1
|
Via C, Grauso L, McManus KM, Kirk RD, Kim AM, Webb EA, Held NA, Saito MA, Scarpato S, Zimba PV, Moeller PDR, Mangoni A, Bertin MJ. Spatial and Temporal Resolution of Cyanobacterial Bloom Chemistry Reveals an Open-Ocean Trichodesmium thiebautii as a Talented Producer of Specialized Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9525-9535. [PMID: 38758591 PMCID: PMC11155244 DOI: 10.1021/acs.est.3c10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.
Collapse
Affiliation(s)
- Christopher
W. Via
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Laura Grauso
- Dipartimento
di Agraria, Università degli Studi
di Napoli Federico II, via Universita 100, Portici Napoli 80055, Italy
| | - Kelly M. McManus
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Riley D. Kirk
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Andrew M. Kim
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Eric A. Webb
- Marine
and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Noelle A. Held
- Marine
and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A. Saito
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Silvia Scarpato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Paul V. Zimba
- Rice Rivers
Center, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Peter D. R. Moeller
- Harmful
Algal Bloom Monitoring and Reference Branch, Stressor Detection and
Impacts Division, National Ocean Service/NOAA,
Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Alfonso Mangoni
- Dipartimento
di Farmacia, Università degli Studi
di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Matthew J. Bertin
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Ortigosa-Palomo A, Quiñonero F, Ortiz R, Sarabia F, Prados J, Melguizo C. Natural Products Derived from Marine Sponges with Antitumor Potential against Lung Cancer: A Systematic Review. Mar Drugs 2024; 22:101. [PMID: 38535442 PMCID: PMC10971797 DOI: 10.3390/md22030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 07/23/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC), the most commonly diagnosed cancer and the leading cause of cancer-related death worldwide, has been extensively investigated in the last decade in terms of developing new therapeutic options that increase patient survival. In this context, marine animals are a source of new, interesting bioactive molecules that have been applied to the treatment of different types of cancer. Many efforts have been made to search for new therapeutic strategies to improve the prognosis of lung cancer patients, including new bioactive compounds and cytotoxic drugs from marine sponges. Their antitumoral effect can be explained by several cellular and molecular mechanisms, such as modulation of the cell cycle or induction of apoptosis. Thus, this systematic review aims to summarize the bioactive compounds derived from marine sponges and the mechanisms by which they show antitumor effects against lung cancer, exploring their limitations and the challenges associated with their discovery. The search process was performed in three databases (PubMed, SCOPUS, and Web of Science), yielding a total of 105 articles identified in the last 10 years, and after a screening process, 33 articles were included in this systematic review. The results showed that these natural sponge-derived compounds are a valuable source of inspiration for the development of new drugs. However, more research in this field is needed for the translation of these novel compounds to the clinic.
Collapse
Affiliation(s)
- Alba Ortigosa-Palomo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain;
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (A.O.-P.); (F.Q.); (R.O.); (C.M.)
- Instituto Biosanitario de Granada, (ibs.GRANADA), SAS-Universidad de Granada, 18012 Granada, Spain
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Rodríguez-Berríos RR, Ríos-Delgado AM, Perdomo-Lizardo AP, Cardona-Rivera AE, Vidal-Rosado ÁG, Narváez-Lozano GA, Nieves-Quiñones IA, Rodríguez-Vargas JA, Álamo-Diverse KY, Lebrón-Acosta N, Medina-Berríos N, Rivera-Lugo PS, Avellanet-Crespo YA, Ortiz-Colón YW. Extraction, Isolation, Characterization, and Bioactivity of Polypropionates and Related Polyketide Metabolites from the Caribbean Region. Antibiotics (Basel) 2023; 12:1087. [PMID: 37508183 PMCID: PMC10376297 DOI: 10.3390/antibiotics12071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The Caribbean region is a hotspot of biodiversity (i.e., algae, sponges, corals, mollusks, microorganisms, cyanobacteria, and dinoflagellates) that produces secondary metabolites such as polyketides and polypropionates. Polyketides are a diverse class of natural products synthesized by organisms through a biosynthetic pathway catalyzed by polyketide synthase (PKS). This group of compounds is subdivided into fatty acids, aromatics, and polypropionates such as macrolides, and linear and cyclic polyethers. Researchers have studied the Caribbean region to find natural products and focused on isolation, purification, structural characterization, synthesis, and conducting biological assays against parasites, cancer, fungi, and bacteria. These studies have been summarized in this review, including research from 1981 to 2020. This review includes about 90 compounds isolated in the Caribbean that meet the structural properties of polyketides. Out of 90 compounds presented, 73 have the absolute stereochemical configuration, and 82 have shown biological activity. We expect to motivate the researchers to continue exploring the Caribbean region's marine environments to discover and investigate new polyketide and polypropionate natural products.
Collapse
Affiliation(s)
- Raúl R. Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan PR 00931-3346, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pellicioni V, Esposito G, Greco G, Cruz-Chamorro I, Ferrini F, Sestili P, Teta R, Fimognari C, Costantino V. Novel Insights in the Potential of Halogenated Polyketide–Peptide Molecules as Lead Compounds in Cancer Drug Discovery. Int J Mol Sci 2023; 24:ijms24076208. [PMID: 37047184 PMCID: PMC10094022 DOI: 10.3390/ijms24076208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this interdisciplinary study, we selected two compounds, namely, smenamide A, a peptide–polyketide, and smenolactone D, a polyketide, as models because they are representative of two different classes of molecules isolated from the marine sponge Smenospongia aurea. The organic extract of Smenospongia aurea was analyzed using a combination of high-resolution LC-MS/MS and molecular networking, a recently developed method for automated LC-MS data analysis. The analyses were targeted to highlight clusters made by chlorinated compounds present in the extracts. Then, the two model compounds were analyzed for their bioactivity. Data reported here show that smenamide A did not exhibit a cytotoxic effect, while smenolactone D was cytotoxic on different tumor cell lines and was able to induce different types of cell death, including ferroptosis and apoptosis.
Collapse
|
5
|
Limited Metabolomic Overlap between Commensal Bacteria and Marine Sponge Holobionts Revealed by Large Scale Culturing and Mass Spectrometry-Based Metabolomics: An Undergraduate Laboratory Pedagogical Effort at Georgia Tech. Mar Drugs 2023; 21:md21010053. [PMID: 36662226 PMCID: PMC9862627 DOI: 10.3390/md21010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sponges are the richest source of bioactive organic small molecules, referred to as natural products, in the marine environment. It is well established that laboratory culturing-resistant symbiotic bacteria residing within the eukaryotic sponge host matrix often synthesize the natural products that are detected in the sponge tissue extracts. However, the contributions of the culturing-amenable commensal bacteria that are also associated with the sponge host to the overall metabolome of the sponge holobiont are not well defined. In this study, we cultured a large library of bacteria from three marine sponges commonly found in the Florida Keys. Metabolomes of isolated bacterial strains and that of the sponge holobiont were compared using mass spectrometry to reveal minimal metabolomic overlap between commensal bacteria and the sponge hosts. We also find that the phylogenetic overlap between cultured commensal bacteria and that of the sponge microbiome is minimal. Despite these observations, the commensal bacteria were found to be a rich resource for novel natural product discovery. Mass spectrometry-based metabolomics provided structural insights into these cryptic natural products. Pedagogic innovation in the form of laboratory curricula development is described which provided undergraduate students with hands-on instruction in microbiology and natural product discovery using metabolomic data mining strategies.
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Genus Smenospongia: Untapped Treasure of Biometabolites—Biosynthesis, Synthesis, and Bioactivities. Molecules 2022; 27:molecules27185969. [PMID: 36144705 PMCID: PMC9501515 DOI: 10.3390/molecules27185969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.
Collapse
|
8
|
Capalbo A, Lauritano C. Multiple Myeloma: Possible Cure from the Sea. Cancers (Basel) 2022; 14:cancers14122965. [PMID: 35740630 PMCID: PMC9220879 DOI: 10.3390/cancers14122965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is a complex white blood cell (plasma cell, PC) cancer. The aetiology of MM is still unknown, and it is still an incurable disease despite efforts by the scientific community. The high level of PC genetic heterogeneity renders MM a complex puzzle to be solved. Combinations of drugs are generally used to treat MM patients, with a general increase in overall survival. Relapsed and refractory MM patients are the generation of patients who resist or do not respond to first-line therapy and need additional treatments. Exploring new sources, such as marine organisms, for drug discovery is fundamental to fighting MM. Various studies have shown that marine natural products (MNPs) might have antiproliferative and cancer-specific cytotoxic properties, giving MNPs a pivotal role in anticancer drug discovery. This review recaps updated frontline treatment options, including new ones developed from MNP research. Abstract Multiple myeloma (MM) is a blood cancer that occurs in the plasma cells (PCs), a type of white blood cell. Despite the progress of several current treatments that prolong the overall patient’s survival, most MM cases are incurable. For this reason, many efforts have been undertaken by the scientific community in the search for new treatments. BLENREPTM and Aplidin® are two marine-derived drugs currently in use for MM. In addition, other natural products have been identified from marine organisms, tested for their possible anticancer properties, and are in preclinical or clinical trials for MM, including cytarabine, a compound in use for leukaemia treatment. Between the most successful marine compounds in fighting MM, there are molecules with specific targets, such as the elongation factor 1-alpha 2 and proteasome inhibitors, and compounds conjugated with antibodies that recognise specific cell types and direct the drug to the correct cell target. Active compounds belong to different chemical classes, from cyclic peptides to alkaloids, highlighting the importance of screening the plethora of compounds produced by marine organisms. In this review, we summarise the current state of art of MM therapies focusing on the marine natural product emerging roles.
Collapse
|
9
|
Miri MR, Zare A, Saberzadeh J, Baghban N, Nabipour I, Tamadon A. Anti-lung Cancer Marine Compounds: A Review. Ther Innov Regul Sci 2022; 56:191-205. [PMID: 35025082 DOI: 10.1007/s43441-022-00375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most common and lethal cancers in human beings. Lung cancer has been divided into two major types: small cell lung cancer (SCLC) and non-small cell lung carcinoma (NSCLC). Current drugs suffer from various side effects, and the insufficient efficacy of present treatments creates a desire for better more efficient new drugs. This review compares the diversity of marine-derived bioactive compounds from different marine species. Some of the natural products from marine resources are in different stages of clinical trials. By the way, most of them have been studied in vitro and in vivo. Additionally, in this review, the mechanisms of action of marine-derived anti-lung cancer components on lung cancer cell lines have been reviewed. In addition, considering growing rate and the high costs of cancer research, attention must be paid to some aspects of targeting and developing anti-lung cancer drug. In better words, like the other therapeutic strategies that have their particular challenges and weak points, several challenges about marine-derived anti-lung cancer components which exist for scientists for doing research are explained. Moreover, as the attentions in the field of cancer therapy are focused on designing and developing new anticancer strategies for the treatment of cancer in the future, the application of marine-derived anti-lung cancer components in the field of future cancer therapy and their role in future anticancer strategies are briefly discussed.
Collapse
Affiliation(s)
- Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamileh Saberzadeh
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | |
Collapse
|
10
|
Caso A, da Silva FB, Esposito G, Teta R, Sala GD, Cavalcanti LPAN, Valverde AL, Martins RCC, Costantino V. Exploring Chemical Diversity of Phorbas Sponges as a Source of Novel Lead Compounds in Drug Discovery. Mar Drugs 2021; 19:667. [PMID: 34940666 PMCID: PMC8708981 DOI: 10.3390/md19120667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Porifera, commonly referred to as marine sponges, are acknowledged as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention over the years. They are widespread in all continents, and several structurally unique compounds have been identified from this species. Terpenes, mainly sesterterpenoids, are the major secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have presented interesting biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial, and anti-inflammatory activities have been isolated and structurally characterized. This review provides an overview of almost 130 secondary metabolites from Phorbas sponges and their biological activities, and it covers the literature since the first study published in 1993 until November 2021, including approximately 60 records. The synthetic routes to the most interesting compounds are briefly outlined.
Collapse
Affiliation(s)
- Alessia Caso
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (A.C.); (G.E.); (R.T.)
| | - Fernanda Barbosa da Silva
- Instituto de Química de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-599, Brazil; (F.B.d.S.); (L.P.A.N.C.); (R.C.C.M.)
| | - Germana Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (A.C.); (G.E.); (R.T.)
| | - Roberta Teta
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (A.C.); (G.E.); (R.T.)
| | - Gerardo Della Sala
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80125 Naples, Italy;
| | - Laura P. A. Nunes Cavalcanti
- Instituto de Química de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-599, Brazil; (F.B.d.S.); (L.P.A.N.C.); (R.C.C.M.)
| | - Alessandra Leda Valverde
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro 24020-141, Brazil;
| | - Roberto Carlos C. Martins
- Instituto de Química de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-599, Brazil; (F.B.d.S.); (L.P.A.N.C.); (R.C.C.M.)
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (A.C.); (G.E.); (R.T.)
| |
Collapse
|
11
|
New Tricks with an Old Sponge: Feature-Based Molecular Networking Led to Fast Identification of New Stylissamide L from Stylissa caribica. Mar Drugs 2020; 18:md18090443. [PMID: 32867085 PMCID: PMC7551058 DOI: 10.3390/md18090443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Feature-based molecular networking was used to re-examine the secondary metabolites in extracts of a very well studied marine sponge, Stylissa caribica, known to contain a large array of cyclic peptides and brominated alkaloids. The analysis revealed the presence of 13 cyclic peptides in the sponge that had never been detected in previous work and appeared to be new compounds. The most abundant one was isolated and shown to be a new proline-rich cyclic heptapetide that was called stylissamide L (1). Structure of compound 1, including the cis/trans geometry of the three proline residues, was determined by extensive NMR studies; the l configuration of the seven amino acid residues was determined using Marfey’s method. Stylissamide L was tested for activity as a cell growth inhibitor and cell migration inhibitor on two cancer cell lines but, unlike other members of the stylissamide family, it showed no significant activity. This approach showed that even a thoroughly studied species such as S. caribica may contain new chemistry that can be revealed if studied with the right tools.
Collapse
|
12
|
Murakami A, Hayashi JI, Igawa K, Tsutsumi M, Tomooka K, Nagai H, Nehira T. Natural dolapyrrolidone: Isolation and absolute stereochemistry of a substructure of bioactive peptides. Chirality 2020; 32:1152-1159. [PMID: 32602569 DOI: 10.1002/chir.23264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022]
Abstract
During the course of our chemical analysis of the hydrophilic fractions from marine cyanobacterium Moorena producens, we have isolated natural dolapyrrolidone (Dpy, 1), a natural pyrrolidone derived from phenylalanine, for the first time as a single compound. Compound 1, with an (S)-l absolute stereochemistry, was previously identified as a substructure that is common among several bioactive natural peptides. Surprisingly, the absolute stereochemistry of the isolated natural 1, determined through total synthesis, was (R)-d. This result was unambiguously determined by HPLC analysis using a chiral stationary column by comparing the retention times of the natural 1 and authentic samples of synthetic enantiomers. To verify the unexpected result, the absolute stereochemistry of the natural 1 was confirmed by X-ray crystallographic analysis of Pt-complex derivative using the synthetic enantiomer.
Collapse
Affiliation(s)
- Ayana Murakami
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Jun-Ichi Hayashi
- Department of Molecular and Material Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Molecular and Material Sciences, Kyushu University, Fukuoka, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Miki Tsutsumi
- Department of Ocean Sciences, Tokyo University of Marine Sciences and Technology, Tokyo, Japan
| | - Katsuhiko Tomooka
- Department of Molecular and Material Sciences, Kyushu University, Fukuoka, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Sciences and Technology, Tokyo, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
13
|
Abdelaleem ER, Samy MN, Desoukey SY, Liu M, Quinn RJ, Abdelmohsen UR. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Adv 2020; 10:34959-34976. [PMID: 35514397 PMCID: PMC9056847 DOI: 10.1039/d0ra04408c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/11/2020] [Indexed: 11/21/2022] Open
Abstract
Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities. Sponges which belong to the order Dictyoceratida are distinctly classified into 5 families: Dysideidae, Irciniidae, Spongiidae, Thorectidae, and Verticilliitidae. In this review, compounds isolated from Dictyoceratida sponges were discussed with their biological potential within the period 2013 to December 2019. Moreover, analysis of the physicochemical properties of these marine natural products was investigated and the results showed that 78% of the compounds have oral bioavailability potential. This review highlights sponges of the order Dictyoceratida as exciting source for discovery of new drug leads. Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.![]()
Collapse
Affiliation(s)
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | | | - Miaomiao Liu
- Griffith Institute for Drug Discovery
- Griffith University Brisbane
- 4111 Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery
- Griffith University Brisbane
- 4111 Australia
| | | |
Collapse
|
14
|
Roviello GN, Oliviero G, Di Napoli A, Borbone N, Piccialli G. Synthesis, self-assembly-behavior and biomolecular recognition properties of thyminyl dipeptides. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
Caso A, Esposito G, Della Sala G, Pawlik JR, Teta R, Mangoni A, Costantino V. Fast Detection of Two Smenamide Family Members Using Molecular Networking. Mar Drugs 2019; 17:E618. [PMID: 31671549 PMCID: PMC6891588 DOI: 10.3390/md17110618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Caribbean sponges of the genus Smenospongia are a prolific source of chlorinated secondary metabolites. The use of molecular networking as a powerful dereplication tool revealed in the metabolome of S. aurea two new members of the smenamide family, namely smenamide F (1) and G (2). The structure of smenamide F (1) and G (2) was determined by spectroscopic analysis (NMR, MS, ECD). The relative and the absolute configuration at C-13, C-15, and C-16 was determined on the basis of the conformational rigidity of a 1,3-disubstituted alkyl chain system (i.e., the C-12/C-18 segment of compound (1). Smenamide F (1) and G (2) were shown to exert a selective moderate antiproliferative activity against cancer cell lines MCF-7 and MDA-MB-231, while being inactive against MG-63.
Collapse
Affiliation(s)
- Alessia Caso
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Germana Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in 85028 Vulture, Italy.
| | - Joseph R Pawlik
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Center for Marine Science, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA.
| | - Roberta Teta
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Valeria Costantino
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
16
|
Paul VJ, Freeman CJ, Agarwal V. Chemical Ecology of Marine Sponges: New Opportunities through "-Omics". Integr Comp Biol 2019; 59:765-776. [PMID: 30942859 PMCID: PMC6797912 DOI: 10.1093/icb/icz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community composition and abundance are highly variable across host taxa, with a continuum from diverse assemblages of many microbial taxa to those that are dominated by a single microbial group. Microbial communities expand the nutritional repertoire of their hosts by providing access to inorganic and dissolved sources of nutrients. Not only does this continuum of microorganism-sponge associations lead to divergent nutritional characteristics in sponges, these associated microorganisms and symbionts have long been suspected, and are now known, to biosynthesize some of the natural products found in sponges. Modern "omics" tools provide ways to study these sponge-microbe associations that would have been difficult even a decade ago. Metabolomics facilitate comparisons of sponge compounds produced within and among taxa, and metagenomics and metatranscriptomics provide tools to understand the biology of host-microbe associations and the biosynthesis of ecologically relevant natural products. These combinations of ecological, microbiological, metabolomic and genomics tools, and techniques provide unprecedented opportunities to advance sponge biology and chemical ecology across many marine ecosystems.
Collapse
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Cantrell TP, Freeman CJ, Paul VJ, Agarwal V, Garg N. Mass Spectrometry-Based Integration and Expansion of the Chemical Diversity Harbored Within a Marine Sponge. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1373-1384. [PMID: 31093948 PMCID: PMC6675626 DOI: 10.1007/s13361-019-02207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Marine sponges and their associated symbionts produce a structurally diverse and complex set of natural products including alkaloids, terpenoids, peptides, lipids, and steroids. A single sponge with its symbionts can produce all of the above-mentioned classes of molecules and their analogs. Most approaches to evaluating sponge chemical diversity have focused on major metabolites that can be isolated and characterized; therefore, a comprehensive evaluation of intra- (within a molecular family; analogs) and inter-chemical diversity within a single sponge remains incomplete. We use a combination of metabolomics tools, including a supervised approach via manual library search and literature search, and an unsupervised approach via molecular networking and MS2LDA analysis to describe the intra and inter-chemical diversity present in Smenospongia aurea. Furthermore, we use imaging mass spectrometry to link this chemical diversity to either the sponge or the associated cyanobacteria. Using these approaches, we identify seven more molecular features that represent analogs of four previously known peptide/polyketide smenamides and assign the biosynthesis of these molecules to the symbiotic cyanobacteria by imaging mass spectrometry. We extend this analysis to a wide diversity of molecular classes including indole alkaloids and meroterpenes.
Collapse
Affiliation(s)
- Thomas P Cantrell
- Engineered Biosystems Building, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, FL, 34949, USA
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, FL, 34949, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Neha Garg
- Engineered Biosystems Building, School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-2000, USA.
- Center for Microbial Dynamics and Infection, School of Biological Sciences Georgia Institute of Technology, 311 Ferst Drive, ES&T Atlanta, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
18
|
Li Z, Hong LL, Gu BB, Sun YT, Wang J, Liu JT, Lin HW. Natural Products from Sponges. SYMBIOTIC MICROBIOMES OF CORAL REEFS SPONGES AND CORALS 2019. [PMCID: PMC7122408 DOI: 10.1007/978-94-024-1612-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sponge is one of the oldest multicellular invertebrates in the world. Marine sponges represent one of the extant metazoans of 700–800 million years. They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and Discodemia have been identified to be the richest source of biologically active compounds. So far, 15,000 species have been described, and among them, more than 6000 species are found in marine and freshwater systems throughout tropical, temperate, and polar regions. More than 5000 different compounds have been isolated and structurally characterized to date, contributing to about 30% of all marine natural products. The chemical diversity of sponge products is high with compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which integrate a wide range of biological activities, including antibacterial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is an open debate whether all natural products isolated from sponges are produced by sponges or are in fact derived from microorganisms that are inhaled though filter-feeding or that live within the sponges. Apart from their origin and chemoecological functions, sponge-derived metabolites are also of considerable interest in drug development. Therefore, development of recombinant microorganisms engineered for efficient production of sponge-derived products is a promising strategy that deserves further attention in future investigations in order to address the limitations regarding sustainable supply of marine drugs.
Collapse
Affiliation(s)
- Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Teta R, Sala GD, Esposito G, Via CW, Mazzoccoli C, Piccoli C, Bertin MJ, Costantino V, Mangoni A. A joint molecular networking study of a Smenospongia sponge and a cyanobacterial bloom revealed new antiproliferative chlorinated polyketides. Org Chem Front 2019; 6:1762-1774. [PMID: 31871685 PMCID: PMC6927677 DOI: 10.1039/c9qo00074g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The bloom-forming cyanobacteria Trichodesmium sp. have been recently shown to produce some of the chlorinated peptides/polyketides previously isolated from the marine sponge Smenospongia aurea. A comparative analysis of extracts from S. aurea and Trichodesmium sp. was performed using tandem mass spectrometry-based molecular networking. The analysis, specifically targeted to chlorinated metabolites, showed that many of them are common to the two organisms, but also that some general differences exist between the two metabolomes. Following this analysis, six new chlorinated metabolites were isolated and their structures elucidated: four polyketides, smenolactones A-D (1-4) from S. aurea, and two new conulothiazole analogues, isoconulothiazole B (5) and conulothiazole C (6) from Trichodesmium sp. The absolute configuration of smenolactone C (3) was determined by taking advantage of the conformational rigidity of open 1,3-disubstituted alkyl chains. The antiproliferative activity of smenolactones was evaluated on three tumor cell lines, and they were active at low-micromolar or sub-micromolar concentrations.
Collapse
Affiliation(s)
- Roberta Teta
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
| | - Gerardo Della Sala
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Via Padre Pio 1, 85028 Rionero in Vulture, Italy
| | - Germana Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
| | - Christopher W Via
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States
| | - Carmela Mazzoccoli
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Via Padre Pio 1, 85028 Rionero in Vulture, Italy
| | - Claudia Piccoli
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Via Padre Pio 1, 85028 Rionero in Vulture, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto 1, 71122 Foggia, Italy
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, United States
| | - Valeria Costantino
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
20
|
Abstract
An efficient total synthesis of the chlorinated thiazole-containing natural product conulothiazole A is reported. Key features of this synthesis include a novel rhodium-catalyzed enantioselective hydrogenation of a 2-enamido-thiazole and a vinylic Finkelstein reaction that could be implemented at all stages of the synthesis to install the chlorinated alkene.
Collapse
Affiliation(s)
- Antoine Nitelet
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 , CP160/06, 1050 Brussels , Belgium
| | - Phidéline Gérard
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 , CP160/06, 1050 Brussels , Belgium
| | - Jimmy Bouche
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 , CP160/06, 1050 Brussels , Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50 , CP160/06, 1050 Brussels , Belgium
| |
Collapse
|
21
|
Esposito G, Teta R, Marrone R, De Sterlich C, Casazza M, Anastasio A, Lega M, Costantino V. A Fast Detection Strategy for Cyanobacterial blooms and associated cyanotoxins (FDSCC) reveals the occurrence of lyngbyatoxin A in campania (South Italy). CHEMOSPHERE 2019; 225:342-351. [PMID: 30884295 DOI: 10.1016/j.chemosphere.2019.02.201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
Fast Detection Strategy for Cyanobacterial blooms and associated Cyanotoxins (FDSCC) is a multidisciplinary strategy that allows early detection, in 24 man-hours, of cyanobacteria and related cyanotoxins in water and bivalve samples. This approach combines the advantages of remote/proximal sensing with those of analytical/bioinformatics analyses, namely, LC-HRMS-based molecular networking. The detection of Lyngbyatoxin A, a lipophilic cyanotoxin, in all analyzed water samples and in bivalves, commonly used as food, was the proof of the reliability of the new method.
Collapse
Affiliation(s)
- Germana Esposito
- Task Force BIG FED2, The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Italy.
| | - Roberta Teta
- Task Force BIG FED2, The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Italy.
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy.
| | - Carlo De Sterlich
- Task Force BIG FED2, The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Italy.
| | - Marco Casazza
- Department of Engineering, University of Naples Parthenope, Italy.
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy.
| | | | - Valeria Costantino
- Task Force BIG FED2, The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
22
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
23
|
Bertin MJ, Saurí J, Liu Y, Via CW, Roduit AF, Williamson RT. Trichophycins B-F, Chlorovinylidene-Containing Polyketides Isolated from a Cyanobacterial Bloom. J Org Chem 2018; 83:13256-13266. [PMID: 30280904 DOI: 10.1021/acs.joc.8b02070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR-guided isolation (based on 1D 1H and 13C NMR resonances consistent with a chlorovinylidene moiety) resulted in the characterization of five new highly functionalized polyketides, trichophycins B-F (1-5), and one nonchlorinated metabolite tricholactone (6) from a collection of Trichodesmium bloom material from the Gulf of Mexico. The planar structures of 1-6 were determined using 1D and 2D NMR spectroscopy, mass spectrometry, and complementary spectroscopic procedures. Absolute configuration analysis of 1 and 2 were carried out by 1H NMR analysis of diastereomeric Mosher esters in addition to ECD spectroscopy, J-based configuration analysis, and DFT calculations. The absolute configurations of 3-6 were proposed on the basis of comparative analysis of 13C NMR chemical shifts, relative configurations, and optical rotation values to compounds 1 and 2. Compounds 1-5 represent new additions to the trichophycin family and are hallmarked by a chlorovinylidene moiety. These new trichophycins and tricholactone (1-6) feature intriguing variations with respect to putative biosynthetic starting units, halogenation, and terminations, and trichophycin E (4) features a rare alkynyl bromide functionality. The phenyl-containing trichophycins showed low cytotoxicity to neuro-2A cells, while the alkyne-containing trichophycins showed no toxicity.
Collapse
Affiliation(s)
- Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , University of Rhode Island , 7 Greenhouse Road , Kingston , Rhode Island 02881 , United States
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development , Merck and Co. Inc , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Yizhou Liu
- Structure Elucidation Group, Process and Analytical Research and Development , Merck and Co. Inc , 126 East Lincoln Avenue , Rahway , New Jersey 07065 , United States
| | - Christopher W Via
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , University of Rhode Island , 7 Greenhouse Road , Kingston , Rhode Island 02881 , United States
| | - Alexandre F Roduit
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , University of Rhode Island , 7 Greenhouse Road , Kingston , Rhode Island 02881 , United States
| | - R Thomas Williamson
- Structure Elucidation Group, Process and Analytical Research and Development , Merck and Co. Inc , 126 East Lincoln Avenue , Rahway , New Jersey 07065 , United States
| |
Collapse
|
24
|
Crnkovic CM, Krunic A, May DS, Wilson TA, Kao D, Burdette JE, Fuchs JR, Oberlies NH, Orjala J. Calothrixamides A and B from the Cultured Cyanobacterium Calothrix sp. UIC 10520. JOURNAL OF NATURAL PRODUCTS 2018; 81:2083-2090. [PMID: 30192537 PMCID: PMC6359934 DOI: 10.1021/acs.jnatprod.8b00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cyanobacteria are a source of chemically diverse metabolites with potential medicinal and biotechnological applications. Rapid identification of compounds is central to expedite the natural product discovery process. Mass spectrometry has been shown to be an important tool for dereplication of complex natural product samples. In addition, chromatographic separation and complementary spectroscopic analysis (e.g., UV) can enhance the confidence of the dereplication process. Here, we applied a droplet-liquid microjunction-surface sampling probe (droplet probe) coupled with UPLC-PDA-HRMS-MS/MS to identify two new natural products in situ from the freshwater strain Calothrix sp. UIC 10520. This allowed us to prioritize this strain for chemical investigation based on the presence of new metabolites very early in our discovery process, saving both time and resources. Subsequently, calothrixamides A (1) and B (2) were isolated from large-scale cultures, and the structures were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations were determined by a combination of chemical degradation reactions, derivatization methods (Mosher's, Marfey's, and phenylglycine methyl ester), and J-based configurational analysis. Calothrixamides showed no cytotoxic activity against the MDA-MB-435, MDA-MB-231, and OVCAR3 cancer cell lines. They represent the first functionalized long-chain fatty acid amides reported from the Calothrix genus and from a freshwater cyanobacterium.
Collapse
Affiliation(s)
- Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020, Brazil
| | - Aleksej Krunic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Daniel S. May
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tyler A. Wilson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
25
|
Isolation of Smenopyrone, a Bis-γ-Pyrone Polypropionate from the Caribbean Sponge Smenospongia aurea. Mar Drugs 2018; 16:md16080285. [PMID: 30126132 PMCID: PMC6117678 DOI: 10.3390/md16080285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
The organic extract of the Caribbean sponge Smenospongia aurea has been shown to contain an array of novel chlorinated secondary metabolites derived from a mixed PKS-NRPS biogenetic route such as the smenamides. In this paper, we report the presence of a biogenetically different compound known as smenopyrone, which is a polypropionate containing two γ-pyrone rings. The structure of smenopyrone including its relative and absolute stereochemistry was determined by spectroscopic analysis (NMR, MS, ECD) and supported by a comparison with model compounds from research studies. Pyrone polypropionates are unprecedented in marine sponges but are commonly found in marine mollusks where their biosynthesis by symbiotic bacteria has been hypothesized and at least in one case demonstrated. Since pyrones have recently been recognized as bacterial signaling molecules, we speculate that smenopyrone could mediate inter-kingdom chemical communication between S. aurea and its symbiotic bacteria.
Collapse
|
26
|
Mehbub MF, Tanner JE, Barnett SJ, Bekker J, Franco CMM, Zhang W. A controlled aquarium system and approach to study the role of sponge-bacteria interactions using Aplysilla rosea and Vibrio natriegens. Sci Rep 2018; 8:11801. [PMID: 30087404 PMCID: PMC6081443 DOI: 10.1038/s41598-018-30295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
Sponge-bacteria interactions are very important due to their ecological and biological significance. To understand the impact of interactions between sponges and bacteria (both associated with and external to sponges) on sponge-associated microbial diversity, sponge metabolite profiles and bioactivity, we used a controlled aquarium system and designed an experimental approach that allows the study of sponge-bacteria interactions in a well-defined manner. To test the feasibility of this approach, this system was used to study the interaction between a sponge Aplysilla rosea and a marine bacterium commonly found in seawater, Vibrio natriegens. Sponge explants were exposed to V. natriegens, at 5 × 106 cfu/ml, and changes were monitored for 48 hours. Pyro-sequencing revealed significant shifts in microbial communities associated with the sponges after 24 to 48 hours. Both the control (sponge only without added bacteria) and Vibrio-exposed sponges showed a distinct shift in bacterial diversity and abundance with time. Vibrio exposure significantly increased bacterial diversity, the abundance of a number of taxa compared to control sponges. The result experimentally supports the notion of dynamic and concerted responses by the sponge when interacting with a bacterium, and demonstrates the feasibility of using this controlled aquarium system for the study of sponge-bacteria interactions.
Collapse
Affiliation(s)
- Mohammad F Mehbub
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| | - Jason E Tanner
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
- SARDI Aquatic Sciences, 2 Hamra Avenue, West Beach, SA, 5024, Adelaide, Australia
| | - Stephen J Barnett
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Jan Bekker
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| |
Collapse
|
27
|
Via CW, Glukhov E, Costa S, Zimba PV, Moeller PDR, Gerwick WH, Bertin MJ. The Metabolome of a Cyanobacterial Bloom Visualized by MS/MS-Based Molecular Networking Reveals New Neurotoxic Smenamide Analogs (C, D, and E). Front Chem 2018; 6:316. [PMID: 30094232 PMCID: PMC6071517 DOI: 10.3389/fchem.2018.00316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/09/2018] [Indexed: 11/29/2022] Open
Abstract
Members of the cyanobacterial genus Trichodesmium are well known for their substantial impact on nitrogen influx in ocean ecosystems and the enormous surface blooms they form in tropical and subtropical locations. However, the secondary metabolite composition of these complex environmental bloom events is not well known, nor the possibility of the production of potent toxins that have been observed in other bloom-forming marine and freshwater cyanobacteria species. In the present work, we aimed to characterize the metabolome of a Trichodesmium bloom utilizing MS/MS-based molecular networking. Furthermore, we integrated cytotoxicity assays in order to identify and ultimately isolate potential cyanotoxins from the bloom. These efforts led to the isolation and identification of several members of the smenamide family, including three new smenamide analogs (1-3) as well as the previously reported smenothiazole A-hybrid polyketide-peptide compounds. Two of these new smenamides possessed cytotoxicity to neuro-2A cells (1 and 3) and their presence elicits further questions as to their potential ecological roles. HPLC profiling and molecular networking of chromatography fractions from the bloom revealed an elaborate secondary metabolome, generating hypotheses with respect to the environmental role of these metabolites and the consistency of this chemical composition across genera, space and time.
Collapse
Affiliation(s)
- Christopher W. Via
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, United States
| | - Samuel Costa
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Paul V. Zimba
- Center for Coastal Studies and Department of Life Sciences, Texas A&M Corpus Christi, Corpus Christi, TX, United States
| | - Peter D. R. Moeller
- Emerging Toxins Program, Hollings Marine Laboratory, National Ocean Service/NOAA, Charleston, SC, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, United States
| | - Matthew J. Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
28
|
Caso A, Laurenzana I, Lamorte D, Trino S, Esposito G, Piccialli V, Costantino V. Smenamide A Analogues. Synthesis and Biological Activity on Multiple Myeloma Cells. Mar Drugs 2018; 16:E206. [PMID: 29899231 PMCID: PMC6025564 DOI: 10.3390/md16060206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Smenamides are an intriguing class of peptide/polyketide molecules of marine origin showing antiproliferative activity against lung cancer Calu-1 cells at nanomolar concentrations through a clear pro-apoptotic mechanism. To probe the role of the activity-determining structural features, the 16-epi-analogue of smenamide A and eight simplified analogues in the 16-epi series were prepared using a flexible synthetic route. The synthetic analogues were tested on multiple myeloma (MM) cell lines showing that the configuration at C-16 slightly affects the activity, since the 16-epi-derivative is still active at nanomolar concentrations. Interestingly, it was found that the truncated compound 8, mainly composed of the pyrrolinone terminus, was not active, while compound 13, essentially lacking the pyrrolinone moiety, was 1000-fold less active than the intact substance and was the most active among all the synthesized compounds.
Collapse
Affiliation(s)
- Alessia Caso
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Germana Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Vincenzo Piccialli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy.
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| |
Collapse
|
29
|
Roviello GN. Novel insights into nucleoamino acids: biomolecular recognition and aggregation studies of a thymine-conjugated L-phenyl alanine. Amino Acids 2018; 50:933-941. [PMID: 29766280 DOI: 10.1007/s00726-018-2562-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 03/28/2018] [Indexed: 01/30/2023]
Abstract
This article deals with the synthesis in solid phase and characterization of a nucleoamino amide, based on a phenylalaninamide moiety which was N-conjugated to a thymine nucleobase. In analogy to the natural nucleobase-amino acid conjugates, endowed with a wide range of biological properties, the nucleoamino amide interacts with single-stranded nucleic acids as verified in DNA- and RNA-binding assays conducted by CD and UV spectroscopies. These technologies were used to show also that this conjugate binds serum proteins altering significantly their secondary structure, as evidenced by CD and UV using BSA as a model. The biomolecular recognition seems to rely on the ability of the novel compound to bind aromatic and heteroaromatic moieties in protein and nucleic acids, not hindered by its propensity to self-assemble in aqueous solution, behavior suggested by dynamic light scattering (DLS) and CD spectroscopy in concentration- and temperature-dependent experiments. Finally, the high stability in human serum concurs to define the picture of the nucleoamino amide: this enzymatically stable drug candidate could interfere with protein and single-stranded nucleic acid-driven biological processes, particularly those associated with mRNA poly(A) tail, and its self-assembling nature, in analogy to other L-Phe-based systems, discloses new scenarios in drug delivery technology.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini-CNR (UOS Napoli centro), 80134, Naples, Italy.
| |
Collapse
|
30
|
Symbiotic Microbes from Marine Invertebrates: Driving a New Era of Natural Product Drug Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
32
|
Costantini S, Guerriero E, Teta R, Capone F, Caso A, Sorice A, Romano G, Ianora A, Ruocco N, Budillon A, Costantino V, Costantini M. Evaluating the Effects of an Organic Extract from the Mediterranean Sponge Geodia cydonium on Human Breast Cancer Cell Lines. Int J Mol Sci 2017; 18:ijms18102112. [PMID: 28991212 PMCID: PMC5666794 DOI: 10.3390/ijms18102112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
Marine sponges are an excellent source of bioactive secondary metabolites for pharmacological applications. In the present study, we evaluated the chemistry, cytotoxicity and metabolomics of an organic extract from the Mediterranean marine sponge Geodia cydonium, collected in coastal waters of the Gulf of Naples. We identified an active fraction able to block proliferation of breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB468 and to induce cellular apoptosis, whereas it was inactive on normal breast cells (MCF-10A). Metabolomic studies showed that this active fraction was able to interfere with amino acid metabolism, as well as to modulate glycolysis and glycosphingolipid metabolic pathways. In addition, the evaluation of the cytokinome profile on the polar fractions of three treated breast cancer cell lines (compared to untreated cells) demonstrated that this fraction induced a slight anti-inflammatory effect. Finally, the chemical entities present in this fraction were analyzed by liquid chromatography high resolution mass spectrometry combined with molecular networking.
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Eliana Guerriero
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Roberta Teta
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Alessia Caso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Angela Sorice
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
33
|
D'Errico S, Borbone N, Piccialli V, Di Gennaro E, Zotti A, Budillon A, Vitagliano C, Piccialli I, Oliviero G. Synthesis and Evaluation of the Antitumor Properties of a Small Collection of PtIIComplexes with 7-Deazaadenosine as Scaffold. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via Domenico Montesano 49 80131 Napoli Italy
- SYSBIO.IT, Centre of Systems Biology; Università degli Studi di Milano-Bicocca; Milano Italy
| | - Nicola Borbone
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via Domenico Montesano 49 80131 Napoli Italy
- SYSBIO.IT, Centre of Systems Biology; Università degli Studi di Milano-Bicocca; Milano Italy
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II; Via Cinthia 4 80126 Napoli Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit; Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS; Via Mariano Semmola 52 80131 Napoli Italy
| | - Andrea Zotti
- Experimental Pharmacology Unit; Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS; Via Mariano Semmola 52 80131 Napoli Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit; Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS; Via Mariano Semmola 52 80131 Napoli Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit; Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS; Via Mariano Semmola 52 80131 Napoli Italy
| | - Ilaria Piccialli
- Divisione di Farmacologia; Dipartimento di Neuroscienze; Scienze Riproduttive e Odontostomatologiche; Scuola di Medicina; Università degli Studi di Napoli Federico II; Via Sergio Pansini 5 80131 Napoli Italy
| | - Giorgia Oliviero
- SYSBIO.IT, Centre of Systems Biology; Università degli Studi di Milano-Bicocca; Milano Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Via Sergio Pansini 5 80131 Napoli Italy
| |
Collapse
|
34
|
Piccialli V, Tuzi A, Centore R. Pseudosymmetry and high Z' structures: the case of rac-(2 R,2' R,5' S)-2-methyl-5'-[(1 R,2 R,5 S,5' S)-1,4,4,5'-tetra-methyl-dihydro-3' H-3,8-dioxa-spiro-[bi-cyclo-[3.2.1]octane-2,2'-furan]-5'-yl]-3,4,1',2',3',4'-hexa-hydro-[2,2'-bi-furan]-5(2 H)-one. Acta Crystallogr E Crystallogr Commun 2017; 73:1282-1286. [PMID: 28932455 PMCID: PMC5588561 DOI: 10.1107/s2056989017010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
The title compound, C22H34O6, is one of the products obtained by oxidation of squalene with the catalytic system RuO4(cat.)/NaIO4. It crystallizes in the P-1 space group, with four crystallographically independent mol-ecules related by a pseudo-C2 symmetry axis. The structural analysis also shows that the title compound is isomeric with two products previously reported in the literature and that are obtained by the same reaction procedure. In particular, out of the seven chiral C atoms present in the mol-ecule, the title compound shows the opposite configuration at, respectively, four and two chiral centres with respect to the isomeric compounds.
Collapse
Affiliation(s)
- Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ’Federico II’, Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ’Federico II’, Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Roberto Centore
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ’Federico II’, Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
35
|
Wang L, Dong C, Li X, Han W, Su X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 2017; 38:637-651. [PMID: 28677775 DOI: 10.3892/or.2017.5778] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is the most common cause of human death worldwide. Conventional anticancer therapies, including chemotherapy and radiation, are associated with severe side effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal tissues, thus making them a better alternative for the prevention and management of cancer. Recent research has focused on anticancer peptides from natural animal sources, such as terrestrial mammals, marine animals, amphibians, and animal venoms. However, the mode of action by which bioactive peptides inhibit the proliferation of cancer cells remains unclear. In this review, we present the animal sources from which bioactive peptides with anticancer activity are derived and discuss multiple proposed mechanisms by which these peptides exert cytotoxic effects against cancer cells.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Chao Dong
- College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xian Li
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Wenyan Han
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
36
|
Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. MARINE ENVIRONMENTAL RESEARCH 2017; 128:58-69. [PMID: 27160988 DOI: 10.1016/j.marenvres.2016.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
There is an urgent need to discover new drug entities due to the increased incidence of severe diseases as cancer and neurodegenerative pathologies, and reducing efficacy of existing antibiotics. Recently, there is a renewed interest in exploring the marine habitat for new pharmaceuticals also thanks to the advancement in cultivation technologies and in molecular biology techniques. Microorganisms represent a still poorly explored resource for drug discovery. The possibility of obtaining a continuous source of bioactives from marine microorganisms, more amenable to culturing compared to macro-organisms, may be able to meet the challenging demands of pharmaceutical industries. This would enable a more environmentally-friendly approach to drug discovery and overcome the over-utilization of marine resources and the use of destructive collection practices. The importance of the topic is underlined by the number of EU projects funded aimed at improving the exploitation of marine organisms for drug discovery.
Collapse
Affiliation(s)
- G Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - M Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Sansone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - N Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - A Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
37
|
Lac-l-TTA, a novel lactose-based amino acid–sugar conjugate for anti-metastatic applications. Amino Acids 2017; 49:1347-1353. [DOI: 10.1007/s00726-017-2433-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023]
|
38
|
Caso A, Mangoni A, Piccialli G, Costantino V, Piccialli V. Studies toward the Synthesis of Smenamide A, an Antiproliferative Metabolite from Smenospongia aurea: Total Synthesis of ent-Smenamide A and 16- epi-Smenamide A. ACS OMEGA 2017; 2:1477-1488. [PMID: 30023636 PMCID: PMC6044836 DOI: 10.1021/acsomega.7b00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/07/2017] [Indexed: 06/08/2023]
Abstract
A chiral pool protocol toward the synthesis of the smenamide family of natural products is described. Two stereoisomers of smenamide A, namely, ent-smenamide A and 16-epi-smenamide A were synthesized with a 2.6 and 2.5% overall yield, respectively. Their carboxylic acid moieties were assembled starting from S-citronellene via two Wittig reactions and a Grignard process. Its coupling with either (S)- or (R)-dolapyrrolidinone, synthesized from Boc-l-Phe and Boc-d-Phe, respectively, was accomplished by using the Andrus protocol. This work also established the previously unknown relative and absolute configurations of smenamide A.
Collapse
Affiliation(s)
- Alessia Caso
- Department
of Pharmacy, University of Naples Federico
II, 80131 Napoli, Italy
| | - Alfonso Mangoni
- Department
of Pharmacy, University of Naples Federico
II, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Department
of Pharmacy, University of Naples Federico
II, 80131 Napoli, Italy
| | - Valeria Costantino
- Department
of Pharmacy, University of Naples Federico
II, 80131 Napoli, Italy
| | - Vincenzo Piccialli
- Department
of Chemical Sciences, University of Naples
Federico II, via Cintia
4, 80126 Naples, Italy
| |
Collapse
|
39
|
Huyen LT, Hang DT, Nhiem NX, Tai BH, Anh HLT, Quang TH, Yen PH, Van Minh C, Van Dau N, Van Kiem P. Sesquiterpene Quinones and Diterpenes from Smenospongia cerebriformis and Their Cytotoxic Activity. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using various chromatographic methods, one new sesquiterpene quinone named smenohaimien F (1) and five known, neodactyloquinone (2), dactyloquinone C (3), dactyloquinone D (4), isoamijiol (5), and amijiol (6), were isolated from the marine sponge Smenospongia cerebriformis Duchassaing & Michelotti, 1864. Their structures were elucidated by 1D-, 2D-NMR spectroscopic analysis, HR-ESI-MS, and by comparing with the NMR data reported in the literature. The cytotoxic activities of the all compounds were evaluated on five human cancer cell lines, LU-1, HL-60, SK-Mel-2, HepG-2, and MCF-7. Compound 4 was found to exhibit significant cytotoxic activities on all tested human cancer cell lines with IC50 values ranging from 0.7 to 1.6 μg/mL.
Collapse
Affiliation(s)
- Le Thi Huyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Dan Thuy Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang Le Tuan Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Dau
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
40
|
Schirmeister T, Oli S, Wu H, Della Sala G, Costantino V, Seo EJ, Efferth T. Cytotoxicity of Endoperoxides from the Caribbean Sponge Plakortis halichondrioides towards Sensitive and Multidrug-Resistant Leukemia Cells: Acids vs. Esters Activity Evaluation. Mar Drugs 2017; 15:md15030063. [PMID: 28273803 PMCID: PMC5367020 DOI: 10.3390/md15030063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022] Open
Abstract
The 6-epimer of the plakortide H acid (1), along with the endoperoxides plakortide E (2), plakortin (3), and dihydroplakortin (4) have been isolated from a sample of the Caribbean sponge Plakortis halichondrioides. To perform a comparative study on the cytotoxicity towards the drug-sensitive leukemia CCRF-CEM cell line and its multi-drug resistant subline CEM/ADR5000, the acid of plakortin, namely plakortic acid (5), as well as the esters plakortide E methyl ester (6) and 6-epi-plakortide H (7) were synthesized by hydrolysis and Steglich esterification, respectively. The data obtained showed that the acids (1, 2, 5) exhibited potent cytotoxicity towards both cell lines, whereas the esters showed no activity (6, 7) or weaker activity (3, 4) compared to their corresponding acids. Plakortic acid (5) was the most promising derivative with half maximal inhibitory concentration (IC50) values of ca. 0.20 µM for both cell lines.
Collapse
Affiliation(s)
- Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Swarna Oli
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Hongmei Wu
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Gerardo Della Sala
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
41
|
Saurav K, Costantino V, Venturi V, Steindler L. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Mar Drugs 2017; 15:md15030053. [PMID: 28241461 PMCID: PMC5367010 DOI: 10.3390/md15030053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review.
Collapse
Affiliation(s)
- Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy.
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, 31905 Haifa, Israel.
| |
Collapse
|
42
|
Ma X, Chen Y, Chen S, Xu Z, Ye T. Total syntheses of smenothiazoles A and B. Org Biomol Chem 2017; 15:7196-7203. [DOI: 10.1039/c7ob01818e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stereocontrolled installation of vinyl chloride and the 2,5-diene system via silastannation, Stille reaction and desilylchlorination, and the final peptide coupling reactions led to the concise total synthesis of smenothiazoles A (1) and B (2).
Collapse
Affiliation(s)
- Xiao Ma
- Laboratory of Chemical Genomics
- Engineering Laboratory for Chiral Drug Synthesis
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
| | - Yajie Chen
- Laboratory of Chemical Genomics
- Engineering Laboratory for Chiral Drug Synthesis
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
| | - Sigui Chen
- Laboratory of Chemical Genomics
- Engineering Laboratory for Chiral Drug Synthesis
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics
- Engineering Laboratory for Chiral Drug Synthesis
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
| | - Tao Ye
- Laboratory of Chemical Genomics
- Engineering Laboratory for Chiral Drug Synthesis
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
| |
Collapse
|
43
|
Esposito G, Bourguet-Kondracki ML, Mai LH, Longeon A, Teta R, Meijer L, Van Soest R, Mangoni A, Costantino V. Chloromethylhalicyclamine B, a Marine-Derived Protein Kinase CK1δ/ε Inhibitor. JOURNAL OF NATURAL PRODUCTS 2016; 79:2953-2960. [PMID: 27933894 DOI: 10.1021/acs.jnatprod.6b00939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The halogenated alkaloid chloromethylhalicyclamine B (1), together with the known natural compound halicyclamine B (2), was isolated from the extract of the sponge Acanthostrongylophora ingens. The structure of compound 1 was determined by spectroscopic means, and it was shown that 1 is produced by reaction of 2 with CH2Cl2 used for extraction. Compound 1 was a selective CK1δ/ε inhibitor with an IC50 of 6 μM, while the natural compound 2 was inactive. The absolute configuration of 1 was determined by quantum mechanical calculation of its ECD spectrum, and this also determined the previously unknown absolute configuration of the parent halicyclamine B (2). Computational studies, validated by NOESY data, showed that compound 1 can efficiently interact with the ATP-binding site of CK1δ in spite of its globular structure, very different from the planar structure of known inhibitors of CK1δ. This opens the way to the design of a new structural type of CK1δ/ε inhibitors.
Collapse
Affiliation(s)
- Germana Esposito
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle , 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle , 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Linh H Mai
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle , 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Arlette Longeon
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle , 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Roberta Teta
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131 Napoli, Italy
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center , 29680 Roscoff, France
| | - Rob Van Soest
- Naturalis Biodiversity Center , P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Alfonso Mangoni
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131 Napoli, Italy
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
44
|
Esposito G, Della Sala G, Teta R, Caso A, Bourguet‐Kondracki M, Pawlik JR, Mangoni A, Costantino V. Chlorinated Thiazole‐Containing Polyketide‐Peptides from the Caribbean Sponge Smenospongia conulosa: Structure Elucidation on Microgram Scale. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Germana Esposito
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Gerardo Della Sala
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Roberta Teta
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Alessia Caso
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Marie‐Lise Bourguet‐Kondracki
- Molécules de Communication et Adaptation des Micro‐organismesUMR 7245 CNRS‐MNHNMuséum National d'Histoire Naturelle57 rue Cuvier (C.P. 54)75005ParisFrance
| | - Joseph R. Pawlik
- Department of Biology and Marine BiologyCenter for Marine ScienceUniversity of North Carolina Wilmington5600 Marvin K Moss LaneWilmingtonNC 28409USA
| | - Alfonso Mangoni
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Valeria Costantino
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| |
Collapse
|
45
|
Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates. Front Microbiol 2016; 7:416. [PMID: 27092109 PMCID: PMC4821063 DOI: 10.3389/fmicb.2016.00416] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter.
Collapse
Affiliation(s)
- Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Giorgia Oliviero
- The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II Napoli, Italy
| | - Valeria Costantino
- The Blue Chemistry Lab Group, Department of Pharmacy, Università degli Studi di Napoli Federico II Napoli, Italy
| | | | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| |
Collapse
|
46
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
47
|
Esposito G, Teta R, Miceli R, Ceccarelli LS, Della Sala G, Camerlingo R, Irollo E, Mangoni A, Pirozzi G, Costantino V. Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the Caribbean sponge, Smenospongia aurea. Mar Drugs 2015; 13:444-59. [PMID: 25603342 PMCID: PMC4306946 DOI: 10.3390/md13010444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/04/2015] [Indexed: 01/17/2023] Open
Abstract
The study of the secondary metabolites contained in the organic extract of Caribbean sponge Smenospongia aurea led to the isolation of smenothiazole A (3) and B (4), hybrid peptide/polyketide compounds. Assays performed using four solid tumor cell lines showed that smenothiazoles exert a potent cytotoxic activity at nanomolar levels, with selectivity over ovarian cancer cells and a pro-apoptotic mechanism.
Collapse
Affiliation(s)
- Germana Esposito
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Teta
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Miceli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Luca S Ceccarelli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Rosa Camerlingo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Elena Irollo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Alfonso Mangoni
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|