1
|
Hort V, Bourcier S. Discovery of a series of portimine-A fatty acid esters in mussels. HARMFUL ALGAE 2024; 134:102621. [PMID: 38705617 DOI: 10.1016/j.hal.2024.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Vulcanodinium rugosum is a benthic dinoflagellate known for producing pinnatoxins, pteriatoxins, portimines and kabirimine. In this study, we aimed to identify unknown analogs of these emerging toxins in mussels collected in the Ingril lagoon, France. First, untargeted data acquisitions were conducted by means of liquid chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Data processing involved a molecular networking approach, and a workflow dedicated to the identification of biotransformed metabolites. Additionally, targeted analyses by liquid chromatography coupled to triple quadrupole mass spectrometry were also implemented to further investigate and confirm the identification of new compounds. For the first time, a series of 13-O-acyl esters of portimine-A (n = 13) were identified, with fatty acid chains ranging between C12:0 and C22:6. The profile was dominated by the palmitic acid conjugation. This discovery was supported by fractionation experiments combined with the implementation of a hydrolysis reaction, providing further evidence of the metabolite identities. Furthermore, several analogs were semi-synthesized, definitively confirming the discovery of these metabolization products. A new analog of pinnatoxin, with a molecular formula of C42H65NO9, was also identified across the year 2018, with the highest concentration observed in August (4.5 μg/kg). The MS/MS data collected for this compound exhibited strong structural similarities with PnTX-A and PnTX-G, likely indicating a substituent C2H5O2 in the side chain at C33. The discovery of these new analogs will contribute to deeper knowledge of the chemodiversity of toxins produced by V. rugosum or resulting from shellfish metabolism, thereby improving our ability to characterize the risks associated with these emerging toxins.
Collapse
Affiliation(s)
- Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), 94701 Maisons-Alfort, France.
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
2
|
Barreiro-Crespo L, Fernández-Tejedor M, Diogène J, Rambla-Alegre M. The Temporal Distribution of Cyclic Imines in Shellfish in the Bays of Fangar and Alfacs, Northwestern Mediterranean Region. Toxins (Basel) 2023; 16:10. [PMID: 38251227 PMCID: PMC10819045 DOI: 10.3390/toxins16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Spirolides (SPXs), gymnodimines (GYMs), and pinnatoxins (PnTXs) have been detected in shellfish from the northwestern Mediterranean coast of Spain. Several samples of bivalves were collected from Fangar Bay and Alfacs Bay in Catalonia over a period of over 7 years (from 2015 to 2021). Shellfish samples were analyzed for cyclic imines (CIs) on an LC1200 Agilent and 3200 QTrap triple-quadrupole mass spectrometer. In shellfish, SPX-1 was detected in two cases (of 26.5 µg/kg and 34 µg/kg), and GYM-A was only detected in trace levels in thirteen samples. Pinnatoxin G (PnTX-G) was detected in 44.6% of the samples, with its concentrations ranging from 2 µg/kg to 38.4 µg/kg. Statistical analyses revealed that seawater temperature influenced the presence or absence of these toxins. PnTX-G showed an extremely significant presence/temperature relationship in both bays in comparison to SPX-1 and GYM-A. The prevalence of these toxins in different bivalve mollusks was evaluated. A seasonal pattern was observed, in which the maximum concentrations were found in the winter months for SPX-1 and GYM-A but in the summer months for PnTX-G. The obtained results indicate that it is unlikely that CIs in the studied area pose a potential health risk through the consumption of a seafood diet. However, further toxicological information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
- Lourdes Barreiro-Crespo
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43002 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| |
Collapse
|
3
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
4
|
Sibat M, Mai T, Tanniou S, Biegala I, Hess P, Jauffrais T. Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins (Basel) 2023; 15:642. [PMID: 37999505 PMCID: PMC10674433 DOI: 10.3390/toxins15110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 μg kg-1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export.
Collapse
Affiliation(s)
- Manoëlla Sibat
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Tepoerau Mai
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
- Institut Louis Malardé (ILM), 98713 Papeete, Tahiti, French Polynesia
| | - Simon Tanniou
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Isabelle Biegala
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, France;
| | - Philipp Hess
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
| |
Collapse
|
5
|
Bouquet A, Thébault A, Arnich N, Foucault E, Caillard E, Gianaroli C, Bellamy E, Rolland JL, Laabir M, Abadie E. Modelling spatiotemporal distributions of Vulcanodinium rugosum and pinnatoxin G in French Mediterranean lagoons: Application to human health risk characterisation. HARMFUL ALGAE 2023; 129:102500. [PMID: 37951616 DOI: 10.1016/j.hal.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Consumption of seafood contaminated by phycotoxins produced by harmful algae is a major issue in human public health. Harmful algal blooms are driven by a multitude of environmental variables; therefore predicting human dietary exposure to phycotoxins based on these variables is a promising approach in health risk management. In this study, we attempted to predict the human health risks associated with Vulcanodinium rugosum and its neurotoxins, pinnatoxins (PnTXs), which have been regularly found in Mediterranean lagoons since their identification in 2011. Based on environmental variables collected over 1 year in four Mediterranean lagoons, we developed linear mixed models to predict the presence of V. rugosum and PnTX G contamination of mussels. We found that the occurrence of V. rugosum was significantly associated with seawater temperature. PnTX G contamination of mussels was highest in summer but persisted throughout the year. This contamination was significantly associated with seawater temperature and the presence of V. rugosum with a time lag, but not with dissolved PnTX G in seawater. By using the contamination model predictions and their potential variability/uncertainty, we calculated the human acute dietary exposures throughout the year and predicted that 25% of people who consume mussels could exceed the provisional acute benchmark value during the warmest periods. We suggest specific recommendations to monitor V. rugosum and PnTX G.
Collapse
Affiliation(s)
- Aurélien Bouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France.
| | - Anne Thébault
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Nathalie Arnich
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Elodie Foucault
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Caillard
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Camille Gianaroli
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Bellamy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Jean Luc Rolland
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Mohamed Laabir
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095 Montpellier, France
| | - Eric Abadie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France; IFREMER, Biodivenv, 79 Route de Pointe Fort, 97231 Martinique, France
| |
Collapse
|
6
|
Rossignoli AE, Ben-Gigirey B, Cid M, Mariño C, Martín H, Garrido S, Rodríguez F, Blanco J. Lipophilic Shellfish Poisoning Toxins in Marine Invertebrates from the Galician Coast. Toxins (Basel) 2023; 15:631. [PMID: 37999494 PMCID: PMC10675701 DOI: 10.3390/toxins15110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
For the purpose of assessing human health exposure, it is necessary to characterize the toxins present in a given area and their potential impact on commercial species. The goal of this research study was: (1) to screen the prevalence and concentrations of lipophilic toxins in nine groups of marine invertebrates in the northwest Iberian Peninsula; (2) to evaluate the validity of wild mussels (Mytilus galloprovincialis) as sentinel organisms for the toxicity in non-bivalve invertebrates from the same area. The screening of multiple lipophilic toxins in 1150 samples has allowed reporting for the first time the presence of 13-desmethyl spirolide C, pinnatoxin G, okadaic acid, and dinophysistoxins 2 in a variety of non-traditional vectors. In general, these two emerging toxins showed the highest prevalence (12.5-75%) in most of the groups studied. Maximum levels for 13-desmethyl spirolide C and pinnatoxin G were found in the bivalves Magallana gigas (21 µg kg-1) and Tellina donacina (63 µg kg-1), respectively. However, mean concentrations for the bivalve group were shallow (2-6 µg kg-1). Okadaic acid and dinophysistoxin 2 with lower prevalence (1.6-44.4%) showed, on the contrary, very high concentration values in specific species of crustaceans and polychaetes (334 and 235 µg kg--1, respectively), to which special attention should be paid. Statistical data analyses showed that mussels could be considered good biological indicators for the toxicities of certain groups in a particular area, with correlations between 0.710 (for echinoderms) and 0.838 (for crustaceans). Polychaetes could be an exception, but further extensive surveys would be needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
- Xefatura Territorial de Vigo, Consellería do Mar, Xunta de Galicia, Concepción Areal nº8, 4, 36201 Vigo, Spain
| | - Begoña Ben-Gigirey
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
| | - Mónica Cid
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| | - Soledad Garrido
- Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain; (S.G.)
| | - Francisco Rodríguez
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
- Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain; (S.G.)
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| |
Collapse
|
7
|
Seo N, Jo HY, Lee SG, Kim HJ, Oh MJ, Kim YS, Ro S, Jeon YJ, An HJ. An enhanced LC-MRM-MS platform for sensitive and simultaneous quantification of cyclic imines in shellfish. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123883. [PMID: 37716343 DOI: 10.1016/j.jchromb.2023.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Cyclic imines (CIs) produced by microalgae species and accumulating in the food chain of marine organisms are novel biotoxins that do not belong to the classical group of marine biotoxins. In the past, CIs were found only in limited areas, but in recent years, rapid changes in marine ecosystems have led to widespread CIs, increasing exposure to toxic risks. Monitoring of CIs is therefore required, but still analytically challenging due to the presence of high levels of analogues and interference from other lipophilic substances. Herein, we developed the LC/MRM-MS-based quantitative platform that can selectively enrich for marine-derived CIs and monitor seven CIs simultaneously: pinnatoxin (PnTX E, PnTX F, PnTX G), gymnodimine (GYM A), and spirolide (13-desMe SPX C, 13,19-didesMe SPX C, 20-Me SPX G). In particular, the combination of chromatographic separation by the hydrophobic nature of intrinsic residues of CIs with monitoring of CI structure-specific product ions generated by CID-MS/MS significantly improves the selectivity and sensitivity for quantitative analysis. Indeed, three CIs corresponding to PnTX G, GYM A, and 13-desMe SPX C could be successfully determined at the level of part-per-trillion (ppt) in three species of shellfish collected around the Korean Peninsula. Our analysis revealed that the expression of CIs in the Korean Peninsula was more influenced by the season rather than the species. This analytical platform with high sensitivity can be applied not only to marine biology but also to various other fields requiring CI analysis. Key Contribution: A highly sensitive analytical method for the simultaneous quantitation of cyclic imines based on LC/MRM-MS has been developed.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Hee Young Jo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Sang Gil Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Hong Ju Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Young Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Special Self-Governing Province, 63333, Republic of Korea
| | - Sunil Ro
- Department of Life Science, Merck Ltd. Korea, Seoul, 06178, Republic of Korea
| | - You Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Pućko M, Rourke W, Hussherr R, Archambault P, Eert J, Majewski AR, Niemi A, Reist J, Michel C. Phycotoxins in bivalves from the western Canadian Arctic: The first evidence of toxigenicity. HARMFUL ALGAE 2023; 127:102474. [PMID: 37544674 DOI: 10.1016/j.hal.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023]
Abstract
This study presents the first evidence that a diverse suite of phycotoxins is not only being actively produced by the toxigenic algal communities in the Canadian Arctic waters, but is also entering the marine food web. We detected measurable amounts of Amnesic Shellfish Toxins (ASTs) and Paralytic Shellfish Toxins (PSTs), as well as trace amounts of other lipophilic toxin groups including pectenotoxins, yessotoxins, and cyclic imines, in bivalves collected from the Canadian Beaufort Sea in 2014 and 2018. There appear to be species-specific differences in accumulation and retention of AST by Arctic bivalves, with significantly higher concentrations recorded in Nuculanidae than Propeamussiidae, likely reflecting physiological and allometric differences. We further confirm the omnipresence of potentially toxic taxonomically-versatile phytoplankton communities in the western Canadian Arctic comprising Pseudo-nitzschia delicatissima group, P. obtusa, Dinophysis acuminata, Prorocentrum minimum, Alexandrium tamarense, and Gymnodinium spp. Although measurements of actual toxicity levels and profiles of these species at the time of sampling fall outside of the scope of this study, we show that high abundance and competitive success of known AST-producers, Pseudo-nitzschia spp., are possible in Canadian Arctic waters. In 2014, a strong dominance of Pseudo-nitzschia spp. was observed at a few shallow coastal stations, representing nearly 40% of the total phytoplankton cell abundances with > 106 cells/L at the depth of maximum chlorophyll a. We further describe oceanographic conditions conducive to high abundances of toxin-producing algae, indicating that temperature is likely a key factor. Even though measured AST and PST concentrations in bivalve tissue remained well below the Health Canada's levels at which monitored fisheries would close, i.e., 5% and 4%, respectively, their presence demonstrate that phycotoxin accumulation is occurring in food webs of the Canadian Beaufort Sea. Yet, the phycotoxin production controls and trophic transfer mechanisms remain unknown. Canadian Arctic marine ecosystems are rapidly changing and temperatures are expected to continue to increase. Given that these changes simultaneously affect multiple, and often co-occurring, species of primary producers, adaptive capacity is likely to play an important role in the structure of phytoplankton communities in the Canadian Arctic.
Collapse
Affiliation(s)
- Monika Pućko
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| | - Wade Rourke
- Canadian Food Inspection Agency, Chemistry Laboratory, 1992 Agency Drive, Dartmouth, NS, B3B 1Y9, Canada
| | - Rachel Hussherr
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Philippe Archambault
- ArcticNet, Laval University, Department of Biology, 1045 Pavillon Alexandre Vachon, Québec City, QC, G1V 0A6, Canada
| | - Jane Eert
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC, V8L 4B2, Canada
| | - Andrew R Majewski
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Andrea Niemi
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Jim Reist
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Christine Michel
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| |
Collapse
|
9
|
Hort V, Bastardo-Fernández I, Nicolas M. Exploration of Vulcanodinium rugosum Toxins and their Metabolism Products in Mussels from the Ingril Lagoon Hotspot in France. Mar Drugs 2023; 21:429. [PMID: 37623710 PMCID: PMC10455521 DOI: 10.3390/md21080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Over the year 2018, we assessed toxin contamination of shellfish collected on a monthly basis in Ingril Lagoon, France, a site known as a hotspot for Vulcanodinium rugosum growth. This short time-series study gave an overview of the presence and seasonal variability of pinnatoxins, pteriatoxins, portimines and kabirimine, all associated with V. rugosum, in shellfish. Suspect screening and targeted analysis approaches were implemented by means of liquid chromatography coupled to both low- and high-resolution mass spectrometry. We detected pinnatoxin-A and pinnatoxin-G throughout the year, with maximum levels for each one observed in June (6.7 µg/kg for pinnatoxin-A; 467.5 µg/kg for pinnatoxin-G), whereas portimine-A was detected between May and September (maximum level = 75.6 µg/kg). One of the main findings was the identification of a series of fatty acid esters of pinnatoxin-G (n = 13) although the levels detected were low. The profile was dominated by the palmitic acid conjugation of pinnatoxin-G. The other 12 fatty acid esters had not been reported in European shellfish to date. In addition, after thorough investigations, two compounds were detected, with one being probably identified as portimine-B, and the other one putatively attributed to pteriatoxins. If available, reference materials would have ensured full identification. Monitoring of these V. rugosum emerging toxins and their biotransformation products will contribute towards filling the data gaps pointed out in risk assessments and in particular the need for more contamination data for shellfish.
Collapse
Affiliation(s)
- Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Paris-Est University, 14 Rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France; (I.B.-F.); (M.N.)
| | | | | |
Collapse
|
10
|
Norambuena L, Mardones JI. Emerging phycotoxins in the Chilean coast: First localized detection of the neurotoxic cyclic imine Pinnatoxin-G in shellfish banks. MARINE POLLUTION BULLETIN 2023; 190:114878. [PMID: 37002965 DOI: 10.1016/j.marpolbul.2023.114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Pinnatoxins (PnTXs) produced by the cosmopolitan dinoflagellate Vulcanodinium rugosum are highly potent cyclic imines that represent a risk for seafood consumers, artisanal fisheries, and the local aquaculture industry. Among the eight known PnTXs, pinnatoxin-G (PnTX-G) is the most frequent toxin analog detected in shellfish. Despite PnTX-G is still not internationally regulated, the French Agency for Food, Environmental and Occupational Health and Safety established that a risk for human consumers may exist when the accumulation of PnTX-G in shellfish exceeds 23 μg kg-1. This study reports the first detection of these fast-acting lipophilic toxins in localized shellfish banks (Mytilus chilensis) from the Chilean coast. Among 32 sentinel sampling stations monthly monitored for phytotoxins detection and quantification between 2021 and 2022 along the southern Chilean coast (from 36°25' S to 54°57'S), PnTx-G was only detected in shellfish from the southernmost region of Magallanes in concentrations that ranged between 15 and 100 μg kg-1, highlighting the binational (Chile/Argentina) Beagle Channel as a 'hotspot'. As Chile is one of the major mussel producers worldwide, this result raises concern about the potential adverse effect of PnTXs for human health and point to the need of governmental actions for an enhanced monitoring of these emerging toxins. To date, the production of PnTXs has not yet been associated with any microalgae species in Chilean waters.
Collapse
Affiliation(s)
- Luis Norambuena
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Los Lagos, Chile
| | - Jorge I Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Los Lagos, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago 8370993, Chile.
| |
Collapse
|
11
|
Blanco J, Arévalo F, Moroño Á, Correa J, Rossignoli AE, Lamas JP. Spirolides in Bivalve Mollusk of the Galician (NW Spain) Coast: Interspecific, Spatial, Temporal Variation and Presence of an Isomer of 13-Desmethyl Spirolide C. Toxins (Basel) 2022; 15:13. [PMID: 36668833 PMCID: PMC9861247 DOI: 10.3390/toxins15010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Spirolides are cyclic imines whose risks to human health have not been sufficiently evaluated. To determine the possible impact of these compounds in Galicia (NW Spain), their presence and concentration in bivalve mollusk were studied from 2014 to 2021. Only 13-desmethyl spirolide C (13desmSPXC) and an isomer have been detected, and always at low concentrations. Mussel, Mytilus galloprovincialis, was the species which accumulated more spirolides, but the presence of its isomer was nearly restricted to cockle, Cerastoderma edule, and two clam species, Venerupis corrugata and Polititapes rhomboides. On average, the highest 13desmSPXC levels were found in autumn-winter, while those of its isomer were recorded in spring-summer. Both compounds showed decreasing trends during the study period. Geographically, the concentration tends to decrease from the southern to the north-eastern locations, but temporal variability predominates over spatial variability.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón, 36620 Vilanova de Arousa, Spain
| | - Fabiola Arévalo
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Ángeles Moroño
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Jorge Correa
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Araceli E. Rossignoli
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón, 36620 Vilanova de Arousa, Spain
| | - Juan Pablo Lamas
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| |
Collapse
|
12
|
Rossignoli AE, Lamas JP, Mariño C, Martín H, Blanco J. Enzymatic Biotransformation of 13-desmethyl Spirolide C by Two Infaunal Mollusk Species: The Limpet Patella vulgata and the Cockle Cerastoderma edule. Toxins (Basel) 2022; 14:toxins14120848. [PMID: 36548745 PMCID: PMC9786092 DOI: 10.3390/toxins14120848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The presence of a 13-desmethyl Spirolide C isomer (Iso-13-desm SPX C) is very common in some infaunal mollusks in Galicia contaminated with this toxin. Its possible origin by biological transformation was investigated by incubating homogenates of the soft tissues of limpets and cockles spiked with 13-desmethyl Spirolide C (13-desm SPX C). The involvement of an enzymatic process was also tested using a raw and boiled cockle matrix. The enzymatic biotransformation of the parent compound into its isomer was observed in the two species studied, but with different velocities. The structural similarity between 13-desm SPX C and its isomer suggests that epimerization is the most likely chemical process involved. Detoxification of marine toxins in mollusks usually implies the enzymatic biotransformation of original compounds, such as hydroxylation, demethylation, or esterification; however, this is the first time that this kind of transformation between spirolides in mollusks has been demonstrated.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
- Correspondence: (A.E.R.); (J.B.); Tel.: +34-886-206344 (A.E.R.); +34-886-206340 (J.B.)
| | - Juan Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
- Correspondence: (A.E.R.); (J.B.); Tel.: +34-886-206344 (A.E.R.); +34-886-206340 (J.B.)
| |
Collapse
|
13
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
14
|
García-Cazorla Y, Vasconcelos V. Emergent marine toxins risk assessment using molecular and chemical approaches. EFSA J 2022; 20:e200422. [PMID: 35634545 PMCID: PMC9131614 DOI: 10.2903/j.efsa.2022.e200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria harmful blooms represent a deviation to the normal equilibrium in planktonic communities involving a rapid and uncontrolled growth. Owing to the capacity to produce toxins as secondary metabolites, cyanobacteria may cause huge economic losses in the fishing and aquaculture industries and poisoning incidents to humans due to their accumulation in the food chain. The conditions which promote toxic blooms have not yet been fully understood, but climate change and anthropogenic intervention are pointed as significant factors. For the detection of toxins in edible marine organisms, the establishment of international regulations and compulsory surveillance has been probed as exceptionally effective. However, not regulation nor monitoring have been settled concerning emergent marine toxins. In the light of this scenario, it becomes essential to apply fast and reliable surveillance methodologies for the early detection of cyanobacterial blooms as well as the occurrence of emergent marine toxins. Shotgun metagenomic sequencing has potential to become a powerful diagnostic tool in the fields of food safety and One Health surveillance. This culture‐independent approach overcomes limitations of traditional microbiological techniques; it allows a quick and accurate assessment of a complex microbial community, including quantitative identification and functional characterisation, in a single experiment. In the framework of the EU‐FORA fellowship, with the final goal of evaluate metagenomics as a promising risk assessment tool, the fellow worked on the development of an innovative workflow through state‐of‐the‐art molecular and chemical analytical procedures. This work programme aims to evaluate the occurrence of emergent marine toxins and the producing organisms in Cabo Verde coastal cyanobacteria blooms. Our results show the outstanding potential of a holistic metagenomic approach for the risk assessment of emergent marine toxins and the producing organisms. Additionally, we have also highlighted its value for the identification and evaluation of secondary metabolites as natural bioactive compounds with biotechnological and industrial interest.
Collapse
Affiliation(s)
- Y García-Cazorla
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) Portugal
| |
Collapse
|
15
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
16
|
Rossignoli AE, Mariño C, Martín H, Blanco J. Development of a Fast Liquid Chromatography Coupled to Mass Spectrometry Method (LC-MS/MS) to Determine Fourteen Lipophilic Shellfish Toxins Based on Fused-Core Technology: In-House Validation. Mar Drugs 2021; 19:md19110603. [PMID: 34822474 PMCID: PMC8622501 DOI: 10.3390/md19110603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Prevalence and incidence of the marine toxins (paralytic, amnesic, and lipophilic toxins) including the so-called emerging toxins (these are, gymnodimines, pinnatoxins, or spirolides among others) have increased in recent years all over the world. Climate change, which is affecting the distribution of their producing phytoplankton species, is probably one of the main causes. Early detection of the toxins present in a particular area, and linking the toxins to their causative phytoplankton species are key tools to minimize the risk they pose for human consumers. The development of both types of studies requires fast and highly sensitive analytical methods. In the present work, we have developed a highly sensitive liquid chromatography-mass spectrometry methodology (LC-MS/MS), using a column with fused-core particle technology, for the determination of fourteen lipophilic toxins in a single run of 3.6 min. The performance of the method was evaluated for specificity, linearity, precision (repeatability and reproducibility) and accuracy by analysing spiked and naturally contaminated samples. The in-house validation was successful, and the limit of detection (LOD) and quantification (LOQ) for all the toxins were far below their regulatory action limits. The method is suitable to be considered in monitoring systems of bivalves for food control.
Collapse
|
17
|
Servent D, Malgorn C, Bernes M, Gil S, Simasotchi C, Hérard AS, Delzescaux T, Thai R, Barbe P, Keck M, Beau F, Zakarian A, Dive V, Molgó J. First evidence that emerging pinnatoxin-G, a contaminant of shellfish, reaches the brain and crosses the placental barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148125. [PMID: 34380275 DOI: 10.1016/j.scitotenv.2021.148125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.
Collapse
Affiliation(s)
- Denis Servent
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mylène Bernes
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Sophie Gil
- Université de Paris, UMR-S1139, Faculté de Pharmacie de Paris, France
| | | | - Anne-Sophie Hérard
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Armen Zakarian
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, CA 93106-9510, USA
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Jordi Molgó
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| |
Collapse
|
18
|
O'Neill A, Morrell N, Turner AD, Maskrey BH. Method performance verification for the combined detection and quantitation of the marine neurotoxins cyclic imines and brevetoxin shellfish metabolites in mussels (Mytilus edulis) and oysters (Crassostrea gigas) by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122864. [PMID: 34343946 DOI: 10.1016/j.jchromb.2021.122864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2. A rapid dispersive extraction was used as well as a fast six-minute UHPLC-MS/MS analysis. Mobile phase prepared using ammonium fluoride and methanol was optimised for both chromatographic separation and MS/MS response to suit all analytes. Method performance verification checks for both matrices were carried out. Matrix influence was acceptable for the majority of analogues with the MS response for all analogues being linear across an appropriate range of concentrations. In terms of limits of detection and quantitation the method was shown to be highly sensitive when compared with other methods. Acceptable recoveries were found with most analogues, with laboratory precision in terms of intra- and inter-batch precision deemed appropriate. The method was applied to environmental shellfish samples with results showing low concentrations of cyclic imines to be present. The method is fast and highly sensitive for the detection and quantification of all targeted analogues, in both mussel and oyster matrices. Consequently, the method has been shown to provide a useful tool for simultaneous monitoring for the presence or future emergence of these two toxin groups in shellfish.
Collapse
Affiliation(s)
- Alison O'Neill
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| |
Collapse
|
19
|
Lamas JP, Arévalo F, Moroño Á, Correa J, Rossignoli AE, Blanco J. Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116919. [PMID: 33744630 DOI: 10.1016/j.envpol.2021.116919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg-1, and a maximum value of 23.93 μg kg-1. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
Collapse
Affiliation(s)
- J Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain
| | - Fabiola Arévalo
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Ángeles Moroño
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Jorge Correa
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón S/n, 36620, Vilanova de Arousa, Spain.
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón S/n, 36620, Vilanova de Arousa, Spain.
| |
Collapse
|
20
|
Wright EJ, McCarron P. A mussel tissue certified reference material for multiple phycotoxins. Part 5: profiling by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 2021; 413:2055-2069. [PMID: 33661347 DOI: 10.1007/s00216-020-03133-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.
Collapse
Affiliation(s)
- Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
| |
Collapse
|
21
|
Hassoun AER, Ujević I, Mahfouz C, Fakhri M, Roje-Busatto R, Jemaa S, Nazlić N. Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142542. [PMID: 33035983 DOI: 10.1016/j.scitotenv.2020.142542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg-1), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 μg kg-1, respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 μg g-1) for neurotoxicity in humans and lower than the Acute Reference Dose (30 μg kg-1 bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.
Collapse
Affiliation(s)
- Abed El Rahman Hassoun
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon.
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Céline Mahfouz
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Milad Fakhri
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Sharif Jemaa
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Nikša Nazlić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| |
Collapse
|
22
|
Kvrgić K, Lešić T, Aysal AI, Džafić N, Pleadin J. Cyclic imines in shellfish and ascidians in the northern Adriatic Sea. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 14:12-22. [PMID: 33280535 DOI: 10.1080/19393210.2020.1851778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to determine the occurrence of the most representative cyclic imines (CIs) gymnodimine (GYM), pinnatoxin G (PnTX-G), and 13-desmethyl SPX C (SPX1) in Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) (n = 416), European oysters (Ostrea edulis Linnaeus, 1758) (n = 104), Queen scallops (Aequipecten opercularis Linnaeus, 1758) (n = 52) and edible ascidians of the Microcosmus spp. (n = 104) originating from nine harvesting and breeding areas in the northern part of the Adriatic Sea using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). All CI concentrations were far below the guidance level of 400 μg SPXs/kg proposed by the EU Reference Laboratory for Marine Toxins. In contrast to Queen scallops and ascidians, in Mediterranean mussels and European oysters CIs were found throughout the year. Our data reveal the differences between species predisposed for CIs accumulation, as well as seasonal and locational variations in CIs occurrence.
Collapse
Affiliation(s)
- Kristina Kvrgić
- Croatian Veterinary Institute, Veterinary Center Rijeka, Laboratory for Analytical Chemistry and Residues , Rijeka, Croatia
| | - Tina Lešić
- Department for Veterinary Public Health, Croatian Veterinary Institute Zagreb, Laboratory for Analytical Chemistry , Zagreb, Croatia
| | - Ayhan Ibrahim Aysal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Gazi University , Ankara, Turkey
| | - Natalija Džafić
- Croatian Veterinary Institute, Veterinary Center Rijeka, Laboratory for Analytical Chemistry and Residues , Rijeka, Croatia
| | - Jelka Pleadin
- Department for Veterinary Public Health, Croatian Veterinary Institute Zagreb, Laboratory for Analytical Chemistry , Zagreb, Croatia
| |
Collapse
|
23
|
Varriale F, Tartaglione L, Cinti S, Milandri A, Dall'Ara S, Calfapietra A, Dell'Aversano C. Development of a data dependent acquisition-based approach for the identification of unknown fast-acting toxins and their ester metabolites. Talanta 2020; 224:121842. [PMID: 33379060 DOI: 10.1016/j.talanta.2020.121842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Phycotoxins in the marine food-web represent a serious threat to human health. Consumption of contaminated shellfish and/or finfish poses risk to consumer safety: several cases of toxins-related seafood poisoning have been recorded so far worldwide. Cyclic imines are emerging lipophilic toxins, which have been detected in shellfish from different European countries. Currently, they are not regulated due to the lack of toxicological comprehensive data and hence the European Food Safety Authority has required more scientific efforts before establishing a maximum permitted level in seafood. In this work, a novel data dependent liquid chromatography - high resolution mass spectrometry (LC-HRMS) approach has been successfully applied and combined with targeted studies for an in-depth investigation of the metabolic profile of shellfish samples. The proposed analytical methodology has allowed: i) to discover a plethora of unknown fatty acid esters of gymnodimines and ii) to conceive a brand new MS-based strategy, termed as backward analysis, for discovery and identification of new analogues. In particular, the implemented analytical workflow has broadened the structural diversity of cyclic imine family through the inclusion of five new congeners, namely gymnodimine -F, -G, -H, -I and -J. In addition, gymnodimine A (376.5 μg/kg), 13-desmethyl spirolide C (11.0-29.0 μg/kg) and pinnatoxin G (3.1-7.7 μg/kg) have been detected in shellfish from different sites of the Mediterranean basin (Tunisia and Italy) and the Atlantic coast of Spain, with the confirmation of the first finding of pinnatoxin G in mussels harvested in Sardinia (Tyrrhenian Sea, Italy).
Collapse
Affiliation(s)
- Fabio Varriale
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Tartaglione
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa, Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Stefano Cinti
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Sonia Dall'Ara
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Anna Calfapietra
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Carmela Dell'Aversano
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa, Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
24
|
Otero P, Vale C, Boente-Juncal A, Costas C, Louzao MC, Botana LM. Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels ( Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins (Basel) 2020; 12:E613. [PMID: 32987858 PMCID: PMC7601114 DOI: 10.3390/toxins12100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (C.V.); (A.B.-J.); (C.C.); (M.C.L.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
25
|
Aráoz R, Barnes P, Séchet V, Delepierre M, Zinn-Justin S, Molgó J, Zakarian A, Hess P, Servent D. Cyclic imine toxins survey in coastal european shellfish samples: Bioaccumulation and mode of action of 28-O-palmitoyl ester of pinnatoxin-G. first report of portimine-A bioaccumulation. HARMFUL ALGAE 2020; 98:101887. [PMID: 33129465 PMCID: PMC7657664 DOI: 10.1016/j.hal.2020.101887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 07/24/2020] [Indexed: 05/12/2023]
Abstract
Cyclic imine toxins exhibit fast acting neurotoxicity and lethality by respiratory arrest in mice explained by their potent antagonistic activity against muscular nicotinic acetylcholine receptors. We performed a survey of gymnodimine-A, 13-desmethyl spirolide-C, 13,19-didesmethyl spirolide-C, 20-methyl spirolide-G, pinnatoxin-A, pinnatoxin-G, portimine-A and 28-O-palmitoyl ester of pinnatoxin-G in 36 shellfish samples collected in coastal areas of 8 European countries using a microplate receptor binding assay and UPLC-MS/MS for toxin identification and quantification. The major toxins found in these samples were pinnatoxin-G, 20-methyl spirolide-G, 13-desmethyl spirolide-C, gymnodimine-A and portimine-A. Traces of 13,19-didesmethyl spirolide-C, pinnatoxin-A and 28-O-palmitoyl ester of pinnatoxin-G were also detected. The rapid death of mice was correlated with higher pinnatoxin-G concentrations in mussel digestive gland extracts injected intraperitoneally. Our survey included nontoxic control samples that were found to contain moderate to trace amounts of several cyclic imine toxins. Shellfish may bioaccumulate not only cyclic imine toxins but also a large number of acyl derivatives as a product of metabolic transformation of these neurotoxins. This is the first report in which portimine-A and 28-O-palmitoyl ester of pinnatoxin-G were detected in shellfish extracts from digestive glands of mussels collected in Ingril lagoon. The bioaccumulation of portimine-A is particularly of concern because it is cytotoxic and is able to induce apotosis. The mode of action of 28-O-palmitoyl ester of pinnatoxin-G was studied by receptor binding-assay and by two-electrode voltage clamp electrophysiology. The antagonistic behavior of the acylated pinnatoxin-G towards nicotinic acetylcholine receptor of muscle type is shown here for the first time. Since cyclic imine toxins are not regulated further monitoring of these emerging toxins is needed to improve evidence gathering of their occurrence in shellfish commercialized for human consumption in Europe given their potent antagonism against muscle and neuronal nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Rómulo Aráoz
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France.
| | - Paul Barnes
- Agri-food and Biosciences Institute, Veterinary Science Division, Stoney Road, Belfast BT4 3SD, Northern Ireland, United Kingdom
| | - Véronique Séchet
- Ifremer, Centre Atlantique, Laboratoire Phycotoxines, 44311 Nantes Cedex, France
| | - Muriel Delepierre
- Institut Pasteur, Department of Structural Biology and Chemistry CNRS, UMR3528, Paris France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif- sur -Yvette Cedex, France
| | - Jordi Molgó
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France
| | - Armen Zakarian
- University California Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 United States
| | - Philipp Hess
- Ifremer, Centre Atlantique, Laboratoire Phycotoxines, 44311 Nantes Cedex, France
| | - Denis Servent
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Multi-Toxin Quantitative Analysis of Paralytic Shellfish Toxins and Tetrodotoxins in Bivalve Mollusks with Ultra-Performance Hydrophilic Interaction LC-MS/MS-An In-House Validation Study. Toxins (Basel) 2020; 12:toxins12070452. [PMID: 32668707 PMCID: PMC7404990 DOI: 10.3390/toxins12070452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022] Open
Abstract
Ultra-performance hydrophilic interaction liquid chromatography tandem mass spectrometry system (UP-HILIC–MS/MS) was used in multi-toxin analysis of paralytic shellfish toxins (PSTs) and tetrodotoxins (TTXs) in sample matrices from bivalve molluscan species commercially produced for human consumption in Sweden. The method validation includes 17 toxins of which GTX6 and two TTX analogues, TTX and 4,9-anhydroTTX, were previously not analyzed together with hydrophilic PSTs. 11-deoxyTTX was monitored qualitatively with a non-certified reference standard. The performance of the method was evaluated for selectivity, repeatability, and linearity by analyzing spiked samples which generated linear calibration curves across the concentration ranges used (R2 > 0.99). The in-house reproducibility (RSD) was satisfactory including the LOD and LOQ for both PST and TTX toxins being far below their regulatory action limits. The major advantage of the method is that it allows direct confirmation of the toxin identity and specific toxin quantification using a derivatization-free approach. Unlike the PST-chemical methods used in routine regulatory monitoring until now for food control, the UP-HILIC-MS/MS approach enables the calibration set-up for each of the toxin analogs separately, thereby providing the essential flexibility and specificity in analysis of this challenging group of toxins. The method is suitable to implement in food monitoring for PSTs and TTXs in bivalves, and can serve as a fast and cost-efficient screening method. However, positive samples would, for regulatory reasons still need to be confirmed using the AOAC official method (2005.06).
Collapse
|
27
|
Cyclic Imines (CIs) in Mussels from North-Central Adriatic Sea: First Evidence of Gymnodimine A in Italy. Toxins (Basel) 2020; 12:toxins12060370. [PMID: 32512714 PMCID: PMC7354633 DOI: 10.3390/toxins12060370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023] Open
Abstract
Cyclic imines (CIs) are emerging marine lipophilic toxins (MLTs) occurring in microalgae and shellfish worldwide. The present research aimed to study CIs in mussels farmed in the Adriatic Sea (Italy) during the period 2014–2015. Twenty-eight different compounds belonging to spirolides (SPXs), gymnodimines (GYMs), pinnatoxins (PnTXs) and pteriatoxins (PtTXs) were analyzed by the official method for MLTs in 139 mussel samples collected along the Marche coast. Compounds including 13-desmethyl spirolide C (13-desMe SPX C) and 13,19-didesmethyl spirolide C (13,19-didesMe SPX C) were detected in 86% of the samples. The highest levels were generally reported in the first half of the year reaching 29.2 µg kg−1 in January/March with a decreasing trend until June. GYM A, for the first time reported in Italian mussels, was found in 84% of the samples, reaching the highest concentration in summer (12.1 µg kg−1). GYM A and SPXs, submitted to tissue distribution studies, showed the tendency to accumulate mostly in mussel digestive glands. Even if SPX levels in mussels were largely below the European Food Safety Authority (EFSA) reference of 400 μg SPXs kg−1, most of the samples contained CIs for the large part of the year. Since chronic toxicity data are still missing, monitoring is surely recommended.
Collapse
|
28
|
Arnich N, Abadie E, Delcourt N, Fessard V, Fremy JM, Hort V, Lagrange E, Maignien T, Molgó J, Peyrat MB, Vernoux JP, Mattei C. Health risk assessment related to pinnatoxins in French shellfish. Toxicon 2020; 180:1-10. [DOI: 10.1016/j.toxicon.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023]
|
29
|
Roué M, Smith KF, Sibat M, Viallon J, Henry K, Ung A, Biessy L, Hess P, Darius HT, Chinain M. Assessment of Ciguatera and Other Phycotoxin-Related Risks in Anaho Bay (Nuku Hiva Island, French Polynesia): Molecular, Toxicological, and Chemical Analyses of Passive Samplers. Toxins (Basel) 2020; 12:toxins12050321. [PMID: 32413988 PMCID: PMC7291316 DOI: 10.3390/toxins12050321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement, UMR 241 EIO, 98702 Faa’a, Tahiti, French Polynesia
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-413
| | - Kirsty F. Smith
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | | | - Jérôme Viallon
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Kévin Henry
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - André Ung
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Laura Biessy
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | - Philipp Hess
- Ifremer, DYNECO, 44000 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| |
Collapse
|
30
|
Abstract
AbstractIn order to set a base line for the observation of planktonic community changes due to global change, protistan plankton sampling in combination with phycotoxin measurements and solid phase adsorption toxin tracking (SPATT) was performed in two bays of King George Island (KGI) in January 2013 and 2014. In addition, SPATT sampling was performed in Potter Cove during a one-year period from January 2014 until January 2015. Known toxigenic taxa were not firmly identified in plankton samples but there was microscopical evidence for background level presence of Dinophysis spp. in the area. This was consistent with environmental conditions during the sampling periods, especially strong mixing of the water column and low water temperatures that do not favor dinoflagellate proliferations. Due to the lack of significant abundance of thecate toxigenic dinoflagellate species in microplankton samples, no phycotoxins were found in net tow samples. In contrast, SPATT sampling revealed the presence of dissolved pectenotoxin-2 (PTX-2) and its hydrolyzed form PTX-2 seco acid in both bays and during the entire one-year sampling period. The presence of dissolved PTX in coastal waters of KGI is strong new evidence for the presence of PTX-producing species, i.e., dinoflagellates of the genus Dinophysis in the area. The presence of phycotoxins and their respective producers, even at the low background concentrations found in this study, may be the seed of possible proliferations of these species under changing environmental conditions. Furthermore, phycotoxins can be used as chemotaxonomic markers for a very specific group of plankton thus allowing to track the presence of this group over time.
Collapse
|
31
|
Sosa S, Pelin M, Cavion F, Hervé F, Hess P, Tubaro A. Acute Oral Toxicity of Pinnatoxin G in Mice. Toxins (Basel) 2020; 12:toxins12020087. [PMID: 32012834 PMCID: PMC7076786 DOI: 10.3390/toxins12020087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Pinnatoxin G (PnTx-G) is a marine cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, frequently detected in edible shellfish from Ingril Lagoon (France). As other pinnatoxins, to date, no human poisonings ascribed to consumption of PnTx-G contaminated seafood have been reported, despite its potent antagonism at nicotinic acetylcholine receptors and its high and fast-acting toxicity after intraperitoneal or oral administration in mice. The hazard characterization of PnTx-G by oral exposure is limited to a single acute toxicity study recording lethality and clinical signs in non-fasted mice treated by gavage or through voluntary food ingestion, which showed differences in PnTx-G toxic potency. Thus, an acute toxicity study was carried out using 3 h-fasted CD-1 female mice, administered by gavage with PnTx-G (8–450 µg kg−1). At the dose of 220 µg kg−1 and above, the toxin induced a rapid onset of clinical signs (piloerection, prostration, hypothermia, abdominal breathing, paralysis of the hind limbs, and cyanosis), leading to the death of mice within 30 min. Except for moderate mucosal degeneration in the small intestine recorded at doses of 300 µg kg−1, the toxin did not induce significant morphological changes in the other main organs and tissues, or alterations in blood chemistry parameters. This acute oral toxicity study allowed to calculate an oral LD50 for PnTx-G equal to 208 μg kg−1 (95% confidence limits: 155–281 µg kg−1) and to estimate a provisional NOEL of 120 µg kg−1.
Collapse
Affiliation(s)
- Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
- Correspondence: ; Tel.: +39-040-558-8836
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Federica Cavion
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Fabienne Hervé
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| |
Collapse
|
32
|
Analysis of Cyclic Imines in Mussels ( Mytilus galloprovincialis) from Galicia (NW Spain) by LC-MS/MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010281. [PMID: 31906079 PMCID: PMC6981759 DOI: 10.3390/ijerph17010281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Cyclic imines (CIs) are being considered as emerging toxins in the European Union, and a scientific opinion has been published by the European Food Safety Authority (EFSA) in which an assessment of the risks to human health related to their consumption has been carried out. Recommendations on the EFSA opinion include the search for data occurrence of CIs in shellfish and using confirmatory methods by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which need to be developed and optimized. The aim of this work is the application of LC-MS/MS to the analysis of gymnodimines (GYMs), spirolides (SPXs), pinnatoxins (PnTXs), and pteriatoxins (PtTXs) in mussels from Galician Rias, northwest Spain, the main production area in Europe, and therefore a representative emplacement for their evaluation. Conditions were adjusted using commercially available certified reference standards of GYM-A, SPX-1, and PnTX-G and evaluated through quality control studies. The EU-Harmonised Standard Operating Procedure for determination of lipophilic marine biotoxins in molluscs by LC-MS/MS was followed, and the results obtained from the analysis of eighteen samples from three different locations that showed the presence of PnTXs and SPXs are presented and discussed. Concentrations of PnTX-G and SPX-1 ranged from 1.8 to 3.1 µg/kg and 1.2 to 6.9 µg/kg, respectively, and PnTX-A was detected in the group of samples with higher levels of PnTX-G after a solid phase extraction (SPE) step used for the concentration of extracts.
Collapse
|
33
|
Otero P, Miguéns N, Rodríguez I, Botana LM. LC-MS/MS Analysis of the Emerging Toxin Pinnatoxin-G and High Levels of Esterified OA Group Toxins in Galician Commercial Mussels. Toxins (Basel) 2019; 11:toxins11070394. [PMID: 31284457 PMCID: PMC6669594 DOI: 10.3390/toxins11070394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of marine harmful algae is increasing worldwide and, therefore, the accumulation of lipophilic marine toxins from harmful phytoplankton represents a food safety threat in the shellfish industry. Galicia, which is a commercially important EU producer of edible bivalve mollusk have been subjected to recurring cases of mussel farm closures, in the last decades. This work aimed to study the toxic profile of commercial mussels (Mytilus galloprovincialis) in order to establish a potential risk when ingested. For this, a total of 41 samples of mussels farmed in 3 Rías (Ares-Sada, Arousa, and Pontevedra) and purchased in 5 local markets were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). Chromatograms showed the presence of okadaic acid (OA), dinophysistoxin-2 (DTX-2), pectenotoxin-2 (PTX-2), azaspiracid-2 (AZA-2), and the emerging toxins 13-desmethyl spirolide C (SPX-13), and pinnatoxin-G (PnTX-G). Quantification of each toxin was determined using their own standard calibration in the range 0.1%–50 ng/mL (R2 > 0.99) and by considering the toxin recovery (62–110%) and the matrix correction (33–211%). Data showed that OA and DTX-2 (especially in the form of esters) are the main risk in Galician mollusks, which was detected in 38 samples (93%) and 3 of them exceeded the legal limit (160 µg/kg), followed by SPX-13 that was detected in 19 samples (46%) in quantities of up to 28.9 µg/kg. Analysis from PTX-2, AZA-2, and PnTX-G showed smaller amounts. Fifteen samples (37%) were positive for PTX-2 (0.7–2.9 µg/kg), 12 samples (29%) for AZA-2 (0.1–1.8 µg/kg), and PnTX-G was detected in 5 mussel samples (12%) (0.4 µg/kg–0.9 µg/kg). This is the first time Galician mollusk was contaminated with PnTX-G. Despite results indicating that this toxin was not a potential risk through the mussel ingestion, it should be considered in the shellfish safety monitoring programs through the LC–MS/MS methods.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Natalia Miguéns
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Inés Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
34
|
Lamas JP, Arévalo F, Moroño Á, Correa J, Muñíz S, Blanco J. Detection and Spatio-Temporal Distribution of Pinnatoxins in Shellfish from the Atlantic and Cantabrian Coasts of Spain. Toxins (Basel) 2019; 11:toxins11060340. [PMID: 31207981 PMCID: PMC6628396 DOI: 10.3390/toxins11060340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/02/2023] Open
Abstract
For the first time, pinnatoxins have been detected in shellfish from the Atlantic and Cantabrian coasts of Spain. High sensitivity LC-MS/MS systems were used to monitor all the currently known pinnatoxins (A–H). Pinnatoxin G (PnTX G) was the most prevalent toxin of the group, but its metabolite PnTX A has also been found at much lower levels. No trend in PnTX G concentration was found in the area, but a hotspot in the Ría de Camariñas has been identified. The maximum concentrations found did not exceed 15 µg·kg−1, being, in most cases, below 3 µg·kg−1. The highest concentrations were found in wild (intertidal) populations of mussels which attained much higher levels than raft-cultured ones, suggesting that the toxin-producer organisms preferentially develop in shallow areas. Other bivalve species had, in general, lower concentrations. The incidence of PnTX G followed a seasonal pattern in which the maximum concentrations took place in winter months. PnTX G was found to be partially esterified but the esterification percentage was not high (lower than 30%).
Collapse
Affiliation(s)
- J Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Fabiola Arévalo
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Ángeles Moroño
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Jorge Correa
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Susana Muñíz
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain.
| |
Collapse
|
35
|
Benoit E, Couesnon A, Lindovsky J, Iorga BI, Aráoz R, Servent D, Zakarian A, Molgó J. Synthetic Pinnatoxins A and G Reversibly Block Mouse Skeletal Neuromuscular Transmission In Vivo and In Vitro. Mar Drugs 2019; 17:md17050306. [PMID: 31137661 PMCID: PMC6562580 DOI: 10.3390/md17050306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2β1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6–8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.
Collapse
Affiliation(s)
- Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Aurélie Couesnon
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Jiri Lindovsky
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, F-91198 Gif-sur-Yvette, France.
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
37
|
Comparison of amnesic, paralytic and lipophilic toxins profiles in cockle (Acanthocardia tuberculata) and smooth clam (Callista chione) from the central Adriatic Sea (Croatia). Toxicon 2019; 159:32-37. [DOI: 10.1016/j.toxicon.2018.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
|
38
|
Farabegoli F, Blanco L, Rodríguez LP, Vieites JM, Cabado AG. Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans. Mar Drugs 2018; 16:E188. [PMID: 29844286 PMCID: PMC6025170 DOI: 10.3390/md16060188] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Massive phytoplankton proliferation, and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks: filter-feeding mollusks, such as shellfish, mussels, oysters or clams, can accumulate these toxins throughout the food chain and present a threat for consumers' health. Particular environmental and climatic conditions favor this natural phenomenon, called harmful algal blooms (HABs); the phytoplankton species mostly involved in these toxic events are dinoflagellates or diatoms belonging to the genera Alexandrium, Gymnodinium, Dinophysis, and Pseudo-nitzschia. Substantial economic losses ensue after HABs occurrence: the sectors mainly affected include commercial fisheries, tourism, recreational activities, and public health monitoring and management. A wide range of symptoms, from digestive to nervous, are associated to human intoxication by biotoxins, characterizing different and specific syndromes, called paralytic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning, and neurotoxic shellfish poisoning. This review provides a complete and updated survey of phycotoxins usually found in marine invertebrate organisms and their relevant properties, gathering information about the origin, the species where they were found, as well as their mechanism of action and main effects on humans.
Collapse
Affiliation(s)
- Federica Farabegoli
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Lucía Blanco
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Laura P Rodríguez
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Juan Manuel Vieites
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Ana García Cabado
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| |
Collapse
|
39
|
Bianchi F, Riboni N, Termopoli V, Mendez L, Medina I, Ilag L, Cappiello A, Careri M. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1308167. [PMID: 29850370 PMCID: PMC5937452 DOI: 10.1155/2018/1308167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Lucia Mendez
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Achille Cappiello
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
40
|
Roué M, Darius HT, Chinain M. Solid Phase Adsorption Toxin Tracking (SPATT) Technology for the Monitoring of Aquatic Toxins: A Review. Toxins (Basel) 2018; 10:toxins10040167. [PMID: 29677131 PMCID: PMC5923333 DOI: 10.3390/toxins10040167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The Solid Phase Adsorption Toxin Tracking (SPATT) technology, first introduced in 2004, uses porous synthetic resins capable of passively adsorbing toxins produced by harmful microalgae or cyanobacteria and dissolved in the water. This method allows for the detection of toxic compounds directly in the water column and offers numerous advantages over current monitoring techniques (e.g., shellfish or fish testing and microalgae/cyanobacteria cell detection), despite some limitations. Numerous laboratory and field studies, testing different adsorbent substrates of which Diaion® HP20 resin appears to be the most versatile substrate, have been carried out worldwide to assess the applicability of these passive monitoring devices to the detection of toxins produced by a variety of marine and freshwater microorganisms. SPATT technology has been shown to provide reliable, sensitive and time-integrated sampling of various aquatic toxins, and also has the potential to provide an early warning system for both the occurrence of toxic microalgae or cyanobacteria and bioaccumulation of toxins in foodstuffs. This review describes the wide range of lipophilic and hydrophilic toxins associated with toxin-producing harmful algal blooms (HABs) that are successfully detected by SPATT devices. Implications in terms of monitoring of emerging toxic risks and reinforcement of current risk assessment programs are also discussed.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD), UMR 241 EIO, P.O. box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
41
|
Role of Biomarkers in Monitoring Brevetoxins in Karenia brevis Exposed Shellfish. Food Saf (Tokyo) 2018; 6:33-43. [PMID: 32231945 DOI: 10.14252/foodsafetyfscj.2017021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Monitoring and management programs for marine toxins in seafood depend on efficient detection tools for their success in protecting public health. Here we review current methods of detection for neurotoxic shellfish poisoning (NSP) toxins, and current knowledge in brevetoxin metabolism in shellfish. In addition, we discuss a novel approach to developing monitoring tools for NSP toxins in molluscan shellfish. NSP is a seafood-borne disease caused by the consumption of brevetoxin-contaminated shellfish. Brevetoxins are a suite of cyclic polyether compounds found in blooms of the marine dinoflagellate Karenia brevis (K. brevis) and are potent neurotoxins. Preventive controls for NSP in the U.S. currently rely upon environmental monitoring of K. brevis blooms and assessment of their shellfish toxicity by mouse bioassay. The mouse bioassay for NSP approved by National Shellfish Sanitation Program was developed in the 1960s when very little information on the structural and toxicological properties of brevetoxins in algae and shellfish was available. Alternative methods to mouse bioassay based on current scientific knowledge in the area are needed for monitoring NSP toxins. It is now established that brevetoxins are metabolized extensively in shellfish. Algal brevetoxins undergo oxidation and reduction, as well as conjugation with fatty acids and amino acids in shellfish. Recently, three metabolites have been identified as biomarkers of brevetoxin exposure and toxicity in Eastern oyster (Crassostrea virginica) and hard clam (Mercenaria sp.). The role of these biomarkers in monitoring NSP toxins in K. brevis exposed molluscan shellfish is reviewed. Comparisons of biomarker levels by liquid chromatography-mass spectrometry (LC-MS) with composite toxin as measured by enzyme linked immunosorbent assay (ELISA), and shellfish toxicity by mouse bioassay, support the application of these biomarkers as a dynamic and powerful approach for monitoring brevetoxins in shellfish and prevention of NSP.
Collapse
|
42
|
Bayram M, Gökırmaklı Ç. Horizon Scanning: How Will Metabolomics Applications Transform Food Science, Bioengineering, and Medical Innovation in the Current Era of Foodomics? ACTA ACUST UNITED AC 2018; 22:177-183. [DOI: 10.1089/omi.2017.0203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mustafa Bayram
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, Gaziantep, Turkey
| | - Çağlar Gökırmaklı
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
43
|
Rambla-Alegre M, Miles CO, de la Iglesia P, Fernandez-Tejedor M, Jacobs S, Sioen I, Verbeke W, Samdal IA, Sandvik M, Barbosa V, Tediosi A, Madorran E, Granby K, Kotterman M, Calis T, Diogene J. Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. ENVIRONMENTAL RESEARCH 2018; 161:392-398. [PMID: 29197280 DOI: 10.1016/j.envres.2017.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Cyclic imines constitute a quite recently discovered group of marine biotoxins that act on neural receptors and that bioaccumulate in seafood. They are grouped together due to the imino group functioning as their common pharmacore, responsible for acute neurotoxicity in mice. Cyclic imines (CIs) have not been linked yet to human poisoning and are not regulated in the European Union (EU), although the European Food Safety Authority (EFSA) requires more data to perform conclusive risk assessment for consumers. Several commercial samples of bivalves including raw and processed samples from eight countries (Italy, Portugal, Slovenia, Spain, Ireland, Norway, The Netherlands and Denmark) were obtained over 2 years. Emerging cyclic imine concentrations in all the samples were analysed on a LC-3200QTRAP and LC-HRMS QExactive mass spectrometer. In shellfish, two CIs, pinnatoxin G (PnTX-G) and 13-desmethylspirolide C (SPX-1) were found at low concentrations (0.1-12µg/kg PnTX-G and 26-66µg/kg SPX-1), while gymnodimines and pteriatoxins were not detected in commercial (raw and processed) samples. In summary, SPX-1 (n: 47) and PnTX-G (n: 96) were detected in 9.4% and 4.2% of the samples, respectively, at concentrations higher than the limit of quantification (LOQ), and in 7.3% and 31.2% of the samples at concentrations lower than the LOQ (25µg/kg for SPX-1 and 3µg/kg for PnTX-G), respectively. For the detected cyclic imines, the average exposure and the 95th percentile were calculated. The results obtained indicate that it is unlikely that a potential health risk exists through the seafood diet for CIs in the EU. However, further information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, Canada B3H 3Z1
| | | | | | - Silke Jacobs
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium; Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000 Ghent, Belgium
| | - Isabelle Sioen
- Department of Food Safety and Food Quality, Ghent University, Block B, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Verbeke
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Vera Barbosa
- Portuguese Institute for the sea and atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisbon, Portugal
| | | | - Eneko Madorran
- University of Maribor, Faculty of Medicine, Institute of Anatomy, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kit Granby
- Technical University of Denmark, National Food Institute, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - Michiel Kotterman
- IMARES Wageningen-UR, Haringkade 1, 1976 CP Ijmuiden, The Netherlands
| | - Tanja Calis
- AQUATT, Olympic House, Pleasants Street, Dublin 8, Ireland
| | - Jorge Diogene
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
44
|
Roué M, Darius HT, Viallon J, Ung A, Gatti C, Harwood DT, Chinain M. Application of solid phase adsorption toxin tracking (SPATT) devices for the field detection of Gambierdiscus toxins. HARMFUL ALGAE 2018; 71:40-49. [PMID: 29306395 DOI: 10.1016/j.hal.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Ciguatera fish poisoning is a food-borne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the Gambierdiscus genus. Since most surveillance programs currently rely on the survey of Gambierdiscus cell densities and species composition, supplementary toxin-based methods allowing the time- and spatially integrated sampling of toxins in ciguateric environments are needed for a more reliable assessment and management of the risks associated with Gambierdiscus proliferation. Solid Phase Adsorption Toxin Tracking (SPATT) filters use porous synthetic resins capable of adsorbing toxins directly from the water column. To assess the ability of these passive monitoring devices to retain Gambierdiscus toxins, SPATT bags filled with 10g of HP20 resin were deployed for 48h in two French Polynesian locations at high (Nuku Hiva Island) vs. low to moderate (Kaukura Atoll) risk of ciguatera. CTXs could be detected in SPATT bags extracts from Nuku Hiva Island, as assessed by the mouse neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography - tandem mass spectrometry (LC-MS/MS) analyses. Results of in vitro experiments suggest that the saturation limit of CTXs on HP20 resin, for a deployment time of 48h, is ≃ 55ng P-CTX-3C equiv. g-1 resin. Despite the non detection of maitotoxin (MTX), LC-MS/MS analyses showed that two other compounds also produced by Gambierdiscus species were retained on SPATT bags, i.e. iso-P-CTX-3B/C and a putative MTX analogue, known as MTX-3. This study, the first to demonstrate the suitability of SPATT technology for the in situ monitoring of Gambierdiscus toxins, highlights the potential application of this tool for routine ciguatera risk assessment and management programs.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD) - UMR 241 EIO, PO Box 5 29, 98713 Papeete, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Clémence Gatti
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241 EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|
45
|
|
46
|
Mendes MCDQ, Nunes JMC, Menezes M, Fraga S, Rodríguez F, Vázquez JA, Blanco J, Franco JM, Riobó P. Toxin production, growth kinetics and molecular characterization of Ostreopsis cf. ovata isolated from Todos os Santos Bay, tropical southwestern Atlantic. Toxicon 2017; 138:18-30. [DOI: 10.1016/j.toxicon.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 01/20/2023]
|
47
|
Castro-Puyana M, Pérez-Míguez R, Montero L, Herrero M. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Zendong Z, Sibat M, Herrenknecht C, Hess P, McCarron P. Relative molar response of lipophilic marine algal toxins in liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1453-1461. [PMID: 28582796 DOI: 10.1002/rcm.7918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Accurate quantitative analysis of lipophilic toxins by liquid chromatography/mass spectrometry (LC/MS) requires calibration solution reference materials (RMs) for individual toxin analogs. Untargeted analysis is aimed at identifying a vast number of compounds and thus validation of fully quantitative untargeted methods is not feasible. However, a semi-quantitative approach allowing for profiling is still required and will be strengthened by knowledge of the relative molar response (RMR) of analogs in LC/MS with electrospray ionization (ESI). METHODS RMR factors were evaluated for toxins from the okadaic acid (OA/DTXs), yessotoxin (YTX), pectenotoxin (PTX), azaspiracid (AZA) and cyclic imine (CI) toxin groups, in both solvent standards and environmental sample extracts. Since compound ionization and fragmentation influences the MS response of toxins, RMRs were assessed under different chromatographic conditions (gradient, isocratic) and MS acquisition modes (SIM, SRM, All-ion, target MS/MS) on low- and high-resolution mass spectrometers. RESULTS In general, RMRs were not significantly impacted by chromatographic conditions (isocratic vs gradient), with the exception of DTX1. MS acquisition modes had a more significant impact, with PnTX-G and SPX differing notably. For a given toxin group, response factors were generally in the range of 0.5 to 2. The cyclic imines were an exception. CONCLUSIONS Differences in RMRs between toxins of a same chemical base structure were not significant enough to indicate major issues for non-targeted semi-quantitative analysis, where there is limited or no availability of standards for many compounds, and where high degrees of accuracy are not required. Differences in RMRs should be considered when developing methods that use a standard of a single analogue to quantitate other toxins from the same group.
Collapse
Affiliation(s)
- Zita Zendong
- Ifremer, Laboratoire Phycotoxines, Nantes, France
| | | | | | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Nantes, France
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, Halifax, NS, Canada
| |
Collapse
|
49
|
Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Orellana G, Van Meulebroek L, De Rijcke M, Janssen CR, Vanhaecke L. High resolution mass spectrometry-based screening reveals lipophilic toxins in multiple trophic levels from the North Sea. HARMFUL ALGAE 2017; 64:30-41. [PMID: 28427570 DOI: 10.1016/j.hal.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Lipophilic marine biotoxins, which are mainly produced by small dinoflagellates, are increasingly detected in coastal waters across the globe. As these producers are consumed by zooplankton and shellfish, the toxins are introduced, bioaccumulated and possibly biomagnified throughout marine food chains. Recent research has demonstrated that ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) is an excellent tool to detect marine toxins in algae and seafood. In this study, UHPLC-HRMS was used to screen lipophilic marine biotoxins in organisms from different trophic levels of the Belgian coastal zone ecosystem. A total of 20 tentatively identified lipophilic compounds was detected. Hereby, the trophic transfer of lipophilic marine biotoxins to the upper trophic level was considered to be rather limited. Furthermore, 36% of the compounds was clearly transferred between different organisms. A significant biotransformation of compounds from the okadaic acid and spirolide toxin groups was observed (64%), mainly in filter feeders. Through a multi-targeted approach, this study showed that marine organisms in the Belgian coastal zone are exposed to a multi-toxin mixture. Further research on both single compound and interactive toxic effects of the frequently detected lipophilic marine toxin ester metabolites throughout the food chain is therefore needed. As a future perspective, confirmatory identification of potential toxins by studying their fragmentation spectra (using new tools such as hybrid quadrupole Q-Exactive™ Orbitrap-MS) is designated.
Collapse
Affiliation(s)
- Gabriel Orellana
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium; Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Lieven Van Meulebroek
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Maarten De Rijcke
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Colin R Janssen
- Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|