical, mass transport and biological performance for bone regeneration.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, the Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
2
|
Liao TY, Boden A, King PC, Thissen H, Crawford RJ, Ivanova EP, Kingshott P. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). ACS APPLIED BIO MATERIALS 2025; 8:1167-1185. [PMID: 39849900 DOI: 10.1021/acsabm.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter C King
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Russell J Crawford
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
3
|
Kurtz PW, Lee H, Mace A, Goodwin C, Gilbert J. Low-Energy Electron Beam Modification of Metallic Biomaterial Surfaces: Oxygen and Silicon-Rich Amorphous Carbon as a Wear-Resistant Coating. J Biomed Mater Res A 2025; 113:e37849. [PMID: 39893553 DOI: 10.1002/jbm.a.37849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Metallic biomaterials, such as cobalt chrome molybdenum (CoCrMo), Ti-6Al-4V, and 316L stainless steel are commonly used in orthopedic implant devices. Damage modes such as corrosion and wear are associated with the use of these alloys. One solution to limit wear and corrosion damage is to apply a surface coating to the medical device. In this study, using the low-energy electron beam (LEEB) of scanning electron microscopy (SEM), we induced a highly scratch-resistant oxygen and silicon-rich amorphous carbon film to grow on each of the above metallic biomaterials. LEEB interaction with adventitious surface carbon, silicone, and oxygen deposited on the above three alloys resulted in the layered-deposition formation (LEEB-LD) of a surface coating. Coating chemistry, morphology, and nano-scratch wear properties on each of the three alloys were characterized using atomic force microscopy (AFM) scratch testing and SEM/Energy dispersive spectroscopy (EDS) analysis. We hypothesized that LEEB-LD coatings could be deposited on these three metallic biomaterials with improved tribological properties than the underlying metal substrate. First, we generated coatings on all three biomaterials and documented the coating morphology (thickness and heterogeneity) and chemistry as a function of alloy, exposure time, and scan rate with coating thicknesses generated between 5 and 50 nm after 60 min of treatment, with each factor affecting the thickness. EDS maps showed high amounts of carbon, oxygen, and silicon in the modified surface which depended on the alloy (e.g., CoCrMo and SS had similar compositions while Ti had higher oxygen in the coatings). Coated and uncoated surfaces were then subjected to diamond scratch testing in an AFM at increasing force until the coating delaminated from the surface. Scratch-depth versus load and nominal Hertzian stress were plotted for both the uncoated and coated surfaces. We found that scratch depths were 40%, 75%, and 38% smaller on CoCrMo, Ti, and SS coatings, respectively, at the peak contact stresses tested (⍺ < 0.05), indicating higher hardness and wear resistance for the coatings. These results support the hypothesis that controlled thickness LEEB-LD oxygen and silicon-rich amorphous carbon coatings can be systematically generated using low-power electron beams and that these coatings have increased tribological (scratch-resistance) properties compared to the substrate metal.
Collapse
Affiliation(s)
- Peter W Kurtz
- Clemson University-MUSC Bioengineering Program, Charleston, South Carolina, USA
| | - Hwaran Lee
- Clemson University-MUSC Bioengineering Program, Charleston, South Carolina, USA
| | - Annsley Mace
- Clemson University-MUSC Bioengineering Program, Charleston, South Carolina, USA
| | - Charley Goodwin
- Clemson University-MUSC Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy Gilbert
- Clemson University-MUSC Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Elsayed S, Ahmed Y, El-Anwar MI, Elddamony E, Ashraf R. Influence of different polymeric materials of implant and attachment on stress distribution in implant-supported overdentures: a three-dimensional finite element study. BMC Oral Health 2025; 25:166. [PMID: 39885486 PMCID: PMC11783779 DOI: 10.1186/s12903-025-05440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
PURPOSE Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture. MATERIALS AND METHODS 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments. Linear static stress analysis was carried out by ANSYS 2020 R1. Three identical models were created with different materials for modeling of prosthetic components (implant body, gingival former, ball attachment and matrix). The Monolithic principle was applied as the same material was used in modelling all the prosthetic components in each model (Titanium alloy grade V, poly-ether-ether-ketone (PEEK) and poly-ether-ketone-ketone (PEKK)). Simultaneous Force application of 60 N was carried out bilaterally at the first molar occlusal surface area using 3 runs (vertical, lateral and oblique). RESULTS PEEK and PEKK prosthetic components exhibited the highest total deformation and critical Maximum von Mises stresses values in implant body and gingival former under lateral and oblique loads. The stress values approached the fatigue limit of both polymeric materials presenting low factor of safety (< 1.5). The Peri-implant cortical bone in case of PEEK and PEKK showed nearly double maximum principal stresses compared with the titanium model. Conversely, Maximum von Mises stresses in spongy bone were lower in polymeric models than those of titanium ones. Additionally maximum equivalent strain values in spongy peri-implant bone of polymeric models were also lower than those of titanium model. CONCLUSION Critical high stresses were induced in implant body and gingival former under oblique or lateral loadings, accordingly, fatigue failure of both PEEK and PEKK polymer prosthetic elements was estimated due to low factor of safety. Both PEEK and PEKK Polymer models offered no advantage over titanium one regarding stress shielding effect, due to low stress and strain values generated at spongy peri-implant bone in polymer models.
Collapse
Affiliation(s)
- Sherif Elsayed
- Al-Ryada University for Science and Technology, Sadat City, Menoufia, Egypt
| | - Yousra Ahmed
- Department of Prosthetic Dentistry, Removable Prosthodontics Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt
| | - Mohamed I El-Anwar
- Mechanical Engineering Department, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Enas Elddamony
- Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt
| | - Reem Ashraf
- Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
| |
Collapse
|
5
|
Neves VDS, Correa FQ, Ferreira MOA, Rodrigues AR, Wolf W, Galo R, Yasuoka FMM, Moreto JA. The Use of Nanosecond Pulsed Fibre Laser Treatment to Improve the Corrosion Resistance of 316L SS Utilised as Surgical Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6178. [PMID: 39769777 PMCID: PMC11677962 DOI: 10.3390/ma17246178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
The nanosecond pulsed fibre laser (NsPFL) treatment is extensively employed to distinguish hospital surgical instruments (micro-surgical forceps, surgical blades, orthopaedic drills, and high-precision laparoscopic tools), which are generally composed of stainless steel. Nevertheless, if the laser parameters are not properly optimised, this process may unintentionally provoke corrosion. Maintaining the structural integrity of these materials is essential for ensuring patient safety and minimising long-term costs. This work aims to optimise the laser scanning parameters for marking 316L stainless steel (316L SS), seeking to improve its corrosion resistance. The corrosion behaviour was assessed by using open circuit potential (OCP), potentiodynamic polarisation curves (PPc), and electrochemical impedance spectroscopy (EIS) techniques, conducted in 0.9% wt NaCl solution at a controlled temperature of 25 ± 1 °C. A comprehensive study employing optical profilometry has significantly enhanced our understanding of the corrosion micromechanisms of 316L SS, comparing specimens both with and without NsPFL treatment. Considering applications involving environments rich in chloride ions, the results indicated that the NsPFL-316L SS samples demonstrated markedly enhanced performance compared to the untreated base material after 48 h of immersion in 0.9% wt NaCl solution. This improvement is particularly noteworthy given the widespread utilisation of 316L SS in the manufacturing of surgical instruments, where corrosion resistance is of paramount importance.
Collapse
Affiliation(s)
- Vinicius da Silva Neves
- Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil; (V.d.S.N.); (F.Q.C.); (M.O.A.F.); (W.W.)
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Felipe Queiroz Correa
- Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil; (V.d.S.N.); (F.Q.C.); (M.O.A.F.); (W.W.)
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Murilo Oliveira Alves Ferreira
- Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil; (V.d.S.N.); (F.Q.C.); (M.O.A.F.); (W.W.)
| | - Alessandro Roger Rodrigues
- Department of Mechanical Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Witor Wolf
- Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil; (V.d.S.N.); (F.Q.C.); (M.O.A.F.); (W.W.)
| | - Rodrigo Galo
- School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, SP, Brazil;
| | - Fátima Maria Mitsue Yasuoka
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
- BR Labs Tecnologia Óptica e Fotônica Ltd., São Carlos 13567-020, SP, Brazil
| | - Jéferson Aparecido Moreto
- Materials Engineering Department, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil; (V.d.S.N.); (F.Q.C.); (M.O.A.F.); (W.W.)
| |
Collapse
|
6
|
Cotrut CM, Blidisel A, Vranceanu DM, Vladescu (Dragomir) A, Ungureanu E, Pana I, Dinu M, Vitelaru C, Parau AC, Pruna V, Magurean MS, Titorencu I. Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings. Biomimetics (Basel) 2024; 9:704. [PMID: 39590276 PMCID: PMC11592108 DOI: 10.3390/biomimetics9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of coatings is to protect or enhance the functionality of the substrate material, irrespective of the field in which the material was designed. The use of coatings in medicine is rapidly expanding with the objective of enhancing the osseointegration ability of metallic materials such as titanium. The aim of this study was to obtain biomimetic hydroxyapatite (HAp)-based coatings on titanium by using the pulsed galvanostatic method. The morphology of the HAp-based coatings revealed the presence of very thin and wide plate-like crystals, grown perpendicular to the Ti substrate, while the chemical composition highlighted a Ca/P ratio of 1.66, which is close to that of stoichiometric HAp (1.67). The main phases and chemical bonds identified confirmed the presence of the HAp phase in the developed coatings. A roughness of 228 nm and a contact angle of approx. 17° were obtained for the HAp coatings, highlighting a hydrophilic character. In terms of biomineralization and electrochemical behavior, it was shown that the HAp coatings have significantly enhanced the titanium properties. Finally, the in vitro cell tests carried out with human mesenchymal stem cells showed that the Ti samples coated with HAp have increased cell viability, extracellular matrix, and Ca intracellular deposition when compared with the uncoated Ti, indicating the beneficial effect.
Collapse
Affiliation(s)
- Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alexandru Blidisel
- Hepato-Bilio-Pancreatic Surgery Center, University Clinic Surgical Semiology and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy, Sq. Eftimie Murgu No. 2, 300041 Timisoara, Romania
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Iulian Pana
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Mihaela Dinu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Catalin Vitelaru
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | | | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| |
Collapse
|
7
|
Spajić I, Morais MG, Monteiro C, Martins MCL, Pêgo AP, Milošev I. Biocompatibility and antibacterial properties of medical stainless steel and titanium modified by alumina and hafnia films prepared by atomic layer deposition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:68. [PMID: 39531085 PMCID: PMC11557675 DOI: 10.1007/s10856-024-06841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
New methods for producing surfaces with suitable biocompatible properties are desirable due to increasing demands for biomedical devices. Stainless steel 316 L and cp- titanium specimens were coated with thin films of alumina and hafnia deposited using the atomic layer deposition method at two temperatures, 180 and 260 °C. The morphology of the films was analysed using scanning electron microscopy, and their surface energies were determined based on drop contact angle measurements. Biocompatibility assays performed using mesenchymal stem cells were evaluated by incubating the specimens and then exposing their extracts to the cells or directly seeding cells on the specimen surfaces. No detrimental effect was noticed for any of the specimens. Antibacterial properties were tested by directly incubating the specimens with the bacteria Staphylococcus aureus. Overall, our data show that all prepared films were biocompatible. Alumina films deposited on cp-titanium at 260 °C outperform the other prepared and tested surfaces regarding antiadhesive properties, which could be related to their low surface energy.
Collapse
Affiliation(s)
- Ivan Spajić
- Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, Ljubljana, SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova c. 39, Ljubljana, SI-1000, Slovenia
| | - Miguel Gonçalves Morais
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Cláudia Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-343, Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-343, Porto, Portugal
| | - Ingrid Milošev
- Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, Ljubljana, SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova c. 39, Ljubljana, SI-1000, Slovenia.
- Valdoltra Orthopaedic Hospital, Jadranska c. 31, Ankaran, SI-6280, Slovenia.
| |
Collapse
|
8
|
Jha G, Malasani S, Barakat A, Sola SC, Gera K, Gupta G. Innovative Nanotechnological Approaches in Trauma and Orthopaedic Surgery: A Comprehensive Review. Cureus 2024; 16:e72838. [PMID: 39552742 PMCID: PMC11568882 DOI: 10.7759/cureus.72838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
The application of nanotechnology to health has been one of the revolutionizing factors in the field of trauma and orthopaedic surgery over the last decade. Advances in nanomedicine, in comparison to conventional modes of treatment, have influenced immensely the approach towards trauma and orthopaedic surgery and provided some unique answers to some very complex problems like bone reconstruction, soft tissue repair, and prevention of infection. The current narrative review intends to underpin an extensive analysis of modern applications and recent advances in nanotechnology-driven therapies in orthopaedics. Having leveraged unique properties inherent in nanoparticles and nanoscale materials, novel interventions, such as nanostructured scaffolds, drug delivery systems, and bioactive coatings, have flourished into a variety of promising means to enhance osseointegration, accelerate the healing process, and reduce postoperative complications. This review at once acknowledges the huge potential of these technologies and some of the problems impeding their wide-range clinical application, including long-term safety, main regulatory hurdles, and scale-up issues. The following review aims to give orthopaedic surgeons, researchers, and biomedical engineers an overview of the present status and perspectives for the future regarding nanomedicine in trauma and orthopaedic surgery, pointing out the expectations of a much-improved outcome in patients and overall quality of life.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Trauma and Orthopaedics, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Surya Malasani
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Ahmed Barakat
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Siri Chandana Sola
- Geriatrics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Internal Medicine, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Kashish Gera
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Garima Gupta
- Cardiology, University Hospitals of Leicester NHS Trust, Leicester, GBR
| |
Collapse
|
9
|
Pho T, Janecka MA, Pustulka SM, Champion JA. Nanoetched Stainless Steel Architecture Enhances Cell Uptake of Biomacromolecules and Alters Protein Corona Abundancy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58427-58438. [PMID: 39417567 PMCID: PMC11533172 DOI: 10.1021/acsami.4c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Nanotexture on biocompatible surfaces promotes cell adhesion and proliferation. High aspect ratio nanoachitecture serves as an ideal interface between implant materials and host cells that is well-suited for localized therapeutic delivery. Despite this potential, nanotextured surfaces have not been widely applied for biomacromolecule delivery. Here, we employed a low-cost, industrially relevant nanoetching process to modify the surface of biocompatible stainless steel 316 (SS316L), creating nanotextured SS316L (NT-SS316L) as a material for intracellular biomacromolecule delivery. As biomacromolecule cargoes are adsorbed to the steel and ultimately would be used in protein-rich environments, we performed serum protein corona analysis on unmodified SS316L and NT-SS316L using tandem mass spectrometry. We observed an increase in proteins associated with cell adhesion on the surface of NT-SS316L compared to that of SS316L, supporting literature reports of enhanced adhesion on nanotextured materials. For delivery to adherent cells, a "hard corona" of model biomacromolecule cargoes including superfolder green fluorescent protein (sfGFP) charge variants, cytochrome c, and siRNA was adsorbed on NT-SS316L to assess delivery. Nanotextured surfaces enhanced cellular biomacromolecule uptake and delivered cytosolic-functional proteins and nucleic acids through energy-dependent endocytosis. Collectively, these findings indicate that NT-SS316L holds potential as a surface modification for implants to achieve localized drug delivery for a variety of biomedical applications.
Collapse
Affiliation(s)
- Thomas Pho
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maeve A. Janecka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Samantha M. Pustulka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Wawszczak A, Kocki J, Kołodyńska D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications-The Case Studies. J Biomed Mater Res B Appl Biomater 2024; 112:1-23. [PMID: 39269132 DOI: 10.1002/jbm.b.35475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.
Collapse
Affiliation(s)
- Alicja Wawszczak
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
11
|
Sheikhzadeh MS, Ahmadi R, Ghamari N, Afshar A. Fabrication of PTFE + TiO 2/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2020-2048. [PMID: 38879811 DOI: 10.1080/09205063.2024.2365047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 09/05/2024]
Abstract
This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO2/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO2 coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO2 and PTFE/PTFE + TiO2/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10-5 and 3.2 × 10-4 μA/cm2, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO2/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10-3 A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO2/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.
Collapse
Affiliation(s)
| | - Reza Ahmadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Niloufar Ghamari
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Abdollah Afshar
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Safin Kaosar Saad K, Saba T, Bin Rashid A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024; 10:e35541. [PMID: 39220946 PMCID: PMC11363861 DOI: 10.1016/j.heliyon.2024.e35541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Physical vapor deposition (PVD) coating is a versatile and well-liked method for depositing thin films of materials onto surfaces in a range of industries. Due to their numerous functional and aesthetic benefits, PVD coatings are beneficial in several applications, from electronics and optics to automotive and medical equipment. PVD coating technology dramatically improves the effectiveness and quality of medical implants. PVD-coated medical implants improve osseointegration, lower wear and friction, increase corrosion resistance, and have antibacterial properties, which lead to better patient outcomes, fewer complications, and overall higher quality of life for people who need implantable medical devices. The essential concepts of PVD coating and the numerous deposition techniques and materials used are covered at the study's outset. The specific uses of PVD-coated medical implants are then highlighted, including those for orthopedic and dental implants and cardiovascular and neurosurgical devices. The review also emphasizes the critical contribution of PVD coatings to reducing wear and friction, improving corrosion resistance, augmenting biocompatibility, enhancing osseointegration, and aesthetic appeal. The challenges and prospects of PVD coating technologies were further addressed in this article. This review is invaluable for academics, doctors, and businesspeople interested in the beneficial combination of PVD coating and medical implantology.
Collapse
Affiliation(s)
- Khondoker Safin Kaosar Saad
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Tasfia Saba
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| |
Collapse
|
13
|
Arndt T, Chatterjee U, Shilkova O, Francis J, Lundkvist J, Johansson D, Schmuck B, Greco G, Nordberg ÅE, Li Y, Wahlberg LU, Langton M, Johansson J, Götherström C, Rising A. Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2303622. [PMID: 39355087 PMCID: PMC11440629 DOI: 10.1002/adfm.202303622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Indexed: 10/03/2024]
Abstract
Hydrogels are useful drug release systems and tissue engineering scaffolds. However, synthetic hydrogels often require harsh gelation conditions and can contain toxic by-products while naturally derived hydrogels can transmit pathogens and in general have poor mechanical properties. Thus, there is a need for a hydrogel that forms under ambient conditions, is non-toxic, xeno-free, and has good mechanical properties. A recombinant spider silk protein-derived hydrogel that rapidly forms at 37 °C is recently developed. The temperature and gelation times are well-suited for an injectable in situ polymerising hydrogel, as well as a 3D cell culture scaffold. Here, it is shown that the diffusion rate and the mechanical properties can be tuned by changing the protein concentration and that human fetal mesenchymal stem cells encapsulated in the hydrogels show high survival and viability. Furthermore, mixtures of recombinant spider silk proteins and green fluorescent protein (GFP) form gels from which functional GFP is gradually released, indicating that bioactive molecules are easily included in the gels, maintain activity and can diffuse through the gel. Interestingly, encapsulated ARPE-19 cells are viable and continuously produce the growth factor progranulin, which is detected in the cell culture medium over the study period of 31 days.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | | | - Daniel Johansson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Gabriele Greco
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Åsa Ekblad Nordberg
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Yan Li
- Department of Clinical ScienceIntervention and TechnologyDivision of Orthopedics and BiotechnologyKarolinska UniversitetssjukhusetHuddinge141 86Sweden
| | | | - Maud Langton
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Cecilia Götherström
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
14
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
15
|
Mughal A, Gillani SMH, Ahmed S, Fatima D, Hussain R, Manzur J, Nawaz MH, Minhas B, Shoaib Butt M, Bodaghi M, Ur Rehman MA. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. J Mech Behav Biomed Mater 2024; 156:106581. [PMID: 38776740 DOI: 10.1016/j.jmbbm.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 μm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.
Collapse
Affiliation(s)
- Awab Mughal
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Syed Muneeb Haider Gillani
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Duaa Fatima
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan; School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rabia Hussain
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Badar Minhas
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Shoaib Butt
- School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
16
|
Santichatngam P, Chongmuenwai A, Rooppakhun S. The effect of screw insertion configuration of Sinus Tarsi plate on biomechanical performance using finite element analysis. Sci Rep 2024; 14:17669. [PMID: 39085382 PMCID: PMC11291891 DOI: 10.1038/s41598-024-68662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Sinus Tarsi plates are used as implants for minimally invasive surgery of calcaneus bone fractures. This study evaluated the screw fixation patterns of Sinus Tarsi plates for optimal biomechanical performance. Six three-dimensional (3D) finite element models with different positional screws were evaluated for calcaneus fracture stabilization using Sinus Tarsi plates with 5, 6, and 7 holes. Walking stance conditions as heel strike, midstance, and push-off phases were used to compare loading. Results indicated that the equivalent (EQV) stress exhibited in the implant was higher than in the surrounding bone, with the highest value during the push-off phase. The maximum EQV stress or risk of failure decreased when an insertion screw was placed in the anterior bone using a 7-hole plate, and the most stable strain result at the fracture bone site was recorded for a Sinus Tarsi plate with 7 holes (TT 7-1). The screw insertion pattern and configuration of the Sinus Tarsi plate impacted the biomechanical performance of the calcaneal fracture.
Collapse
Affiliation(s)
- Prinda Santichatngam
- School of Biomedical Engineering Innovation, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Adisorn Chongmuenwai
- Department of Orthopedic Surgery, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, 30000, Thailand
| | - Supakit Rooppakhun
- School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
17
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
18
|
McGlumphy S, Damai A, Salameh L, Corbin GB, Wang Q, Markiewicz J, Mosher JJ, Spitzer N, Quiñones R. Biocompatible antibiotic-coupled nickel-titanium nanoparticles as a potential coating material for biomedical devices. Heliyon 2024; 10:e31434. [PMID: 38831845 PMCID: PMC11145499 DOI: 10.1016/j.heliyon.2024.e31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The challenges facing metallic implants for reconstructive surgery include the leaching of toxic metal ions, a mismatch in elastic modulus between the implant and the treated tissue, and the risk of infection. These problems can be addressed by passivating the metal surface with an organic substrate and incorporating antibiotic molecules. Nitinol (NiTi), a nickel-titanium alloy, is used in devices for biomedical applications due to its shape memory and superelasticity. However, unmodified NiTi carries a risk of localized nickel toxicity and inadequately supports angiogenesis or neuroregeneration due to limited cell adhesion, poor biomineralization, and little antibacterial activity. To address these challenges, NiTi nanoparticles were modified using self-assembled phosphonic acid monolayers and functionalized with the antibiotics ceftriaxone and vancomycin via the formation of an amide. Surface modifications were monitored to confirm that phosphonic acid modifications were present on NiTi nanoparticles and 100% of the samples formed ordered films. Modifications were stable for more than a year. Elemental composition showed the presence of nickel, titanium, and phosphorus (1.9% for each sample) after surface modifications. Dynamic light scattering analysis suggested some agglomeration in solution. However, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy confirmed a particle size distribution of <100 nm, the even distribution of nanoparticles on coverslips, and elemental composition before and after cell culture. B35 neuroblastoma cells exhibited no inhibition of survival and extended neurites of approximately 100 μm in total length when cultured on coverslips coated with only poly-l-lysine or with phosphonic acid-modified NiTi, indicating high biocompatibility. The ability to support neural cell growth and differentiation makes modified NiTi nanoparticles a promising coating for surfaces in metallic bone and nerve implants. NiTi nanoparticles functionalized with ceftriaxone inhibited Escherichia coli and Serratia marcescens (SM6) at doses of 375 and 750 μg whereas the growth of Bacillus subtilis was inhibited by a dose of only 37.5 μg. NiTi-vancomycin was effective against B. subtilis at all doses even after mammalian cell culture. These are common bacteria associated with infected implants, further supporting the potential use of functionalized NiTi in coating reconstructive implants.
Collapse
Affiliation(s)
- Sarah McGlumphy
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Aakriti Damai
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Lena Salameh
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Gabriell B. Corbin
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Qiang Wang
- Shared Research Facilities, West Virginia University, Morgantown, WV, 25606, USA
| | - John Markiewicz
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Jennifer J. Mosher
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Rosalynn Quiñones
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
19
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
20
|
Shash YH, El-Wakad MT, Eldosoky MAA, Dohiem MM. Finite element analysis of the effect of framework material and thickness on the biomechanical performance of 'All‑on‑Four' full-arch prosthesis. Comput Methods Biomech Biomed Engin 2024:1-16. [PMID: 38756021 DOI: 10.1080/10255842.2024.2355260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The aim of this research was to evaluate the stress distribution in the 'All-on-Four' prosthesis and the surrounding bone, with different framework materials and thicknesses. Five frameworks (alumina, zirconia, titanium, fiberglass reinforced resin (FRR), and polyether ether ketone (PEEK)) with two thicknesses (3.5 &5.5 mm) were stimulated in this research. A vertical force of 200 N was applied on a 1 mm circular area, at the cantilever, and at the region of the incisors, simulating different mastication mechanisms. The results illustrated that the 5.5 mm framework reduced the stresses on most parts, mucosa, and bone tissues, compared to 3.5 mm.
Collapse
Affiliation(s)
- Yomna H Shash
- Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Mohamed T El-Wakad
- Faculty of Engineering &Technology, Future University in Egypt, Cairo, Egypt
| | | | - Mohamed M Dohiem
- Department of Prosthodontics, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Ghezzi D, Graziani G, Cappelletti M, Fadeeva IV, Montesissa M, Sassoni E, Borciani G, Barbaro K, Boi M, Baldini N, Rau JV. New strontium-based coatings show activity against pathogenic bacteria in spine infection. Front Bioeng Biotechnol 2024; 12:1347811. [PMID: 38665815 PMCID: PMC11044685 DOI: 10.3389/fbioe.2024.1347811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 μm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.
Collapse
Affiliation(s)
- Daniele Ghezzi
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Gabriela Graziani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Martina Cappelletti
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Inna V. Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - Matteo Montesissa
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Bologna, Italy
| | - Giorgia Borciani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | | | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| |
Collapse
|
22
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
23
|
Pandayil JT, Boetti NG, Janner D. Advancements in Biomedical Applications of Calcium Phosphate Glass and Glass-Based Devices-A Review. J Funct Biomater 2024; 15:79. [PMID: 38535272 PMCID: PMC10970746 DOI: 10.3390/jfb15030079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
Calcium phosphate (CaP) glass has recently gained popularity as a promising material for a wide range of biomedical applications. Recent developments have seen CaP glasses moving from a passive implant material to an active degradable material, particularly as a major constituent of bioresorbable photonic devices. This holds great promise in advanced biomedical applications, since the main constituents of CaP glasses are present in the human body. In this review, the progressive advancements in the biomedical applications of calcium phosphate glass-based devices over the past 50 years are discussed. An overview of their role as reinforcing agents and the studies on doping their matrices for ion releasing and drug and gene delivery are reviewed. Recent applications of CaP glass and fibers in soft-tissue engineering and their potential for optical quality bioresorbable devices are then discussed along with the current challenges and potential future directions, emphasizing the promising role of CaP glass in the next generation of biomaterials. Considering their progress and potential in performing several biomedical functionalities over time, CaP glass-based devices hold promise for becoming enabling tools as an implantable, bioresorbable, multifunctional class of devices in future biomedicine.
Collapse
Affiliation(s)
- Jawad T. Pandayil
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
- LINKS Foundation-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138 Torino, Italy;
| | - Nadia G. Boetti
- LINKS Foundation-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138 Torino, Italy;
| | - Davide Janner
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
24
|
Landoulsi J. Surface (bio)-functionalization of metallic materials: How to cope with real interfaces? Adv Colloid Interface Sci 2024; 325:103054. [PMID: 38359674 DOI: 10.1016/j.cis.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Metallic materials are an important class of biomaterials used in various medical devices, owing to a suitable combination of their mechanical properties. The (bio)-functionalization of their surfaces is frequently performed for biocompatibility requirements, as it offers a powerful way to control their interaction with biological systems. This is particularly important when physicochemical processes and biological events, mainly involving proteins and cells, are initiated at the host-material interface. This review addresses the state of "real interfaces" in the context of (bio)-functionalization of metallic materials, and the necessity to cope with it to avoid frequent improper evaluation of the procedure used. This issue is, indeed, well-recognized but often neglected and emerges from three main issues: (i) ubiquity of surface contamination with organic compounds, (ii) reactivity of metallic surfaces in biological medium, and (iii) discrepancy in (bio)-functionalization procedures between expectations and reality. These disturb the assessment of the strategies adopted for surface modifications and limit the possibilities to provide guidelines for their improvements. For this purpose, X-ray photoelectrons spectroscopy (XPS) comes to the rescue. Based on significant progresses made in methodological developments, and through a large amount of data compiled to generate statistically meaningful information, and to insure selectivity, precision and accuracy, the state of "real interfaces" is explored in depth, while looking after the two main constituents: (i) the bio-organic adlayer, in which the discrimination between the compounds of interest (anchoring molecules, coupling agents, proteins, etc) and organic contaminants can be made, and (ii) the metallic surface, which undergoes dynamic processes due to their reactivity. Moreover, through one of the widespread (bio)-functionalization strategy, given as a case study, a particular attention is devoted to describe the state of the interface at different stages (composition, depth distribution of contaminants and (bio)compounds of interest) and the mode of protein retention. It is highlighted, in particular, that the occurrence or improvement of bioactivity does not demonstrate that the chemical schemes worked in reality. These aspects are particularly essential to make progress on the way to choose the suitable (bio)-functionalization strategy and to provide guidelines to improve its efficiency.
Collapse
Affiliation(s)
- Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris, France; Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, 20529 F-60205 Compiègne Cedex, France.
| |
Collapse
|
25
|
Lyutova E, Tkachuk VA, Zakharkiva AM, Borilo LP, Buzaev AA, Chen YW. Effects of Addition of Lanthanum and Zinc Oxides on the Biological Properties of TiO 2-SiO 2-P 2O 5/CaO on Ion Exchange Resin for Bone Implantation. ACS OMEGA 2024; 9:6880-6887. [PMID: 38371807 PMCID: PMC10870407 DOI: 10.1021/acsomega.3c08268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
The spherical materials TiO2-SiO2-P2O5/CaO, TiO2-SiO2-P2O5/La2O3, and TiO2-SiO2-P2O5/ZnO deposited on the Tokem-250 cation exchanger have been synthesized with an alcoholic solution by the sol-gel method. The macroporous cation exchanger Tokem-250, which has high Ca2+, Zn2+, and La3+ ion selectivity, was used in the present study. This material has the ability to precipitate and mineralize calcium phosphates on its surface in biological media, since it has high porosity, a homogeneous structure with a uniform variation of elements, and the presence of active centers (Si4+, Ti4+) on the surface. The effect of lanthanum and zinc additives on biological properties has been studied. It was established that accumulation of Ca2+ and Mg2+ occurs faster on the surface of TiO2-SiO2-P2O5/ZnO in the SBF (simulated body fluid) model solution, showing higher reaction capacity. The amount of calcium and phosphorus ions on the surface of sample TiO2-SiO2-P2O5/La2O3 is greater due to the ability of lanthanum to coordinate a large number of ions (lanthanum coordination number is 10). The presence of zinc ions in the system causes the partial hemoglobin release from erythrocytes into the supernatant fluid. The samples with lanthanum ions reduce the amount of protein in plasma after incubation, which has a positive effect on the practical application.
Collapse
Affiliation(s)
- Ekaterina
S. Lyutova
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Valeriya A. Tkachuk
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | | | - Lyudmila P. Borilo
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Aleksandr A. Buzaev
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Yu-Wen Chen
- Department
of Chemical Engineering, National central
University, Jhongli 32001, Taiwan
| |
Collapse
|
26
|
Cojocaru VD, Șerban N, Cojocaru EM, Zărnescu-Ivan N, Gălbinașu BM. The Effect of Solution Treatment Duration on the Microstructural and Mechanical Properties of a Cold-Deformed-by-Rolling Ti-Nb-Zr-Ta-Sn-Fe Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:864. [PMID: 38399115 PMCID: PMC10890699 DOI: 10.3390/ma17040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
The study presented in this paper is focused on the effect of varying the solution treatment duration on both the microstructural and mechanical properties of a cold-deformed by rolling Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy, referred to as TNZTSF. Cold-crucible induction using the levitation synthesis technique, conducted under an argon-controlled atmosphere, was employed to fabricate the TNZTSF alloy. After synthesis, the alloy underwent cold deformation by rolling, reaching a total deformation degree (total applied thickness reduction) of 60%. Subsequently, a solution treatment was conducted at 850 °C, with varying treatment durations ranging from 2 to 30 min in 2 min increments. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were utilized for the structural analysis, while the mechanical properties were assessed using both tensile and hardness testing. The findings indicate that (i) in both the cold-deformed-by-rolling and solution-treated states, the TNZTSF alloy exhibits a microstructure consisting of a single β-Ti phase; (ii) in the solution-treated state, the microstructure reveals a rise in the average grain size and a decline in the internal average microstrain as the duration of the solution treatment increases; and (iii) owing to the β-phase stability, a favorable mix of elevated strength and considerable ductility properties can be achieved.
Collapse
Affiliation(s)
- Vasile Dănuț Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Nicolae Șerban
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Elisabeta Mirela Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Nicoleta Zărnescu-Ivan
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (N.Ș.); (E.M.C.)
| | - Bogdan Mihai Gălbinașu
- Dental Medicine Faculty, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
27
|
Joshua RJN, Raj SA, Hameed Sultan MT, Łukaszewicz A, Józwik J, Oksiuta Z, Dziedzic K, Tofil A, Shahar FS. Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:769. [PMID: 38591985 PMCID: PMC10856375 DOI: 10.3390/ma17030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.
Collapse
Affiliation(s)
- Rajan John Nekin Joshua
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Sakthivel Aravind Raj
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor, Malaysia
| | - Andrzej Łukaszewicz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Jerzy Józwik
- Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Zbigniew Oksiuta
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Krzysztof Dziedzic
- Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Arkadiusz Tofil
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Farah Syazwani Shahar
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
28
|
Xu H, Lu J, Xi Y, Wang X, Liu J. Liquid metal biomaterials: translational medicines, challenges and perspectives. Natl Sci Rev 2024; 11:nwad302. [PMID: 38213519 PMCID: PMC10776368 DOI: 10.1093/nsr/nwad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Until now, significant healthcare challenges and growing urgent clinical requirements remain incompletely addressed by presently available biomedical materials. This is due to their inadequate mechanical compatibility, suboptimal physical and chemical properties, susceptibility to immune rejection, and concerns about long-term biological safety. As an alternative, liquid metal (LM) opens up a promising class of biomaterials with unique advantages like biocompatibility, flexibility, excellent electrical conductivity, and ease of functionalization. However, despite the unique advantages and successful explorations of LM in biomedical fields, widespread clinical translations and applications of LM-based medical products remain limited. This article summarizes the current status and future prospects of LM biomaterials, interprets their applications in healthcare, medical imaging, bone repair, nerve interface, and tumor therapy, etc. Opportunities to translate LM materials into medicine and obstacles encountered in practices are discussed. Following that, we outline a blueprint for LM clinics, emphasizing their potential in making new-generation artificial organs. Last, the core challenges of LM biomaterials in clinical translation, including bio-safety, material stability, and ethical concerns are also discussed. Overall, the current progress, translational medicine bottlenecks, and perspectives of LM biomaterials signify their immense potential to drive future medical breakthroughs and thus open up novel avenues for upcoming clinical practices.
Collapse
Affiliation(s)
- Hanchi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Jincheng Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Yikuang Xi
- Shanghai World Foreign Language Academy, Shanghai200233, China
| | - Xuelin Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
29
|
Youness RA, Taha MA. Tuning biodegradability, bone-bonding capacity, and wear resistance of zinc-30% magnesium intermetallic alloy for use in load-bearing bone applications. Sci Rep 2024; 14:2425. [PMID: 38287092 PMCID: PMC10825179 DOI: 10.1038/s41598-024-52648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
This work aimed to improve the rapid biodegradation, poor wear resistance properties, and lack of bioactivity of metallic biomaterials to be used in orthopedic applications. In this context, zinc-magnesium (Zn-Mg) alloy with successive contents of calcium silicate (CaSiO3) and silicon nitride (Si3N4) was prepared using powder metallurgy technique. After sintering, their phase composition and microstructure were investigated using the X-ray diffraction technique and scanning electron microscopy (SEM), respectively. Furthermore, their degradation behavior and ability to form hydroxyapatite (HA) layer on the sample surface after immersion in simulated body fluid (SBF) were monitored using weight loss measurements, inductively coupled plasma-atomic emission spectroscopy, and SEM. Moreover, their tribo-mechanical properties were measured. The results obtained showed that the successive contents of CaSiO3 were responsible for improving the bioactivity behavior as indicated by a good formation of the HA layer on the samples' surface. Additionally, ceramic materials were responsible for a continuous decrease in the released ions in the SBF solution as indicated by the ICP results. The tribology properties were significantly improved even after exposure to different loads. Based on the above results, the prepared nanocomposites are promising for use in orthopedic applications.
Collapse
Affiliation(s)
- Rasha A Youness
- Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Mohammed A Taha
- Solid State Physics Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
30
|
Kim J, Kim S, Song I. Octacalcium phosphate, a promising bone substitute material: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:4-12. [PMID: 37157781 PMCID: PMC10834270 DOI: 10.12701/jyms.2023.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.
Collapse
Affiliation(s)
| | | | - Inhwan Song
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
31
|
Thi Ngo AT, Do Chi L, Hong Pham H, Pham ST, Duong LV. Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer. J Appl Biomater Funct Mater 2024; 22:22808000241271693. [PMID: 39417558 DOI: 10.1177/22808000241271693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants. METHODS An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg2+ ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg2+ ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry. RESULTS An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer. CONCLUSION HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.
Collapse
Affiliation(s)
- Anh Tuyet Thi Ngo
- Institute of Materials Science, Vietnam Academy of Science and Technology, Cau Giay District, Hanoi, Viet Nam
| | - Linh Do Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, Cau Giay District, Hanoi, Viet Nam
| | - Hanh Hong Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, Cau Giay District, Hanoi, Viet Nam
| | - San Thy Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, Cau Giay District, Hanoi, Viet Nam
| | - Luong Van Duong
- Institute of Materials Science, Vietnam Academy of Science and Technology, Cau Giay District, Hanoi, Viet Nam
| |
Collapse
|
32
|
Liang H, Zhang H, Chen B, Yang L, Xu R, Duan S, Cai Z. 3D printing technology combined with personalized plates for complex distal intra-articular fractures of the trimalleolar ankle. Sci Rep 2023; 13:22667. [PMID: 38114629 PMCID: PMC10730506 DOI: 10.1038/s41598-023-49515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
This study investigated the effectiveness of 3D printing technology in combination with personalized custom-made steel plates in the treatment of complex distal intra-articular trimalleolar fractures, with the aim of providing a new approach to improve ankle joint function in patients. The 48 patients with complex distal intra-articular trimalleolar fractures included in the study were randomly divided into two groups: the personalized custom-made steel plate group (n = 24) and the conventional steel plate group (n = 24). A comparison was made between the two groups in terms of preoperative preparation time, hospitalization duration, surgical time, fracture reduction and internal fixation time, intraoperative fluoroscopy instances, surgical incision length, fracture healing time, follow-up duration, degree of fracture reduction, ankle joint functional recovery, and the occurrence of complications. The personalized steel plate group exhibited longer preoperative preparation time and hospitalization duration compared to the conventional steel plate group (p < 0.001). However, the personalized steel plate group demonstrated significantly shorter surgical duration, time for fracture reduction and internal fixation, reduced intraoperative fluoroscopy frequency, and a shorter overall surgical incision length (p < 0.001). Both groups displayed similar fracture healing times and follow-up durations (p > 0.05). The personalized steel plate group showed a higher rate of successful fracture reduction (87.5% vs. 79.2%, p > 0.05) and a lower incidence of complications (8.3% vs. 20.8%, p = 0.22), although these differences did not reach statistical significance. Furthermore, the personalized steel plate group exhibited superior ankle joint function scores during follow-up compared to the conventional steel plate group (p < 0.05). By utilizing 3D printing technology in conjunction with personalized custom-made steel plates, personalized treatment plans are provided for patients with complex comminuted tri-malleolar ankle fractures, enabling safer, more efficient, and satisfactory orthopedic surgeries.
Collapse
Affiliation(s)
- Hairui Liang
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - He Zhang
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Beibei Chen
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Lei Yang
- School of Pharmacy, Inner Mongolia Medical University, 5 Xinhua Street, Hohhot, 010107, Inner Mongolia Autonomous Region, China
| | - Rongda Xu
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Siyu Duan
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China
| | - Zhencun Cai
- Department of Orthopedics Surgery, Central Hospital Afliated to Shenyang Medical College, 5 Nanqi West Road, Shenyang, 110075, Liaoning, China.
| |
Collapse
|
33
|
San S, Adhikari P, Sakidja R, Brechtl J, Liaw PK, Ching WY. Porosity modeling in a TiNbTaZrMo high-entropy alloy for biomedical applications. RSC Adv 2023; 13:36468-36476. [PMID: 38099250 PMCID: PMC10719899 DOI: 10.1039/d3ra07313k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
High-entropy alloys (HEAs) have attracted great attention for many biomedical applications. However, the nature of interatomic interactions in this class of complex multicomponent alloys is not fully understood. We report, for the first time, the results of theoretical modeling for porosity in a large biocompatible HEA TiNbTaZrMo using an atomistic supercell of 1024 atoms that provides new insights and understanding. Our results demonstrated the deficiency of using the valence electron count, quantification of large lattice distortion, validation of mechanical properties with available experimental data to reduce Young's modulus. We utilized the novel concepts of the total bond order density (TBOD) and partial bond order density (PBOD) via ab initio quantum mechanical calculations as an effective theoretical means to chart a road map for the rational design of complex multicomponent HEAs for biomedical applications.
Collapse
Affiliation(s)
- Saro San
- Department of Physics and Astronomy, University of Missouri Kansas City Kansas City MO 64110 USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri Kansas City Kansas City MO 64110 USA
| | - Ridwan Sakidja
- Department of Physics, Astronomy and Materials Science, Missouri State University Springfield MO 65897 USA
| | - Jamieson Brechtl
- Buildings and Transportation Science Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Peter K Liaw
- Department of Materials Science and Engineering, The University of Tennessee Knoxville TN 37996-2100 USA
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri Kansas City Kansas City MO 64110 USA
| |
Collapse
|
34
|
Marin E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater Today Bio 2023; 23:100777. [PMID: 37727867 PMCID: PMC10506110 DOI: 10.1016/j.mtbio.2023.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Metallic cellular solids, made of biocompatible alloys like titanium, stainless steel, or cobalt-chromium, have gained attention for their mechanical strength, reliability, and biocompatibility. These three-dimensional structures provide support and aid tissue regeneration in orthopedic implants, cardiovascular stents, and other tissue engineering cellular solids. The design and material chemistry of metallic cellular solids play crucial roles in their performance: factors such as porosity, pore size, and surface roughness influence nutrient transport, cell attachment, and mechanical stability, while their microstructure imparts strength, durability and flexibility. Various techniques, including additive manufacturing and conventional fabrication methods, are utilized for producing metallic biomedical cellular solids, each offering distinct advantages and drawbacks that must be considered for optimal design and manufacturing. The combination of mechanical properties and biocompatibility makes metallic cellular solids superior to their ceramic and polymeric counterparts in most load bearing applications, in particular under cyclic fatigue conditions, and more in general in application that require long term reliability. Although challenges remain, such as reducing the production times and the associated costs or increasing the array of available materials, metallic cellular solids showed excellent long-term reliability, with high survival rates even in long term follow-ups.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
35
|
Ding Z, Klein T, Barner-Kowollik C, Mirkhalaf M. Multifunctional nacre-like materials. MATERIALS HORIZONS 2023; 10:5371-5390. [PMID: 37882614 DOI: 10.1039/d3mh01015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Nacre, the iridescent inner layer of seashells, displays an exceptional combination of strength and toughness due to its 'brick-wall' architecture. Significant research has been devoted to replicating nacre's architecture and its associated deformation and failure mechanisms. Using the resulting materials in applications necessitates adding functionalities such as self-healing, force sensing, bioactivity, heat conductivity and resistance, transparency, and electromagnetic interference shielding. Herein, progress in the fabrication, mechanics, and multi-functionality of nacre-like materials, particularly over the past three years is systematically and critically reviewed. The fabrication techniques reviewed include 3D printing, freeze-casting, mixing/coating-assembling, and laser engraving. The mechanical properties of the resulting materials are discussed in comparison with their constituents and previously developed nacre mimics. Subsequently, the progress in incorporating multifunctionalities and the resulting physical, chemical, and biological properties are evaluated. We finally provide suggestions based on 3D/4D printing, advanced modelling techniques, and machine elements to make reprogrammable nacre-like components with complex shapes and small building blocks, tackling some of the main challenges in the science and translation of these materials.
Collapse
Affiliation(s)
- Zizhen Ding
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 4059 Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 4000 Brisbane, QLD, Australia
| |
Collapse
|
36
|
Sathishkumar S, Paulraj J, Chakraborti P, Muthuraj M. Comprehensive Review on Biomaterials and Their Inherent Behaviors for Hip Repair Applications. ACS APPLIED BIO MATERIALS 2023; 6:4439-4464. [PMID: 37871169 DOI: 10.1021/acsabm.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Developing biomaterials for hip prostheses is challenging and requires dedicated attention from researchers. Hip replacement is an inevitable and remarkable orthopedic therapy for enhancing the quality of patient life for those who have arthritis as well as trauma. Generally, five types of hip replacement procedures are successfully performed in the current medical market: total hip replacements, hip resurfacing, hemiarthroplasty, bipolar, and dual mobility systems. The average life span of artificial hip joints is about 15 years, and several studies have been conducted over the last 60 years to improve the performance and thereby increase the lifespan of artificial hip joints. Present-day prosthetic hip joints are linked to the wide availability of biomaterials. Metals, ceramics, and polymers are some of the most promising types of biomaterials; nevertheless, each biomaterial has advantages and disadvantages. Metals and ceramics fail in most applications owing to stress shielding and the emission of wear debris; ongoing research is being carried out to find a remedy to these unfavorable responses. Recent research found that polymers and composites based on polymers are significant alternative materials for artificial joints. With growing research and several biomaterials, recent reviews lag in effectively addressing hip implant materials' individual mechanical, tribological, and physiological behaviors. This Review comprehensively investigates the historical evolution of artificial hip replacement procedures and related biomaterials' mechanical, tribological, and biological characteristics. In addition, the most recent advances are also discussed to stimulate and guide future researchers as they seek more effective methods and synthesis of innovative biomaterials for hip arthroplasty application.
Collapse
|
37
|
Priyadarshini B, Stango AX, Balasubramanian M, Vijayalakshmi U. In situ fabrication of cerium-incorporated hydroxyapatite/magnetite nanocomposite coatings with bone regeneration and osteosarcoma potential. NANOSCALE ADVANCES 2023; 5:5054-5076. [PMID: 37705779 PMCID: PMC10496897 DOI: 10.1039/d3na00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
With the ultimate goal of providing a novel platform able to inhibit bacterial adhesion, biofilm formation, and anticancer properties, cerium-doped hydroxyapatite films enhanced with magnetite were developed via spin-coating. The unique aspect of the current study is the potential for creating cerium-doped hydroxyapatite/Fe3O4 coatings on a titanium support to enhance the functionality of bone implants. To assure an increase in the bioactivity of the titanium surface, alkali pretreatment was done before deposition of the apatite layer. Scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) analysis, and Fourier transform-infrared (FTIR) spectroscopy were used to evaluate coatings. Coatings demonstrated good efficacy against Staphylococcus aureus and Escherichia coli, with the latter showing the highest efficacy. In vitro bioactivity in simulated body fluid solution showed this material to be proficient for bone-like apatite formation on the implant surface. Electrochemical impedance spectroscopy was undertaken on intact coatings to examine the barrier properties of composites. We found that spin-coating at 4000 rpm could greatly increase the total resistance. After seeding with osteoblastic populations, Ce-HAP/Fe3O4 materials the adhesion and proliferation of cells. The heating capacity of the Ce-HAP/Fe3O4 film was optimal at 45 °C at 15 s at a frequency of 318 kHz. Osseointegration depends on many more parameters than hydroxyapatite production, so these coatings have significant potential for use in bone healing and bone-cancer therapy.
Collapse
Affiliation(s)
- B Priyadarshini
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - Arul Xavier Stango
- Department of Chemistry, Kalasalingam Academy of Research and Education Krishnankoil Srivilliputhur Tamil Nadu 626126 India
| | - M Balasubramanian
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
| |
Collapse
|
38
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
39
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
40
|
Chen PS, Tsai PH, Li TH, Jang JSC, Huang JCC, Lin CH, Pan CT, Lin HK. Development and Fabrication of Biocompatible Ti-Based Bulk Metallic Glass Matrix Composites for Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5935. [PMID: 37687626 PMCID: PMC10488760 DOI: 10.3390/ma16175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆Tx = 81 K, γ = 0.427, γm = 0.763), to fabricate a partial glass-formable spherical powder (the volume fraction of the amorphous phase in the atomized Ti-based powders being 73% [size < 25 μm], 61% [25-37 μm], and 50% [37-44 μm]), and establish an SLM parameter (a scan rate of 600 mm/s, a power of 120 W, and an overlap of 10%). The Ti42Zr35Si5Co12.5Sn2.5Ta3 bulk metallic glass composite was successfully fabricated through SLM. This study demonstrates that the TiZrSiCoSnTa system constitutes a promising basis for the additive manufacturing process in terms of preparing biocompatible metallic glass composites into complicated graded foam shapes.
Collapse
Affiliation(s)
- Po-Sung Chen
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Pei-Hua Tsai
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tsung-Hsiung Li
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jason Shian-Ching Jang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jacob Chih-Ching Huang
- Department of Materials and Optoelectronic Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsuan-Kai Lin
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
41
|
Abdullah M, Mubashar A, Uddin E. Structural optimization of orthopedic hip implant using parametric and non-parametric optimization techniques. Biomed Phys Eng Express 2023; 9:055026. [PMID: 37536305 DOI: 10.1088/2057-1976/aced0d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
This research investigates the reduction in weight of hip implant by the application of parametric and non-parametric optimization techniques. Orthopaedic hip implants can be made from metals, ceramics, composites, or metallic alloys and are generally solid structures. The stiffness of orthopaedic hip implant is a pertaining problem when implanted in the human body as Hip implant are stiffer than bone material and causes stress shielding. This results in bone weakening which causes osteoporosis. Reduction in mass of femur stem results in stiffness reduction of femur stem. Non-Parametric topology optimization results in 34.9% mass reduction and parametric optimization based on Central Composite Design technique in Design of Experiments (DoE) uses hole diameters as parameters and performs structural optimization that results in 22% mass reduction.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Post Graduate Student at the School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Aamir Mubashar
- School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Emad Uddin
- School of Mechanical & Manufacturing Engineering, (SMME), National University of Science and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
42
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
43
|
Kumar R, Kumar M, Chohan JS, Singh NK, Mahajan DK. Corrosion and Thermal Analysis of 316L Stainless Steel Coated PLA Parts Fabricated by FDM Process for Biomedical Applications. PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES 2023; 59:736-749. [DOI: 10.1134/s2070205123700661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 01/03/2025]
|
44
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
45
|
Sareen N, Srivastava A, Alagarsamy KN, Lionetti V, Dhingra S. Stem cells derived exosomes and biomaterials to modulate autophagy and mend broken hearts. Biochim Biophys Acta Mol Basis Dis 2023:166806. [PMID: 37437748 DOI: 10.1016/j.bbadis.2023.166806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada; Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada.
| |
Collapse
|
46
|
Vishnu J, Kesavan P, Shankar B, Dembińska K, Swiontek Brzezinska M, Kaczmarek-Szczepańska B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J Funct Biomater 2023; 14:344. [PMID: 37504839 PMCID: PMC10381466 DOI: 10.3390/jfb14070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.
Collapse
Affiliation(s)
- Jithin Vishnu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Praveenkumar Kesavan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
47
|
Xue R, Deng X, Xu X, Tian Y, Hasan A, Mata A, Zhang L, Liu L. Elastin-like recombinamer-mediated hierarchical mineralization coatings on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces improve biocompatibility. BIOMATERIALS ADVANCES 2023; 151:213471. [PMID: 37201355 DOI: 10.1016/j.bioadv.2023.213471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility.
Collapse
Affiliation(s)
- Renhao Xue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Xinru Deng
- School of Engineering and Materials Science, Queen Mary University of London, London E14NS, UK
| | - Xiaoning Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yueyan Tian
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ligang Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| | - Libin Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
48
|
Cheng J, Xue J, Yang Y, Yu D, Liu Z, Li Z. Hierarchical hydrogel scaffolds with a clustered and oriented structure. J Mater Chem B 2023; 11:4703-4714. [PMID: 37170855 DOI: 10.1039/d3tb00497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hydrogel scaffolds play a critical role in tissue engineering due to their hydrophilic network structure and good biocompatibility. Constructing anisotropic scaffolds geometrically similar to injured tissues is conducive to promoting the generation of tissue and organ equivalents, or to guiding and enhancing the regeneration of injured tissues. In this study, we developed polyvinyl alcohol (PVA)/alginate hierarchical hydrogel scaffolds with a clustered and oriented structure using a method that combines directional freezing and drying under stretching. Our hydrogel scaffolds with an adjustable modulus (50 kPa-20 MPa) can match different types of injured tissues. The clustered and oriented structure successfully guided the alignment and orientation of fibroblasts and chondrocytes. This work provides a new idea for constructing hydrogels with hierarchical and anisotropic microstructures, which have promising applications in tissue regeneration.
Collapse
Affiliation(s)
- Jian Cheng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Dengjie Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
49
|
Han X, Ma J, Tian A, Wang Y, Li Y, Dong B, Tong X, Ma X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces 2023; 227:113339. [PMID: 37182380 DOI: 10.1016/j.colsurfb.2023.113339] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Biomedical alloys have an important share in orthopedic applications. Among them, titanium and its titanium alloys are widely used as implant materials because of their excellent mechanical properties and non-cytotoxicity. However, its disadvantages such as its biological inertness and poor antibacterial properties inhibit its further development. Therefore, the surface properties of titanium are crucial in the implantation process and determine the success of the implant. The main purpose of this review is to provide a comprehensive and detailed description of the modification techniques used for the surface modification of titanium implants. In this paper, the corresponding technical methods are introduced systematically from four aspects: mechanical method, physical surface modification, chemical surface modification and electrochemical technique to understand the experimental mechanism of each modification technique, and the above methods can indeed improve the various properties of titanium and its alloys. With the increasing demand for implants in the future, the requirements for surface properties will also increase. Therefore, the development of new coating materials with higher performance by combining various advantages of existing modification technologies is the main trend of future research on surface modification of titanium alloys.
Collapse
Affiliation(s)
- Xiao Han
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Aixian Tian
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Benchao Dong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| |
Collapse
|
50
|
Khandelwal G, Roychoudhury A, Bhutia O, Shariff A. Longitudinal surveillance of serum titanium ion levels in patients with indigenous 3D printed total temporomandibular joint replacement. Sci Rep 2023; 13:7275. [PMID: 37142652 PMCID: PMC10160034 DOI: 10.1038/s41598-023-33229-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
The purpose of this longitudinal study was to surveil the serum titanium ion levels at various time intervals in patients with indigenous 3D-printed total temporomandibular joint replacement (TMJ TJR). The study was conducted on 11 patients (male: 8; female: 3) who had undergone unilateral or bilateral TMJ TJR. Blood samples were drawn preoperatively (T0), 3 months (T1), 6 months (T2), and 1 year (T3) postoperatively. Data were analyzed and a p value of < 0.05 was considered statistically significant. The mean serum titanium ion levels at T0, T1, T2, and T3 was 9.34 ± 8.70 µg/L (mcg/L), 35.97 ± 20.27 mcg/L, 31.68 ± 17.03 mcg/L, and 47.91 ± 15.47 mcg/L respectively. The mean serum titanium ion levels increased significantly at T1 (p = 0.009), T2 (p = 0.032), and T3 (p = 0.00) interval. There was no significant difference between unilateral and bilateral groups. Serum titanium ion continued to show increased levels till the last follow-up of 1 year. These initial serum titanium ion levels increase is due to the initial wear phase of the prosthesis which manifests over 1 year. Further studies with large sample sizes and long-term follow-ups are required to see the deleterious effect if any on the TMJ TJR.
Collapse
Affiliation(s)
- Garima Khandelwal
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Ongkila Bhutia
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - A Shariff
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|