1
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
3
|
Swale DR, Bloomquist JR, McComic SE, Burgess ER. Cross resistance to brevetoxin-3 by kdr and super-kdr mutations in house flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105898. [PMID: 38685256 DOI: 10.1016/j.pestbp.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.
Collapse
Affiliation(s)
- Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA.
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah E McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| | - Edwin R Burgess
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
6
|
Montuori E, De Luca D, Penna A, Stalberga D, Lauritano C. Alexandrium spp.: From Toxicity to Potential Biotechnological Benefits. Mar Drugs 2023; 22:31. [PMID: 38248656 PMCID: PMC10821459 DOI: 10.3390/md22010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Daniele De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61029 Urbino, Italy;
| | - Darta Stalberga
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, SE-58183 Linköping, Sweden;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
7
|
Wright K, Jiang H, Xia W, Murphy MB, Boronina TN, Nwafor JN, Kim H, Iheanacho AM, Azurmendi PA, Cole RN, Cole PA, Gabelli SB. The C-Terminal of Na V1.7 Is Ubiquitinated by NEDD4L. ACS BIO & MED CHEM AU 2023; 3:516-527. [PMID: 38144259 PMCID: PMC10739247 DOI: 10.1021/acsbiomedchemau.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
NaV1.7, the neuronal voltage-gated sodium channel isoform, plays an important role in the human body's ability to feel pain. Mutations within NaV1.7 have been linked to pain-related syndromes, such as insensitivity to pain. To date, the regulation and internalization mechanisms of the NaV1.7 channel are not well known at a biochemical level. In this study, we perform biochemical and biophysical analyses that establish that the HECT-type E3 ligase, NEDD4L, ubiquitinates the cytoplasmic C-terminal (CT) region of NaV1.7. Through in vitro ubiquitination and mass spectrometry experiments, we identify, for the first time, the lysine residues of NaV1.7 within the CT region that get ubiquitinated. Furthermore, binding studies with an NEDD4L E3 ligase modulator (ubiquitin variant) highlight the dynamic partnership between NEDD4L and NaV1.7. These investigations provide a framework for understanding how NEDD4L-dependent regulation of the channel can influence the NaV1.7 function.
Collapse
Affiliation(s)
- Katharine
M. Wright
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjie Jiang
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wendy Xia
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | - Tatiana N. Boronina
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Justin N. Nwafor
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - HyoJeon Kim
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Akunna M. Iheanacho
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Physiology, The Johns Hopkins School
of Medicine, Baltimore, Maryland 21205, United States
| | - P. Aitana Azurmendi
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sandra B. Gabelli
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
8
|
Jacinavicius FR, Valverde Campos TG, Passos LS, Pinto E, Geraldes V. A rapid LC-MS/MS method for multi-class identification and quantification of cyanotoxins. Toxicon 2023; 234:107282. [PMID: 37678578 DOI: 10.1016/j.toxicon.2023.107282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cyanobacteria can form harmful blooms in specific environmental conditions due to certain species producing toxic metabolites known as cyanotoxins. These toxins pose significant risks to public health and the environment, making it critical to identify and quantify them in food and water sources to avoid contamination. However, current screening methods only focus on a single class of cyanotoxins, limiting their effectiveness. Thus, fast and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed to analyze eighteen cyanotoxins simultaneously. A simplified extraction procedure using lyophilized samples of cyanobacterial biomass was also used, eliminating the need for traditional solid-phase extraction methods. This method uses multiple reaction monitoring and allows accurate determination and quantification of eighteen cyanotoxins, including anatoxin-a, homoanatoxin-a, cylindrospermopsin, deoxy-cylindrospermopsin, nodularin, guanitoxin, seven microcystins (RR, [D-Asp3] RR, LA, LR, LY, LW, and YR), and five saxitoxins (gonyautoxins - GTX-1&4, GTX-2&3, GTX-5), decarbamoylgonyautoxin (dcGTX-2&3), and N-Sulfocarbamoylgonyautoxin (C1&C2), all in a short acquisition time of 8 min. Therefore, this method provides a simple and efficient approach to identify and quantify harmful compounds produced by cyanobacteria. Hence, this represents the first method to detecting guanitoxin among cyanotoxins. By expanding the range of toxins analyzed, this method can help ensure high-quality food and drinking water and protect recreational users from exposure to cyanotoxins.
Collapse
Affiliation(s)
- Fernanda Rios Jacinavicius
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Larissa Souza Passos
- Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Ernani Pinto
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil; Center for Carbon Research in Tropical Agriculture (CCARBON - CEPID), University of São Paulo, São Paulo, Brazil.
| | - Vanessa Geraldes
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Environmental Biogeochemistry, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
9
|
Flores-Chavarria A, Rodríguez-Jaramillo C, Band-Schmidt CJ, Hernández-Sandoval FE, Núñez-Vázquez E, Bustillos-Guzmán JJ. Effect of dissolved metabolites of the dinoflagellate Gymnodinium catenatum (Graham, 1943) on the white shrimp Litopenaeus vannamei (Boone, 1931): A histological study. Heliyon 2023; 9:e17018. [PMID: 37484312 PMCID: PMC10361116 DOI: 10.1016/j.heliyon.2023.e17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Harmful algae blooms (HABs) are a conspicuous phenomenon that affect the coastal zone worldwide. Aquaculture industry zones are not excluded from being affected by HAB that cause organism mortality and jeopardize their innocuity due to the contamination by phytotoxins with the concomitant economic losses. Direct ingestion of metabolites from HAB species or organisms contaminated with phycotoxins together with dermal absorption of dissolved metabolites (DM), including toxins, are the two main routes of poisoning. From these poisoning routes, the effect of DM, particularly paralytic shellfish toxins (PST), has been relatively understudied. This intoxication route can be conspicuous and could be involved in many significant mortalities of cultivated marine organisms. In this study, white shrimp juveniles (2.1 g wet weight) of Litopenaeus vannamei were exposed to extracts of 104, 105 and 106 cells/L of the dinoflagellate Gymnodinium catenatum, a PST producer. The experiment ended after 17 h of exposure when shrimps exposed to 106 cells/L extract started to die and the rest of the shrimps, from this and other treatments, did not respond to gentle physical stimulus and their swimming activity was low and erratic. Toxin concentrations were determined using high performance liquid chromatography while qualitative and quantitative histological damages were assessed on the tissues. In general, most toxins were accumulated in the hepatopancreas where more than 90% were found. Other tissues such as intestine, muscle, and gills contained less than 10% of toxins. Compared to the control, the main significative tissue damages were, loss of up to 80% of the nerve cord, 40% of the muscle coverage area, and reduction of the gill lamella width. Also, atrophy in hepatopancreas was observed, manifested by a decrease in the height of B cells, lumen degeneration and thinning of tubules. Some damages were more evident when shrimps were exposed to higher concentrated extracts of G. catenatum, however, not all damages were progressive and proportional to the extract concentration. These data confirm that PST dissolved enter the shrimp, possibly via the gills, and suggest that dissolved metabolites, including PST, may cause tissue damage. Other dissolved metabolites produced by G. catenatum, alone or in synergy, may also be involved. These results also pointed out the importance of dissolved molecules produced for this dinoflagellate and the potential effect on cultured shrimp.
Collapse
Affiliation(s)
- A.M. Flores-Chavarria
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S., Mexico
| | - Carmen Rodríguez-Jaramillo
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S., Mexico
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Ave. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, C.P. 23096, La Paz, B.C.S., Mexico
| | - Francisco E. Hernández-Sandoval
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S., Mexico
| | - Erick Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S., Mexico
| | - José J. Bustillos-Guzmán
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S., Mexico
| |
Collapse
|
10
|
De la Paz JF, Zambrano NO, Ortiz FC, Llanos-Rivera A. A New Bioassay for the Detection of Paralytic and Amnesic Biotoxins Based on Motor Behavior Impairments of Zebrafish Larvae. Int J Mol Sci 2023; 24:ijms24087466. [PMID: 37108629 PMCID: PMC10144378 DOI: 10.3390/ijms24087466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The global concern about the increase of harmful algal bloom events and the possible impacts on food safety and aquatic ecosystems presents the necessity for the development of more accessible techniques for biotoxin detection for screening purposes. Considering the numerous advantages that zebrafish present as a biological model and particularly as a toxicants sentinel, we designed a sensitive and accessible test to determine the activity of paralytic and amnesic biotoxins using zebrafish larvae immersion. The ZebraBioTox bioassay is based on the automated recording of larval locomotor activity using an IR microbeam locomotion detector, and manual assessment of four complementary responses under a simple stereoscope: survival, periocular edema, body balance, and touch response. This 24 h acute static bioassay was set up in 96-well microplates using 5 dpf zebrafish larvae. For paralytic toxins, a significant decrease in locomotor activity and touch response of the larvae was detected, allowing a detection threshold of 0.1-0.2 µg/mL STXeq. In the case of the amnesic toxin the effect was reversed, detecting hyperactivity with a detection threshold of 10 µg/mL domoic acid. We propose that this assay might be used as a complementary tool for environmental safety monitoring.
Collapse
Affiliation(s)
- Javiera F De la Paz
- Laboratorio de Embriotoxicología e Interacción Desarrollo Ambiente (LEIDA), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
- Danio Biotechnologies, SpA, Santiago 8271199, Chile
| | - Nicolás O Zambrano
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
- Danio Biotechnologies, SpA, Santiago 8271199, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Alameda 3363, Estación Central, Santiago 9170022, Chile
| | - Alejandra Llanos-Rivera
- Laboratorio de Toxicología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
11
|
Kang HM, Lee J, Lee YJ, Park Y, Lee E, Shin AY, Han J, Lee HS, Lee JS, Lee KW. Transcriptional and toxic responses to saxitoxin exposure in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2022; 309:136464. [PMID: 36122751 DOI: 10.1016/j.chemosphere.2022.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 μM, and a rapid mortality slope was evident at concentrations between 12 and 13 μM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jihoon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Euihyeon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - A-Young Shin
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jeonghoon Han
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Hyi-Seung Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jong Seok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea.
| |
Collapse
|
12
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
13
|
Hu N, Wang C, Wang B, Wang L, Huang J, Wang J, Li C. Qianghuo Shengshi decoction exerts anti-inflammatory and analgesic via MAPKs/CREB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114776. [PMID: 34710556 DOI: 10.1016/j.jep.2021.114776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine Qianghuo Shengshi decoction (QSD) is widely used in the treatment of nervous headache, rheumatoid arthritis, sciatica, allergic purpura, and other clinical diseases in China. However, the underlying mechanisms of its anti-inflammatory and analgesic effects has not been elucidated. AIM OF THE STUDY The aim of this study was to confirm the anti-inflammatory and analgesic effects and the underlying mechanism of QSD in vivo. In addition, this study was also to isolate and analyze the main active components of QSD by high performance liquid chromatography (HPLC). MATERIALS AND METHODS In this study, the acetic acid writhing test, hot plate test and ear swelling test and formalin test were carried out to explore the anti-inflammatory and analgesic effects of QSD. The doses were set to 7.8 g/kg, 15.6 g/kg and 31.2 g/kg body weight. Western blot was utilized to study further possible mechanisms of QSD. Moreover, the HPLC method was used to isolate and identify the components in the extraction of QSD. RESULTS Twelve characteristic peaks were recognized in the HPLC spectrum, which all were the known compounds. The QSD exhibited dose-dependent effects in anti-inflammatory and analgesic aspects. Compared with model group, the writhing times of in groups of different doses of QSD (15.6 g/kg and 31.2 g/kg (oral administration = p.o.)) were reduced by 33.0% and 45.8% and indicated the QSD showed significant (p < 0.05) peripheral analgesic effect. QSD ((31.2 g/kg), p.o.) showed significant(p < 0.05) analgesic effect in the hot plate test. Inhibition rates of QSD ((15.6 g/kg and 31.2 g/kg), p.o.) in ear swelling test induced by p-xylene were 27.5% and 54.6% and demonstrated the significant (p < 0.05) anti-inflammatory activity. QSD ((31.2 g/kg), p.o.) significantly (p < 0.05) reduced times of paw licking in formalin test, and its inhibition rates were 34.3% and 28.0% in Phase I and Phase Ⅱ response, respectively. Western blot results showed that QSD inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) protein and cAMP response element-binding protein (CREB). CONCLUSIONS These results of this study undoubtedly confirmed that QSD expressed obvious analgesic and anti-inflammatory activities. Anti-inflammatory and analgesic effects of QSD may be achieved by regulating the MAPKs protein and further regulating the expression of CREB. In all, QSD may play an anti-inflammatory and analgesic role through a variety of active ingredients.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chunhao Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Baihui Wang
- Department of Harbin Medical University, Harbin, Heilongjiang, China
| | - Libo Wang
- Department of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Huang
- Department of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinhui Wang
- Department of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. PHYTOCHEMISTRY 2021; 192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | | | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
15
|
Shahid A, Khurshid M, Aslam B, Muzammil S, Mehwish HM, Rajoka MSR, Hayat HF, Sarfraz MH, Razzaq MK, Nisar MA, Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J Basic Microbiol 2021; 62:1125-1142. [PMID: 34747529 DOI: 10.1002/jobm.202100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
The wide diversity of cyanobacterial species and their role in a variety of biological activities have been reported in the previous few years. Cyanobacteria, especially from marine sources, constitutes a major source of biologically active metabolites that have gained great attention especially due to their anticancer potential. Numerous chemically diverse metabolites from various cyanobacterial species have been recognized to inhibit the growth and progression of tumor cells through the induction of apoptosis in many different types of cancers. These metabolites activate the apoptosis in the cancer cells by different molecular mechanisms, however, the dysregulation of the mitochondrial pathway, death receptors signaling pathways, and the activation of several caspases are the crucial mechanisms that got considerable interest. The array of metabolites and the range of mechanisms involved may also help to overcome the resistance acquired by the different tumor types against the ongoing therapeutic agents. Therefore, the primary or secondary metabolites from the cyanobacteria as well as their synthetic derivates could be used to develop novel anticancer drugs alone or in combination with other chemotherapeutic agents. In this study, we have discussed the role of cyanobacterial metabolites in the induction of cytotoxicity and the potential to inhibit the growth of cancer cells through the induction of apoptosis, cell signaling alteration, oxidative damage, and mitochondrial dysfunctions. Moreover, the various metabolites produced by cyanobacteria have been summarized with their anticancer mechanisms. Furthermore, the ongoing trials and future developments for the therapeutic implications of these compounds in cancer therapy have been discussed.
Collapse
Affiliation(s)
- Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, China.,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hafiz Fakhar Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
16
|
Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mar Drugs 2021; 19:md19100562. [PMID: 34677461 PMCID: PMC8537899 DOI: 10.3390/md19100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are considered to be one of the most important ion channels given their remarkable physiological role. VGSCs constitute a family of large transmembrane proteins that allow transmission, generation, and propagation of action potentials. This occurs by conducting Na+ ions through the membrane, supporting cell excitability and communication signals in various systems. As a result, a wide range of coordination and physiological functions, from locomotion to cognition, can be accomplished. Drugs that target and alter the molecular mechanism of VGSCs’ function have highly contributed to the discovery and perception of the function and the structure of this channel. Among those drugs are various marine toxins produced by harmful microorganisms or venomous animals. These toxins have played a key role in understanding the mode of action of VGSCs and in mapping their various allosteric binding sites. Furthermore, marine toxins appear to be an emerging source of therapeutic tools that can relieve pain or treat VGSC-related human channelopathies. Several studies documented the effect of marine toxins on VGSCs as well as their pharmaceutical applications, but none of them underlined the principal marine toxins and their effect on VGSCs. Therefore, this review aims to highlight the neurotoxins produced by marine animals such as pufferfish, shellfish, sea anemone, and cone snail that are active on VGSCs and discuss their pharmaceutical values.
Collapse
|
17
|
Proteome Response of Meretrix Bivalves Hepatopancreas Exposed to Paralytic Shellfish Toxins Producing Dinoflagellate Gymnodinium catenatum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix bivalves and PSTs-producing dinoflagellates are scarcely known. This study compared the protein expression profiles between PSP toxin-contaminated and non-PSP toxin contaminated M. meretrix, determined proteome responses and identified potential biomarkers based on feeding experiments. Results showed that the content of total PSP toxins in contaminated bivalves was 40.63 ± 4.08 μg saxitoxin (STX) equivalents per gram, with 95.3% in hepatopancreas, followed by gill (1.82%) and foot (1.79%). According to two-dimensional gel electrophoresis (2-DE), 15 differentially expressed proteins (at least 2-fold difference) between the hepatopancreas of bivalves with and without PSP toxins were detected. Eight of them were successfully identified by MALDI-TOF MS. These were catalase, protein ultraspiracle homolog, G2 and S phase-expression protein, paramyosin, Mn-superoxide dismutase, response regulator receiver domain-containing protein, sarcoplasmic calcium-binding protein and major facilitator superfamily transporters. The differences in the expression levels of the last three proteins involving in cell signaling, structure and membrane transport were 4.2, 5.3 and 4.9-fold, respectively. These proteins could be further developed as potential biomarkers. The other two up-regulated proteins, Mn-superoxide dismutase and catalase, were involved in cell defence mechanisms against oxidative stress, suggesting PSP toxin acts as xenobiotics and poses oxidative stress in bivalves. This study gives insights into the response of bivalves to PSP toxin-producing dinoflagellate at the proteomic level and the potential of using 2-DE to develop specific protein markers in bivalves.
Collapse
|
18
|
Cyanotoxins and the Nervous System. Toxins (Basel) 2021; 13:toxins13090660. [PMID: 34564664 PMCID: PMC8472772 DOI: 10.3390/toxins13090660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health.
Collapse
|
19
|
Murray JS, Finch SC, Puddick J, Rhodes LL, Harwood DT, van Ginkel R, Prinsep MR. Acute Toxicity of Gambierone and Quantitative Analysis of Gambierones Produced by Cohabitating Benthic Dinoflagellates. Toxins (Basel) 2021; 13:toxins13050333. [PMID: 34063025 PMCID: PMC8147941 DOI: 10.3390/toxins13050333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the toxicity and production rates of the various secondary metabolites produced by Gambierdiscus and cohabitating benthic dinoflagellates is essential to unravelling the complexities associated with ciguatera poisoning. In the present study, a sulphated cyclic polyether, gambierone, was purified from Gambierdiscus cheloniae CAWD232 and its acute toxicity was determined using intraperitoneal injection into mice. It was shown to be of low toxicity with an LD50 of 2.4 mg/kg, 9600 times less toxic than the commonly implicated Pacific ciguatoxin-1B, indicating it is unlikely to play a role in ciguatera poisoning. In addition, the production of gambierone and 44-methylgambierone was assessed from 20 isolates of ten Gambierdiscus, two Coolia and two Fukuyoa species using quantitative liquid chromatography–tandem mass spectrometry. Gambierone was produced by seven Gambierdiscus species, ranging from 1 to 87 pg/cell, and one species from each of the genera Coolia and Fukuyoa, ranging from 2 to 17 pg/cell. The production of 44-methylgambierone ranged from 5 to 270 pg/cell and was ubiquitous to all Gambierdiscus species tested, as well as both species of Coolia and Fukuyoa. The relative production ratio of these two secondary metabolites revealed that only two species produced more gambierone, G. carpenteri CAWD237 and G. cheloniae CAWD232. This represents the first report of gambierone acute toxicity and production by these cohabitating benthic dinoflagellate species. While these results demonstrate that gambierones are unlikely to pose a risk to human health, further research is required to understand if they bioaccumulate in the marine food web.
Collapse
Affiliation(s)
- J. Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
- Correspondence:
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand;
| | - Jonathan Puddick
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Lesley L. Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
- New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (J.P.); (L.L.R.); (D.T.H.); (R.v.G.)
| | - Michèle R. Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
20
|
Setayesh-Mehr Z, Poorsargol M. Toxic proteins application in cancer therapy. Mol Biol Rep 2021; 48:3827-3840. [PMID: 33895972 DOI: 10.1007/s11033-021-06363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
21
|
Pitzer EM, Williams MT, Vorhees CV. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol 2021; 87:106983. [PMID: 33848594 PMCID: PMC8440325 DOI: 10.1016/j.ntt.2021.106983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Deltamethrin (DLM) is a Type II pyrethroid pesticide widely used in agriculture, homes, public spaces, and medicine. Epidemiological studies report that increased pyrethroid exposure during development is associated with neurobehavioral disorders. This raises concern about the safety of these chemicals for children. Few animal studies have explored the long-term effects of developmental exposure to DLM on the brain. Here we review the CNS effects of pyrethroids, with emphasis on DLM. Current data on behavioral and cognitive effects after developmental exposure are emphasized. Although, the acute mechanisms of action of DLM are known, how these translate to long-term effects is only beginning to be understood. But existing data clearly show there are lasting effects on locomotor activity, acoustic startle, learning and memory, apoptosis, and dopamine in mice and rats after early exposure. The most consistent neurochemical findings are reductions in the dopamine transporter and the dopamine D1 receptor. The data show that DLM is developmentally neurotoxic but more research on its mechanisms of long-term effects is needed.
Collapse
Affiliation(s)
- Emily M Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27709, United States of America.
| | - Michael T Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Charles V Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
22
|
Geffroy S, Lechat MM, Le Gac M, Rovillon GA, Marie D, Bigeard E, Malo F, Amzil Z, Guillou L, Caruana AMN. From the sxtA4 Gene to Saxitoxin Production: What Controls the Variability Among Alexandrium minutum and Alexandrium pacificum Strains? Front Microbiol 2021; 12:613199. [PMID: 33717003 PMCID: PMC7944994 DOI: 10.3389/fmicb.2021.613199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Paralytic shellfish poisoning (PSP) is a human foodborne syndrome caused by the consumption of shellfish that accumulate paralytic shellfish toxins (PSTs, saxitoxin group). In PST-producing dinoflagellates such as Alexandrium spp., toxin synthesis is encoded in the nuclear genome via a gene cluster (sxt). Toxin production is supposedly associated with the presence of a 4th domain in the sxtA gene (sxtA4), one of the core genes of the PST gene cluster. It is postulated that gene expression in dinoflagellates is partially constitutive, with both transcriptional and post-transcriptional processes potentially co-occurring. Therefore, gene structure and expression mode are two important features to explore in order to fully understand toxin production processes in dinoflagellates. In this study, we determined the intracellular toxin contents of twenty European Alexandrium minutum and Alexandrium pacificum strains that we compared with their genome size and sxtA4 gene copy numbers. We observed a significant correlation between the sxtA4 gene copy number and toxin content, as well as a moderate positive correlation between the sxtA4 gene copy number and genome size. The 18 toxic strains had several sxtA4 gene copies (9-187), whereas only one copy was found in the two observed non-toxin producing strains. Exploration of allelic frequencies and expression of sxtA4 mRNA in 11 A. minutum strains showed both a differential expression and specific allelic forms in the non-toxic strains compared with the toxic ones. Also, the toxic strains exhibited a polymorphic sxtA4 mRNA sequence between strains and between gene copies within strains. Finally, our study supported the hypothesis of a genetic determinism of toxin synthesis (i.e., the existence of several genetic isoforms of the sxtA4 gene and their copy numbers), and was also consistent with the hypothesis that constitutive gene expression and moderation by transcriptional and post-transcriptional regulation mechanisms are the cause of the observed variability in the production of toxins by A. minutum.
Collapse
Affiliation(s)
| | | | | | | | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Laure Guillou
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | |
Collapse
|
23
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d'Histoire Naturelle, Paris, FR
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l'Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
24
|
Biosynthesis of marine toxins. Curr Opin Chem Biol 2020; 59:119-129. [DOI: 10.1016/j.cbpa.2020.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
25
|
Kumari N, Dalal V, Kumar P, Rath SN. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. J Biomol Struct Dyn 2020; 40:2395-2406. [DOI: 10.1080/07391102.2020.1839558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Regenerative Medicine and Stem Cells Laboratory, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Vikram Dalal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Regenerative Medicine and Stem Cells Laboratory, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
26
|
Mondal A, Bose S, Banerjee S, Patra JK, Malik J, Mandal SK, Kilpatrick KL, Das G, Kerry RG, Fimognari C, Bishayee A. Marine Cyanobacteria and Microalgae Metabolites-A Rich Source of Potential Anticancer Drugs. Mar Drugs 2020; 18:E476. [PMID: 32961827 PMCID: PMC7551136 DOI: 10.3390/md18090476] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, West Bengal, India
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, West Bengal, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Jai Malik
- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160 014, Punjab, India;
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713 206, West Bengal, India;
| | | | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751 004, Odisha, India;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
27
|
3'-O-Methylorobol Inhibits the Voltage-Gated Sodium Channel Nav1.7 with Anti-Itch Efficacy in A Histamine-Dependent Itch Mouse Model. Int J Mol Sci 2019; 20:ijms20236058. [PMID: 31805638 PMCID: PMC6928743 DOI: 10.3390/ijms20236058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
An itch is a clinical complication that affects millions of patients. However, few treatment options are available. The voltage-gated sodium channel Nav1.7 is predominantly expressed in peripheral sensory neurons and is responsible for the rising phase of action potentials, thereby mediating nociceptive conduction. A gain-of-function mutation of Nav1.7 results in the hyperexcitability of sensory neurons and causes the inherited paroxysmal itch. Conversely, a monoclonal antibody that selectively inhibits Nav1.7 is able to effectively suppress the histamine-dependent itch in mice. Therefore, Nav1.7 inhibitors may possess the potential to relieve the itch. In the present study, using whole-cell voltage-clamp recordings, we demonstrated that 3’-O-methylorobol inhibited Na+ currents in Nav1.7-CHO cells and tetrodotoxin-sensitive Na+ currents in mouse dorsal root ganglion (DRG) neurons with IC50 (half-maximal inhibitory concentration) values of 3.46 and 6.60 μM, respectively. 3’-O-methylorobol also suppressed the tetrodotoxin-resistant Na+ currents in DRG neurons, though with reduced potency (~43% inhibition at 30 µM). 3’-O-methylorobol (10 µM) affected the Nav1.7 by shifting the half-maximal voltage (V1/2) of activation to a depolarizing direction by ~6.76 mV, and it shifted the V1/2 of inactivation to a hyperpolarizing direction by ~16.79 mV. An analysis of 3’-O-methylorobol activity toward an array of itch targets revealed that 3’-O-methylorobol was without effect on histamine H1 receptor, TRPV1, TRPV3, TRPV4, TRPC4 and TRPM8. The intrathecal administration of 3’-O-methylorobol significantly attenuated compound 48/80-induced histamine-dependent spontaneous scratching bouts and the expression level of c-fos in the nuclei of spinal dorsal horn neurons with a comparable efficacy to that of cyproheptadine. Our data illustrated the therapeutic potential for 3’-O-methylorobol for histamine-dependent itching, and the small molecule inhibition of Nav1.7 may represent a useful strategy to develop novel therapeutics for itching.
Collapse
|
28
|
Aballay-González A, Gallardo-Rodriguez JJ, Silva-Higuera M, Rivera A, Ulloa V, Delgado-Rivera L, Rivera-Belmar A, Astuya A. Neuro-2a cell-based assay for toxicity equivalency factor - proposal and evaluation in Chilean contaminated shellfish samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:162-173. [DOI: 10.1080/19440049.2019.1676919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ambbar Aballay-González
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | | | - Macarena Silva-Higuera
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Alejandra Rivera
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Viviana Ulloa
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Lorena Delgado-Rivera
- Laboratorio de Toxinas Marinas y Micotoxinas, Sección de Química de Alimentos, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Andrea Rivera-Belmar
- Departamento de Alimentación y Nutrición, División de Salud y Política Pública, Subsecretaría de Salud Pública, Ministerio de Salud, Santiago, Chile
| | - Allisson Astuya
- Laboratorio de Biotoxinas UdeC, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
29
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
30
|
Xu L, Ding X, Wang T, Mou S, Sun H, Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 2019; 24:1389-1397. [PMID: 31129313 DOI: 10.1016/j.drudis.2019.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Voltage-gated sodium channels (VGSCs), formed by 24 transmembrane segments arranged into four domains, have a key role in the initiation and propagation of electrical signaling in excitable cells. VGSCs are involved in a variety of diseases, including epilepsy, cardiac arrhythmias, and neuropathic pain, and therefore have been regarded as appealing therapeutic targets for the development of anticonvulsant, antiarrhythmic, and local anesthetic drugs. In this review, we discuss recent advances in understanding the structures and biological functions of VGSCs. In addition, we systematically summarize eight pharmacologically distinct ligand-binding sites in VGSCs and representative isoform-selective VGSC modulators in clinical trials. Finally, we review studies on molecular modeling and computer-aided drug design (CADD) for VGSCs to help understanding of biological processes involving VGSCs.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoqin Ding
- Beijing Institute of Pharmaceutical Chemistry, Beijing 102205, China
| | - Tianhu Wang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shanzhi Mou
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Lukowski AL, Narayan ARH. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019; 20:1231-1241. [PMID: 30605564 PMCID: PMC6579537 DOI: 10.1002/cbic.201800754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.
Collapse
Affiliation(s)
- April L Lukowski
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Shen H, Liu D, Wu K, Lei J, Yan N. Structures of human Na v1.7 channel in complex with auxiliary subunits and animal toxins. Science 2019; 363:1303-1308. [PMID: 30765606 DOI: 10.1126/science.aaw2493] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Voltage-gated sodium channel Nav1.7 represents a promising target for pain relief. Here we report the cryo-electron microscopy structures of the human Nav1.7-β1-β2 complex bound to two combinations of pore blockers and gating modifier toxins (GMTs), tetrodotoxin with protoxin-II and saxitoxin with huwentoxin-IV, both determined at overall resolutions of 3.2 angstroms. The two structures are nearly identical except for minor shifts of voltage-sensing domain II (VSDII), whose S3-S4 linker accommodates the two GMTs in a similar manner. One additional protoxin-II sits on top of the S3-S4 linker in VSDIV The structures may represent an inactivated state with all four VSDs "up" and the intracellular gate closed. The structures illuminate the path toward mechanistic understanding of the function and disease of Nav1.7 and establish the foundation for structure-aided development of analgesics.
Collapse
Affiliation(s)
- Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- Medical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Lukowski AL, Ellinwood DC, Hinze ME, DeLuca RJ, Du Bois J, Hall S, Narayan ARH. C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis. J Am Chem Soc 2018; 140:11863-11869. [PMID: 30192526 PMCID: PMC6558983 DOI: 10.1021/jacs.8b08901] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The remarkable degree of synthetic selectivity found in Nature is exemplified by the biosynthesis of paralytic shellfish toxins such as saxitoxin. The polycyclic core shared by saxitoxin and its relatives is assembled and subsequently elaborated through the installation of hydroxyl groups with exquisite precision that is not possible to replicate with traditional synthetic methods. Here, we report the identification of the enzymes that carry out a subset of C-H functionalizations involved in paralytic shellfish toxin biosynthesis. We have shown that three Rieske oxygenases mediate hydroxylation reactions with perfect site- and stereoselectivity. Specifically, the Rieske oxygenase SxtT is responsible for selective hydroxylation of a tricyclic precursor to the famous natural product saxitoxin, and a second Rieske oxygenase, GxtA, selectively hydroxylates saxitoxin to access the oxidation pattern present in gonyautoxin natural products. Unexpectedly, a third Rieske oxygenase, SxtH, does not hydroxylate tricyclic intermediates, but rather a linear substrate prior to tricycle formation, rewriting the biosynthetic route to paralytic shellfish toxins. Characterization of SxtT, SxtH, and GxtA is the first demonstration of enzymes carrying out C-H hydroxylation reactions in paralytic shellfish toxin biosynthesis. Additionally, the reactions of these oxygenases with a suite of saxitoxin-related molecules are reported, highlighting the substrate promiscuity of these catalysts and the potential for their application in the synthesis of natural and unnatural saxitoxin congeners.
Collapse
Affiliation(s)
- April L. Lukowski
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Duncan C. Ellinwood
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Meagan E. Hinze
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan J. DeLuca
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Sherwood Hall
- United States Food and Drug Administration, College Park, Maryland 20740
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
34
|
Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion Venom-Toxins that Aid in Drug Development: A Review. Int J Pept Res Ther 2018; 25:27-37. [PMID: 32214927 PMCID: PMC7088386 DOI: 10.1007/s10989-018-9721-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/01/2022]
Abstract
Scorpion venom components have multifaceted orientation against bacterial, viral, fungal infections and other neuronal disorders. They can modulate the ion channels (K+, Na+, Cl−, Ca2+) of our body and this concept has been hypothesized in formulating pharmaceuticals. The triumphant achievement of these venom components as formulated anticancer agent in Phase I and Phase II clinical trials allure researchers to excavate beneficial venom components prohibiting DNA replication in malignant tumor cells. This review brings forth the achievements of Science and Technology in classifying the venom components as therapeutics and further application in drug product development.
Collapse
Affiliation(s)
- Arijit Ghosh
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Rini Roy
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Monoswini Nandi
- 2Department of Molecular Biology and Biotechnology, Kalyani University, University Road, Near Kalyani Ghoshpara Railway Station, District Nadia, Kalyani, West Bengal 741235 India
| | - Ashis Mukhopadhyay
- 3Department of Hemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India.,4Netaji Subhas Chandra Bose Cancer Research Institute, Park Street, Kolkata, West Bengal 700016 India
| |
Collapse
|
35
|
Wu Y, Ma H, Zhang F, Zhang C, Zou X, Cao Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem Neurosci 2018; 9:187-197. [PMID: 29161016 DOI: 10.1021/acschemneuro.7b00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play critical roles in action potential generation and propagation. Nav channelopathy as well as pathological sensitization contribute to allodynia and hyperalgesia. Recent evidence has demonstrated the significant roles of Nav subtypes (Nav1.3, 1.7, 1.8, and 1.9) in nociceptive transduction, and therefore these Navs may represent attractive targets for analgesic drug discovery. Animal toxins are structurally diverse peptides that are highly potent yet selective on ion channel subtypes and therefore represent valuable probes to elucidate the structures, gating properties, and cellular functions of ion channels. In this review, we summarize recent advances on peptide toxins from animal venom that selectively target Nav1.3, 1.7, 1.8, and 1.9, along with their potential in analgesic drug discovery.
Collapse
Affiliation(s)
- Ying Wu
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohan Zou
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
36
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
37
|
Shi Y, Moazami Y, Pierce JG. Structure, synthesis and biological properties of the pentacyclic guanidinium alkaloids. Bioorg Med Chem 2017; 25:2817-2824. [PMID: 28404523 PMCID: PMC5494716 DOI: 10.1016/j.bmc.2017.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022]
Abstract
The pentacyclic guanidinium alkaloids (PGAs) are a family of marine natural products that possess a polycyclic guanidine-containing core and a long alkyl chain tethered spermidine-derived tail that is rarely observed in other natural products. These natural products exhibit potent activities on a wide range of organisms and therefore have attracted the attention of many synthetic chemists; however, the structure-activity relationships and mechanisms of action of PGAs remain largely elusive. Herein we summarize the structure, synthesis, toxicity and mechanisms of action of PGAs and highlight their potential as chemical probes and/or therapeutic leads.
Collapse
Affiliation(s)
- Yunlong Shi
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States
| | - Yasamin Moazami
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States
| | - Joshua G Pierce
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States.
| |
Collapse
|
38
|
Adams NG, Robertson A, Grattan LM, Pendleton S, Roberts S, Tracy JK, Trainer VL. Assessment of sodium channel mutations in Makah Tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning. HARMFUL ALGAE 2016; 57:26-34. [PMID: 27616973 PMCID: PMC5015773 DOI: 10.1016/j.hal.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, we aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah Tribal members to saxitoxin is not a function of Nav1.4 modification but may be due to mutations in neuronal or cardiac sodium channels or some other mechanism unrelated to sodium channel function.
Collapse
Affiliation(s)
- Nicolaus G Adams
- Marine Biotoxins Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| | - Alison Robertson
- Department of Marine Sciences, University of South Alabama, 5871 University Boulevard North, Mobile, Alabama 36688 United States; Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 United States
| | - Lynn M Grattan
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - Steve Pendleton
- Makah Tribe, Environmental Health Division, P.O. Box 115, Neah Bay, Washington 98357, United States
| | - Sparkle Roberts
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - J Kathleen Tracy
- Department of Neurology, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, Maryland 21201, United States
| | - Vera L Trainer
- Marine Biotoxins Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| |
Collapse
|
39
|
Detection of marine microalgal biotoxins using bioassays based on functional expression of tunicate xenobiotic receptors in yeast. Toxicon 2015; 95:13-22. [DOI: 10.1016/j.toxicon.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022]
|
40
|
Zhang X, Tian X, Ma L, Feng B, Liu Q, Yuan L, Fan C, Huang H, Huang H, Yang Q. Biodiversity of the Symbiotic Bacteria Associated with Toxic Marine Dinoflagellate Alexandrium tamarense. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbm.2015.36004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR, Jüttner F, Botana LM. Hapalindoles from the Cyanobacterium Fischerella: Potential Sodium Channel Modulators. Chem Res Toxicol 2014; 27:1696-706. [DOI: 10.1021/tx500188a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Cagide
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Paul G. Becher
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - M. Carmen Louzao
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Begoña Espiña
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Friedrich Jüttner
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|