1
|
Chang TS, Wu JY, Ding HY, Wang TY. Enzymatic Glycosylation of Ganoderma Terpenoid via Bacterial Glycosyltransferases and Glycoside Hydrolases. Biomolecules 2025; 15:655. [PMID: 40427548 PMCID: PMC12109177 DOI: 10.3390/biom15050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Glycosylation is a critical enzymatic modification that involves the attachment of sugar moieties to target compounds, considerably influencing their physicochemical and biological characteristics. This review explored the role of two primary enzyme classes-glycosyltransferases (GTs) and glycoside hydrolases (GHs, glycosidases)-in catalyzing the glycosylation of natural products, with a specific focus on Ganoderma triterpenoids. While GTs typically use activated sugar donors, such as uridine diphosphate glucose, certain GHs can leverage more economical sugar sources, such as sucrose and starch, through transglycosylation. This paper also reviewed strategies for producing novel terpenoid glycosides, particularly recently isolated bacterial GTs and GHs capable of glycosylating terpenoids and flavonoids. It summarized the newly synthesized glycosides' structures and biotransformation mechanisms, enhanced aqueous solubility, and potential applications. The regioselectivity and substrate specificity of GTs and GHs in catalyzing O-glycosylation (glucosylation) at distinct hydroxyl and carboxyl groups were compared. Furthermore, a special case in which the novel glycosylation reactions were mediated by GHs, including the formation of unique glycoside anomers, was included. The advantages and specific capabilities of GT/GH enzymes were evaluated for their potential in biotechnological applications and future research directions. Novel fungal triterpenoid glycosides produced through various glycosidases and sugars is expected to expand their potential applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan;
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen 89250, Taiwan;
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Li S, Xiao Y, Li Q, Su M, Guo Y, Jin X. Recent Advances in Natural Products Derived from Marine Echinoderms and Endophytic Microbes: Chemical Insights and Therapeutic Potential. Mar Drugs 2025; 23:33. [PMID: 39852535 PMCID: PMC11766827 DOI: 10.3390/md23010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Echinoderms, a diverse group of marine invertebrates including starfish, sea urchins, and sea cucumbers, have been recognized as prolific sources of structurally diverse natural products. In the past five years, remarkable progress has been made in the isolation, structural elucidation, and pharmacological assessment of these bioactive compounds. These metabolites, including polysaccharides, triterpenoids, steroids, and peptides, demonstrate potent bioactivities such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects, providing valuable insights and scaffolds for drug discovery. This review highlights the structural diversity and biological activities of natural products derived from echinoderms over the last five years, with a particular focus on their structure-activity relationships and therapeutic potential. It also outlines the prospects and challenges for future research, aiming to stimulate further exploration in marine drug discovery.
Collapse
Affiliation(s)
- Shuangyu Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (S.L.); (Q.L.); (M.S.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 124221, China;
| | - Yan Xiao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 124221, China;
| | - Qiang Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (S.L.); (Q.L.); (M.S.)
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (S.L.); (Q.L.); (M.S.)
| | - Yuewei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (S.L.); (Q.L.); (M.S.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (S.L.); (Q.L.); (M.S.)
| |
Collapse
|
3
|
Fagbohun OF, Rollins A, Mattern L, Cipollini K, Rupasinghe HV. Frondoside A of Cucumaria frondosa (Gennerus, 1767): Chemistry, biosynthesis, medicinal applications, and mechanism of actions. J Pharm Pharmacol 2025; 77:32-42. [PMID: 38843504 DOI: 10.1093/jpp/rgae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 01/07/2025]
Abstract
Cucumaria frondosa (Gennerus, 1767) or orange-footed sea cucumbers are traditional food and are used as natural sources of anti-diabetic, anti-inflammatory, antioxidant, anti-angiogenic, antimicrobial, and anticancer agents. Currently, the introduction of value-added sea cucumber products to the global market has inspired basic research on frondoside A and other saponins in sea cucumbers. These saponins serve as a means of their chemical defence. However, recent studies revealed that exposure to these saponins can lead to irritating symptoms from aerosolization of various holothurins. Moreover, extraction methods are critical to the bioavailability of various bioactive compounds found in sea cucumbers. Therefore, we have critically reviewed recent studies on the chemistry, biosynthesis, and pharmacological properties of frondoside A. Furthermore, the mechanism of actions of frondoside A was postulated and further studies are required for applications in functional foods, nutraceuticals, and pharmaceuticals. Frondoside A was first discovered from Cucumaria frondosa, and it is involved in protein kinase (PI3K/AKT/ERK1/2/p38 MAPK, RAC/CDC42 PAK1, NFκB/MAPK/JNK, and LXR-β) signalling pathways. It is also involved in the suppression of MYC oncogene transcriptional factors implicated and upregulated in over 70% of cancer types. Future research needs to be aimed at optimized green extraction techniques, efficient delivery methods, safety, and efficacy.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Amanda Rollins
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Lindsey Mattern
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Kendra Cipollini
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Hp Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
4
|
Lee Y, Ahn EJ, Chae SW, Hussain AA. Triterpenoid saponin-mediated recovery of visual deficits in age-related macular degeneration (AMD): Double-blind, placebo-controlled, randomised clinical trial. Asia Pac J Ophthalmol (Phila) 2025; 14:100143. [PMID: 39818249 DOI: 10.1016/j.apjo.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025] Open
Abstract
PURPOSE Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD. DESIGN Double-blind, placebo controlled randomised clinical trial. METHODS Altogether 11 AMD patients and seven age-matched control subjects were recruited to undertake a small proof-of-principle study. Dark adaptation curves were obtained and S2 gradients evaluated using a Humphrey Field Analyser. Following basal determination of S2 gradients, oral supplementation of saponins (200 mg/day) or placebo regime was instigated for a period of 4 months. S2 gradients were re-evaluated at two and four months. RESULTS Basal S2 gradients of the AMD cohort were determined as 0.41 ± 0.24 dB/min and those of the control subjects as 1.44 ± 0.1 dB/min. After two months of the saponin treatment, AMD subjects showed improved S2 gradients of 0.92 ± 0.23 dB/min (P < 0.005) with a further increase to 1.35 ± 0.19 dB/min at four months (P < 0.01), the latter not being significantly different from control subjects. S2 gradients in placebo subjects were unaltered. CONCLUSIONS Oral supplementation with saponins results in reversing the reduced S2 gradients in AMD. This improvement in the transport properties of Bruch's is expected to slow, halt or reverse the progression of AMD.
Collapse
Affiliation(s)
- Yunhee Lee
- AltRegen Co., Ltd., Seoul, Republic of Korea
| | - Eun-Jung Ahn
- Daehakro Seoul Eye Clinic, Seoul, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center Functional Foods, Jeonju, Republic of Korea
| | - Ali Aijaz Hussain
- Rescue, Repair and Regeneration Theme, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
5
|
Khodja I, Mezali K, Savarino P, Gerbaux P, Flammang P, Caulier G. Structural Characterization and Profiles of Saponins from Two Algerian Sea Cucumbers. Molecules 2024; 29:5346. [PMID: 39598737 PMCID: PMC11596277 DOI: 10.3390/molecules29225346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Sea cucumbers are benthic marine invertebrate members of the phylum Echinodermata. Due to the absence of a rigid skeleton, these species have developed chemical defenses based on the production of saponins (triterpene glycosides). These secondary metabolites are bioactive molecules with a broad biological, ecological, and pharmaceutical spectrum. However, the saponin profiles of several species of sea cucumbers are not known yet. The present study aims to highlight the mixture of saponins in two sea cucumber species from the Algerian coast, namely Holothuria (Holothuria) algeriensis, which has been recently described in central and western Algerian waters, and Holothuria (Roweothuria) arguinensis, originating from the Atlantic Ocean and reported in Algeria for the first time in 2014. Saponin extracts from three individuals of H. (H.) algeriensis and two individuals of H. (R.) arguinensis were analyzed using mass spectrometry, i.e., Matrix-assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS), MALDI-High Resolution MS (MALDI-HRMS), Liquid Chromatography MS (LC-MS) and tandem MS (LC-MS/MS). These analyses allow us to detect 11 and 18 elemental compositions for H. (H.) algeriensis and H. (R.) arguinensis, respectively, each presenting several isomers. In total, 13 new saponin structures are proposed, of which four are common between the two species, six are specific to H. (H.) algeriensis and three to H. (R.) arguinensis. The saponin profiles of the two species were compared to those of other species of the same genus existing on the Algerian coast and the results showed that they share non-sulfated saponins with Holothuria (Panningothuria) forskali and Holothuria (Platyperona) sanctori and sulfated saponins with Holothuria (Holothuria) tubulosa and Holothuria (Roweothuria) poli.
Collapse
Affiliation(s)
- Ihcene Khodja
- Protection, Valorization of Coastal Marine Resources and Molecular Systematics Laboratory, Department of Marine Science and Aquaculture, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University—Mostaganem, Route nationale N° 11, P.O. Box 227, Kharrouba, Mostaganem 27000, Algeria;
| | - Karim Mezali
- Protection, Valorization of Coastal Marine Resources and Molecular Systematics Laboratory, Department of Marine Science and Aquaculture, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University—Mostaganem, Route nationale N° 11, P.O. Box 227, Kharrouba, Mostaganem 27000, Algeria;
| | - Philippe Savarino
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons—UMONS, 23, Place du Parc, B-7000 Mons, Belgium;
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons—UMONS, 23, Place du Parc, B-7000 Mons, Belgium;
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons—UMONS, 23, Place du Parc, B-7000 Mons, Belgium; (P.F.); (G.C.)
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons—UMONS, 23, Place du Parc, B-7000 Mons, Belgium; (P.F.); (G.C.)
| |
Collapse
|
6
|
Alsulais FM, Alhaidhal BA, Mothana RA, Alanzi AR. Identification of echinoderm metabolites as potential inhibitors targeting wild-type and mutant forms of Escherichia coli RNA polymerase (RpoB) for tuberculosis treatment. PLoS One 2024; 19:e0304587. [PMID: 39213289 PMCID: PMC11364244 DOI: 10.1371/journal.pone.0304587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 09/04/2024] Open
Abstract
Tuberculosis (TB) remains a critical global health challenge, with the emergence of drug-resistant strains heightening concerns. The development of effective drugs targeting both wild-type (WT) and mutant Escherichia coli RNA polymerase β subunit (RpoB) is crucial for global TB control, aiming to alleviate TB incidence, mortality, and transmission. This study employs molecular docking and ADMET analyses to screen echinoderm metabolites for their potential inhibition of Escherichia coli RNA polymerase, focusing on wild-type and mutant RpoB variants associated with TB drug resistance. The evaluation of docking results using the glide gscore led to the selection of the top 10 compounds for each protein receptor. Notably, CMNPD2176 demonstrated the highest binding affinity against wild-type RpoB, CMNPD13873 against RpoB D516V mutant, CMNPD2177 against RpoB H526Y mutant, and CMNPD11620 against RpoB S531L mutant. ADMET screening confirmed the therapeutic potential of these selected compounds. Additionally, MM-GBSA binding free energy calculations and molecular dynamics simulations provided further support for the docking investigations. While the results suggest these compounds could be viable for tuberculosis treatment, it is crucial to note that further in-vitro research is essential for the transition from prospective inhibitors to clinical drugs.
Collapse
Affiliation(s)
- Fatimah M. Alsulais
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A. Alhaidhal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Harini R, Natarajan V, Sunil CK. Sea cucumber significance: Drying techniques and India's comprehensive status. J Food Sci 2024; 89:3995-4018. [PMID: 38847764 DOI: 10.1111/1750-3841.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.
Collapse
Affiliation(s)
- Ravi Harini
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
8
|
Ma Y, Zhao Y, Luo M, Jiang Q, Liu S, Jia Q, Bai Z, Wu F, Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol 2024; 15:1393409. [PMID: 38774213 PMCID: PMC11106373 DOI: 10.3389/fphar.2024.1393409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Recent research on traditional Chinese medicine (TCM) saponin pharmacokinetics has revealed transformative breakthroughs and challenges. The multicomponent nature of TCM makes it difficult to select representative indicators for pharmacokinetic studies. The clinical application of saponins is limited by their low bioavailability and short half-life, resulting in fluctuating plasma concentrations. Future directions should focus on novel saponin compounds utilizing colon-specific delivery and osmotic pump systems to enhance oral bioavailability. Optimizing drug combinations, such as ginsenosides with aspirin, shows therapeutic potential. Rigorous clinical validation is essential for practical applications. This review emphasizes a transformative era in saponin research, highlighting the need for clinical validation. TCM saponin pharmacokinetics, guided by traditional principles, are in development, utilizing multidisciplinary approaches for a comprehensive understanding. This research provides a theoretical basis for new clinical drugs and supports rational clinical medication.
Collapse
Affiliation(s)
- Yuhan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi Jia
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Organ Transplant Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Liu Y, Lu Z, Yan Z, Lin A, Han S, Li Y, Yang X, Li X, Yin X, Zhang R, Li K. Sea Cucumber Viscera Contains Novel Non-Holostane-Type Glycoside Toxins that Possess a Putative Chemical Defense Function. J Chem Ecol 2024; 50:185-196. [PMID: 38441803 DOI: 10.1007/s10886-024-01483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.
Collapse
Affiliation(s)
- Yanfang Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoshuai Han
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiuli Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Ranran Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
10
|
Atanassova MR, Kolden Midtbo L, Mildenberger J, Friðjónsson ÓH. Novel biomaterials and biotechnological applications derived from North Atlantic sea cucumbers: A systematic review. THE WORLD OF SEA CUCUMBERS 2024:585-609. [DOI: 10.1016/b978-0-323-95377-1.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
12
|
Malyarenko TV, Kicha AA, Kuzmich AS, Malyarenko OS, Kalinovsky AI, Popov RS, Dmitrenok PS, Ivanchina NV, Stonik VA. New Rare Triterpene Glycosides from Pacific Sun Star, Solaster pacificus, and Their Anticancer Activity. Mar Drugs 2023; 22:19. [PMID: 38248644 PMCID: PMC10820528 DOI: 10.3390/md22010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Six previously unknown triterpene glycosides, pacificusosides L-Q (1-6), and two previously known triterpene glycosides, cucumariosides B1 (7) and A5 (8), were isolated from an alcoholic extract of Pacific sun star, Solaster pacificus. The structures of 1-6 were determined using 1D and 2D NMR, ESIMS, and chemical modifications. Compound 1 is a rare type of triterpene glycoside with non-holostane aglycon, having a linear trisaccharide carbohydrate chain. Pacificusosides M-P (2-5) have new structures containing a Δ8(9)-3,16,18-trihydroxy tetracyclic triterpene moiety. This tetracyclic fragment in sea star or sea cucumber triterpene glycosides was described for the first time. All the compounds under study exhibit low or moderate cytotoxic activity against colorectal carcinoma HCT 116 cells, and breast cancer MDA-MB-231 cells were assessed by MTS assay. Compound 2 effectively suppresses the colony formation of cancer cells at a non-toxic concentration, using the soft-agar assay. A scratch assay has shown a significant anti-invasive potential of compound 2 against HCT 116 cells, but not against MDA-MB-231 cells.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Alexandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (A.S.K.); (O.S.M.); (A.I.K.); (R.S.P.); (P.S.D.); (N.V.I.)
| |
Collapse
|
13
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Dmitrenok PS, Chingizova EA, Menchinskaya ES, Panina EG, Stepanov VG, Kalinin VI, Stonik VA. Djakonoviosides A, A 1, A 2, B 1-B 4 - Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:11128. [PMID: 37446305 DOI: 10.3390/ijms241311128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1-B4 (4-7), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers' glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 1-7 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16β-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Elena G Panina
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vadim G Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
15
|
Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, Rahmanifar F, Mahdipour M, Bakhshalizadeh S, Shirazi R, Tanideh N, Tamadon A. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Mar Drugs 2023; 21:md21050283. [PMID: 37233477 DOI: 10.3390/md21050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Lung cancer is one of the most lethal malignancies in the world. However, current curative approaches for treating this type of cancer have some weaknesses. Therefore, scientists are attempting to discover new anti-lung cancer agents. Sea cucumber is a marine-derived source for discovering biologically active compounds with anti-lung cancer properties. To explore the anti-lung cancer properties of sea cucumber, we analyzed surveys using VOSviewer software and identified the most frequently used keywords. We then searched the Google Scholar database for compounds with anti-lung cancer properties within that keyword family. Finally, we used AutoDock 4 to identify the compounds with the highest affinity for apoptotic receptors in lung cancer cells. The results showed that triterpene glucosides were the most frequently identified compounds in studies examining the anti-cancer properties of sea cucumbers. Intercedenside C, Scabraside A, and Scabraside B were the three triterpene glycosides with the highest affinity for apoptotic receptors in lung cancer cells. To the best of our knowledge, this is the first time that anti-lung cancer properties of sea cucumber-derived compounds have been examined in in silico conditions. Ultimately, these three components displayed anti-lung cancer properties in in silico conditions and may be used for the manufacture of anti-lung cancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
| | - Safoura Izanloo
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- School of Nursing, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | - Sajed Khaledi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | | | - Nurgul Abdullayevna Abenova
- Department of Internal Diseases, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71348-14336, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Biomedical & Health, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Nader Tanideh
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amin Tamadon
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030010, Kazakhstan
| |
Collapse
|
16
|
Fagbohun OF, Joseph JS, Oriyomi OV, Rupasinghe HPV. Saponins of North Atlantic Sea Cucumber: Chemistry, Health Benefits, and Future Prospectives. Mar Drugs 2023; 21:md21050262. [PMID: 37233456 DOI: 10.3390/md21050262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Frondosides are the major saponins (triterpene glycosides) of the North Atlantic sea cucumber (Cucumaria frondosa). Frondosides possess amphiphilic characteristics due to the presence of various hydrophilic sugar moieties and hydrophobic genin (sapogenin). Saponins are abundant in holothurians, including in sea cucumbers that are widely distributed across the northern part of the Atlantic Ocean. Over 300 triterpene glycosides have been isolated, identified, and categorized from many species of sea cucumbers. Furthermore, specific saponins from sea cucumbers are broadly classified on the basis of the fron-dosides that have been widely studied. Recent studies have shown that frondoside-containing extracts from C. frondosa exhibit anticancer, anti-obesity, anti-hyperuricemic, anticoagulant, antioxidant, antimicrobial, antiangiogenic, antithrombotic, anti-inflammatory, antitumor, and immunomodulatory activities. However, the exact mechanism(s) of action of biological activities of frondosides is not clearly understood. The function of some frondosides as chemical defense molecules need to be understood. Therefore, this review discusses the different frondosides of C. frondosa and their potential therapeutic activities in relation to the postulated mechanism(s) of action. In addition, recent advances in emerging extraction techniques of frondosides and other saponins and future perspectives are discussed.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jitcy S Joseph
- Department of Toxicology and Biochemistry, The National Institute of Occupational Health, A Division of National Health Laboratory Service, Johannesburg 1709, South Africa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg 1709, South Africa
| | - Olumayowa V Oriyomi
- Department of Biological Sciences, First Technical University, Ibadan 200261, Nigeria
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
17
|
Ivanchina NV, Kalinin VI. Triterpene and Steroid Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities. Molecules 2023; 28:molecules28062503. [PMID: 36985476 PMCID: PMC10057720 DOI: 10.3390/molecules28062503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The article is a comprehensive review concerning tetracyclic triterpene and steroid glycosides from sponges (Porifera, Demospongiae). The extensive oxidative transformations of the aglycone and the use of various monosaccharide residues, with up to six possible, are responsible for the significant structural diversity observed in sponge saponins. The saponins are specific for different genera and species but their taxonomic distribution seems to be mosaic in different orders of Demospongiae. Many of the glycosides are membranolytics and possess cytotoxic activity that may be a cause of their anti-predatory activities. All these data reveal the independent origin and parallel evolution of the glycosides in different taxa of the sponges. The information concerning chemical structures, biological activities, biological role, and taxonomic distribution of the sponge glycosides is discussed.
Collapse
Affiliation(s)
- Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100 Letya Vladivostoka, 159, 690022 Vladivostok, Russia
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospect 100 Letya Vladivostoka, 159, 690022 Vladivostok, Russia
| |
Collapse
|
18
|
Piri-Gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-Shirin N, Mona Soosanirad, Khayati S, Farhadi-Biregani A, Mirzaei A. Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon 2023; 9:e14149. [PMID: 36938478 PMCID: PMC10018472 DOI: 10.1016/j.heliyon.2023.e14149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Pharmaceutical companies worldwide are scrambling to develop new ways to combat cancer and microbiological pathogens. The goal of this research was to investigate the antibacterial, anticancer, and apoptosis effects of novel niosomal formulated Persian Gulf Sea cucumber extracts (SCEs). Sea cucumber methanolic extracts were prepared and encapsulated in niosome nanoparticles using thin-film hydration. The compound was made up of Span 60 and Tween 60 blended with cholesterol in a 3:3:4 M ratios. Characterization of niosome-encapsulated SCE evaluated by scanning electron microscopy and transmission electron microscopy. The disk diffusion method and microtiter plates were used to investigate the antimicrobial activity. The effect of niosome-encapsulated SCE on cell proliferation and apoptosis induction was studied using MTT and Annexin V, respectively. The expression of apoptosis-related genes, including Bax, Fas, Bax, Bak, and Bcl2, was studied using quantitative real-time PCR. Niosome-encapsulated SCE with a size of 80.46 ± 1.31 and an encapsulation efficiency of 79.18 ± 0.23 was formulated. At a concentration of 100 μg/ml, the greatest antimicrobial effect of the niosome-encapsulated SCE was correlated to Staphylococcus aureus, with an inhibition zone of 13.16 mm. The findings of the study revealed that all strains were unable to produce biofilms at a concentration of 100 μg/ml niosome-encapsulated SCE (p < 0.001). The survival rate of cancer cells after 72 h of exposure to niosome-encapsulated SCE was 40 ± 3.0%. Encapsulated SCE in niosomes inhibited cell progression in MCF-7 cells by increasing G0/G1 and decreasing S phase relative to G2/M phase; as a result, it activated the apoptosis signaling pathway and led to the induction of apoptosis in 69.12 ± 1.2% of tumor cells by increasing the expression of proapoptotic genes (p < 0.001). The results indicate that sea cucumber species from the Persian Gulf are a promising source of natural chemicals with antibacterial and anticancer properties, paving the path for novel marine natural products to be discovered. This is the first demonstration that niosome-encapsulated SCE contains antibacterial and anticancer chemicals that, according to their specific characteristics, boost antitumor activity.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biotechnology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East-Tehran Branch, Islamic Azad University, Tehran, Iran
- Corresponding author. Biotechnology Research Center, East-Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Hassanpoor
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Neda Jegargoshe-Shirin
- Department of Biotechnology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mona Soosanirad
- Department of Cell and Molecular Biology, Factuly of Biological Sciences, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Shahr-e-Rey, Iran
| | - Shahoo Khayati
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi-Biregani
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mirzaei
- Department of Biology, Faculty of Basic Sciences, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
19
|
Silchenko AS, Avilov SA, Popov RS, Dmitrenok PS, Chingizova EA, Grebnev BB, Rasin AB, Kalinin VI. Chilensosides E, F, and G-New Tetrasulfated Triterpene Glycosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida): Structures, Activity, and Biogenesis. Mar Drugs 2023; 21:md21020114. [PMID: 36827155 PMCID: PMC9964569 DOI: 10.3390/md21020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3-a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2-excludes the possibility of this sugar chain's further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1-3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups.
Collapse
|
20
|
Silchenko AS, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Grebnev BB, Rasin AB, Kalinin VI. The Isolation, Structure Elucidation and Bioactivity Study of Chilensosides A, A1, B, C, and D, Holostane Triterpene Di-, Tri- and Tetrasulfated Pentaosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida). Molecules 2022; 27:molecules27217655. [PMID: 36364484 PMCID: PMC9658831 DOI: 10.3390/molecules27217655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Five new triterpene (4,4,14-trimethylsterol) di-, tri- and tetrasulfated pentaosides, chilensosides A (1), A1 (2), B (3), C (4), and D (5) were isolated from the Far-Eastern sea cucumber Paracaudina chilensis. The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The structural variability of the glycosides concerned the pentasaccharide chains. Their architecture was characterized by the upper semi-chain consisting of three sugar units and the bottom semi-chain of two sugars. Carbohydrate chains of compounds 2–5 differed in the quantity and positions of sulfate groups. The interesting structural features of the glycosides were: the presence of two sulfate groups at C-4 and C-6 of the same glucose residue in the upper semi-chain of 1, 2, 4, and 5 and the sulfation at C-3 of terminal glucose residue in the bottom semi-chain of 4 that makes its further elongation impossible. Chilensoside D (5) was the sixth tetrasulfated glycoside found in sea cucumbers. The architecture of the sugar chains of chilensosides A–D (1–5), the positions of sulfation, the quantity of sulfate groups, as well as the aglycone structures, demonstrate their similarity to the glycosides of the representatives of the order Dendrochirotida, confirming the phylogenetic closeness of the orders Molpadida and Dendrochirotida. The cytotoxic activities of the compounds 1–5 against human erythrocytes and some cancer cell lines are presented. Disulfated chilensosides A1 (2) and B (3) and trisulfated chilensoside C (4) showed significant cytotoxic activity against human cancer cells.
Collapse
|
21
|
Jiang P, Gao S, Chen Z, Sun H, Li P, Yue D, Pan Y, Wang X, Mi R, Dong Y, Jiang J, Zhou Z. Cloning and characterization of a phosphomevalonate kinase gene that is involved in saponin biosynthesis in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:67-73. [PMID: 35921931 DOI: 10.1016/j.fsi.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The sea cucumber Apostichopus japonicus is one of the most dominant and economically important aquaculture species in China. Saponin, which possesses notable biological and pharmacological properties, is a key determinant of the nutritional and health value of A. japonicus. In the present study, we amplified the full-length cDNA of a phosphomevalonate kinase (PMK) gene (named AjPMK) using rapid amplification of cDNA ends (RACE). Subsequently, we engineered a recombinant AjPMK (rAjPMK) protein and assessed its enzymatic activity by enzyme-linked immunosorbent assay (ELISA). Proteins that interact with rAjPMK were screened and identified via pull-down assay combined with liquid chromatography with tandem mass spectrometry (LC-MS/MS). We found that the full-length cDNA of AjPMK contained 1354 bp and an open reading frame (ORF) of 612 bp. The AjPMK protein was predicted not to contain a signal peptide but to contain a phosphonolate kinase domain seen in higher eukaryotes and a P-loop with a relatively conserved nucleoside triphosphate hydrolase domain. The molecular weight of the AjPMK protein was estimated to be 23.81 kDa, and its isoelectric point was predicted to be 8.72. Phylogenetic analysis showed that AjPMK had a closer evolutionary relationship with genes from starfish than with those of other selected species. Besides, we found that rAjPMK synthesized mevalonate-5-diphosphate, interacted either directly or indirectly with crucial pattern recognition receptors (PRRs) and was regulated by immune-related processes, including antioxidative reactions, stress resistance responses and enzyme hydrolysis. Moreover, AjPMK also interacted with farnesyl pyrophosphate synthase, an enzyme reported to be involved in saponin biosynthesis. Together, our findings implied that AjPMK may be directly involved in saponin biosynthesis and the regulation of various innate immune processes.
Collapse
Affiliation(s)
- Pingzhe Jiang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Shan Gao
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhong Chen
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Hongjuan Sun
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Yongjia Pan
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Xuda Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Ying Dong
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jingwei Jiang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Zunchun Zhou
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
22
|
Silchenko AS, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Dmitrenok PS, Kalinovsky AI, Rasin AB, Kalinin VI. Structures and Biologic Activity of Chitonoidosides I, J, K, K1 and L-Triterpene Di-, Tri- and Tetrasulfated Hexaosides from the Sea Cucumber Psolus chitonoides. Mar Drugs 2022; 20:md20060369. [PMID: 35736172 PMCID: PMC9228963 DOI: 10.3390/md20060369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Five new triterpene di-, tri- and tetrasulfated hexaosides (chitonoidosides I (1), J (2), K (3), K1 (4) and L (5)) were isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from a depth of 100–150 m. The structural variability of the glycosides concerned both the aglycones (with 7(8)- or 9(11)-double bonds) and carbohydrate chains differing from each other by the third sugar residue (Xyl or sulfated by C-6 Glc) and/or by the fourth—terminal in the bottom semi-chain—residue (Glc or sulfated by C-6 MeGlc) as well as by the positions of a sulfate group at C-4 or C-6 in the sixth—terminal in the upper semi-chain—residue (MeGlc). Hemolytic activities of these compounds 1–5 against human erythrocytes as well as cytotoxicity against human cancer cell lines, HeLa, DLD-1 and HL-60, were studied. The hexaosides, chitonoidosides K (3) and L (5) with four sulfate groups, were the most active against tumor cells in all the tests. Noticeably, the sulfate group at C-4 of MeGlc6 did not decrease the membranolytic effect of 5 as compared with 3, having the sulfate group at C-6 of MeGlc6. Erythrocytes were, as usual, more sensitive to the action of the studied glycosides than cancer cells, although the sensitivity of leukemia promyeloblast HL-60 cells was higher than that of other tumor cells. The glycosides 1 and 2 demonstrated some weaker action in relation to DLD-1 cells than against other tumor cell lines. Chitonoidoside K1 (4) with a hydroxyl at C 25 of the aglycone was not active in all the tests. The metabolic network formed by the carbohydrate chains of all the glycosides isolated from P. chitonoides as well as the aglycones biosynthetic transformations during their biosynthesis are discussed and illustrated with schemes.
Collapse
|
23
|
Yue H, Tian Y, Li Y, Bai X, Wang X, Wang Y, Li Z, Xue C, Wang J. Comparative study of holothurin A and echinoside A on inhibiting the high bone turnover via downregulating PI3K/AKT/β-catenin and OPG/RANKL/NF-κB signaling in ovariectomized mice. Food Funct 2022; 13:4748-4756. [PMID: 35389397 DOI: 10.1039/d1fo04357a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Holothurin A (HA) and Echinoside A (EA) are the most abundant monomers in sea cucumber saponins, exhibiting different structures only in the side chain at position 20. However, although sea cucumber saponins have been proved to have osteogenic activity, the effect and structure-activity relationship of sea cucumber saponins to improve osteoporosis remain unknown. In the current study, mice with ovariectomization-induced osteoporosis were orally administered with HA and EA for 90 days. The result showed that both HA and EA reduced the levels of serum osteogenesis markers ALP, collagen I, and OCN and bone resorption markers MMP-9, Cath-K and TRAP, and thus inhibited the high bone turnover induced by ovariectomy. Furthermore, we found that HA and EA increased the bone mineral density and apposition rate, reversed the loss of trabecular bone and bone marrow stroma, in which EA exhibited more effective effects. CB1 and MKP-1 are the targets of the glucocorticoid-like effect of saponins. PCR and western blot results indicated that HA and EA alleviated overactive osteogenesis via stimulating CB1 and MKP-1, downregulating the PI3K/AKT/β-catenin signal pathway. The OPG/RANKL/NF-κB pathway was identified as a critical regulator of bone resorption. Further investigation revealed that HA and EA significantly downregulate the expression of IKK, NF-κB and phosphorylated NF-κB p65, suppressing the expression of osteoclastogenesis transcription factors c-fos and NFATC1. To the best of our knowledge, this is the first report showing that both HA and EA improved osteoporosis, and these activities depend on the structure of saponins. These findings would provide guidance for the application of saponins in the management of osteoporosis.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, Shandong, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Xiaolin Bai
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Xiaohong Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P.R. China.
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shangdong, China.
| |
Collapse
|
24
|
Malyarenko TV, Malyarenko OS, Kicha AA, Kalinovsky AI, Dmitrenok PS, Ivanchina NV. In Vitro Anticancer and Cancer-Preventive Activity of New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus. Mar Drugs 2022; 20:216. [PMID: 35323516 PMCID: PMC8951750 DOI: 10.3390/md20030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sea stars or starfish (class Asteroidea) and holothurians or sea cucumbers (class Holothuroidea), belonging to the phylum Echinodermata (echinoderms), are characterized by different sets of glycosidic metabolites: the steroid type in starfish and the triterpene type in holothurians. However, herein we report the isolation of eight new triterpene glycosides, pacificusosides D−K (1−3, 5−9) along with the known cucumarioside D (4), from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The isolated new compounds are closely related to the metabolites of sea cucumbers, and their structures of 1−3 and 5−9 were determined by extensive NMR and ESIMS techniques. Compounds 2, 5, and 8 have a new type of tetrasaccharide chain with a terminal non-methylated monosaccharide unit. Compounds 3, 6, and 9 contain another new type of tetrasaccharide chain, having 6-O-SO3-Glc as one of the sugar units. The cytotoxic activity of 1−9 against non-cancerous mouse epidermal cells JB6 Cl41 and human melanoma cell lines SK-MEL-2, SK-MEL-28, and RPMI-7951 was determined by MTS assay. Compounds 1, 3, 4, 6, and 9 showed potent cytotoxicity against these cell lines, but the cancer selectivity (SI > 9) was observed only against the SK-MEL-2 cell line. Compounds 1, 3, 4, 6, and 9 at the non-toxic concentration of 0.1 μM significantly inhibited neoplastic cell transformation of JB6 Cl41 cells induced by chemical carcinogens (EGF, TPA) or ionizing radiation (X-rays and UVB). Moreover, compounds 1 and 4 at the non-toxic concentration of 0.1 µM possessed the highest inhibiting activity on colony formation among the investigated compounds and decreased the colonies number of SK-MEL-2 cells by 64% and 70%, respectively. Thus, triterpene glycosides 1 and 4 can be considered as prospective cancer-preventive and anticancer-compound leaders.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| |
Collapse
|
25
|
Progress in the Studies of Triterpene Glycosides From Sea Cucumbers (Holothuroidea, Echinodermata) Between 2017 and 2021. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211053934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Structural diversity of triterpene glycosides produced by sea cucumbers or holothurians (Holothuroidea, Echinodermata) is extremely high, although all of them are either lanostane derivatives or, rarely, products of their molecular rearrangements. The majority of them are holostane derivatives possessing an 18(20)-lanostane lactone as aglycone. They contain carbohydrate chains consisting of one to six monosaccharide units including sulfated ones. The glycosides demonstrate interesting biological activities, mainly caused by membranolytic action, namely cytotoxic, ichthyotoxic, antifungal, and hemolytic properties, as well as a series of additional effects at sub-toxic doses, including immunomodulatory, and cancer preventive. This review summarizes the literature data concerning structures and biological activities of all the new triterpene glycosides isolated from sea cucumbers during 2017 to 2021.
Collapse
|
26
|
Chen L, Wang XY, Liu RZ, Wang GY. Culturable Microorganisms Associated with Sea Cucumbers and Microbial Natural Products. Mar Drugs 2021; 19:md19080461. [PMID: 34436300 PMCID: PMC8400260 DOI: 10.3390/md19080461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers are a class of marine invertebrates and a source of food and drug. Numerous microorganisms are associated with sea cucumbers. Seventy-eight genera of bacteria belonging to 47 families in four phyla, and 29 genera of fungi belonging to 24 families in the phylum Ascomycota have been cultured from sea cucumbers. Sea-cucumber-associated microorganisms produce diverse secondary metabolites with various biological activities, including cytotoxic, antimicrobial, enzyme-inhibiting, and antiangiogenic activities. In this review, we present the current list of the 145 natural products from microorganisms associated with sea cucumbers, which include primarily polyketides, as well as alkaloids and terpenoids. These results indicate the potential of the microorganisms associated with sea cucumbers as sources of bioactive natural products.
Collapse
Affiliation(s)
- Lei Chen
- Correspondence: or (L.C.); or (G.-Y.W.); Tel.: +86-631-5687076 (L.C.); +86-631-5682925 (G.-Y.W.)
| | | | | | - Guang-Yu Wang
- Correspondence: or (L.C.); or (G.-Y.W.); Tel.: +86-631-5687076 (L.C.); +86-631-5682925 (G.-Y.W.)
| |
Collapse
|
27
|
Bogan JE, Garner MM, LaDouceur EE. Apparent holothurin toxicosis in a home aquarium. J Exot Pet Med 2021. [DOI: 10.1053/j.jepm.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Malyarenko TV, Kicha AA, Stonik VA, Ivanchina NV. Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities. Mar Drugs 2021; 19:330. [PMID: 34200995 PMCID: PMC8228791 DOI: 10.3390/md19060330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
| |
Collapse
|
29
|
A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities. Bioorg Med Chem 2021; 41:116188. [PMID: 34000508 DOI: 10.1016/j.bmc.2021.116188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Our continuing search for marine bioactive secondary metabolites led to the screening of crude extracts of sea cucumbers by the model of Pyricularia oryzae. A new sulfated triterpene glycoside, coloquadranoside A (1), together with four known triterpene glycosides, philinopside A, B, E and pentactaside B (2-5) were isolated from the sea cucumber Colochirus quadrangularis, and their structures were elucidated using extensive spectroscope analysis (ESI-MS, 1D and 2D NMR) and chemical methods. Coloquadranoside A possesses a 16-acetyloxy group in the holostane-type triterpene aglycone with a 7(8)-double bond, a double bond (25,26) at its side chain, and two β-d-xylose in the carbohydrate chain. Coloquadranoside A exhibits in vitro some antifungus, considerable cytotoxicity (IC50 of 0.46-2.03 μM) against eight human tumor cell lines, in vivo antitumor, and immunomodulatory activity.
Collapse
|
30
|
New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus and Their Biological Activity. Biomolecules 2021; 11:biom11030427. [PMID: 33799442 PMCID: PMC8001898 DOI: 10.3390/biom11030427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Three new triterpene glycosides, pacificusosides A–C (1–3), and three previously known triterpene glycosides, cucumariosides C1 (4), C2 (5), and A10 (6), were isolated from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The structures of 1–3 were elucidated by extensive NMR and ESIMS techniques and chemical transformations. Compound 1 has a novel, unique structure, containing an aldehyde group of side chains in its triterpene aglycon. This structural fragment has not previously been found in the sea cucumber triterpene glycosides or starfish steroidal glycosides. Probably, pacificusoside A (1) is a product of the metabolism of the glycoside obtained through dietary means from a sea cucumber in the starfish. Another two new triterpene glycosides (2, 3) have closely related characteristics to sea cucumber glycosides. The cytotoxicity of compounds 1–6 was tested against human embryonic kidney HEK 293 cells, colorectal carcinoma HT-29 cells, melanoma RPMI-7951 cells, and breast cancer MDA-MB-231 cells using MTS assay. Compounds 4–6 revealed the highest cytotoxic activity against the tested cell lines, while the other investigated compounds had moderate or slight cytotoxicity. The cytotoxic effects of 2–6 were reduced by cholesterol like the similar effects of the previously investigated individual triterpene glycosides. Compounds 3, 4, and 5 almost completely suppressed the colony formation of the HT-29, RPMI-7951, and MDA-MB-231 cells at a nontoxic concentration of 0.5 µM.
Collapse
|
31
|
Dufayet L, Caré W, de Haro L, Ameltchenko M, Knezynski M, Vodovar D, Langrand J. Acute occupational exposure to holothurians (Cucumaria frondosa) resulting in irritating symptoms: About three cases. Toxicon 2020; 189:45-47. [PMID: 33212098 DOI: 10.1016/j.toxicon.2020.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Holothurians are marine invertebrates also known as sea cucumbers. They are used in fresh or dried forms in various cuisines around the world and have alleged medicinal properties. Consequently, sea cucumbers, notably the orange-footed sea cucumber (Cucumaria frondosa)are increasingly harvested from the environment or farmed via aquaculture. We report three cases of unusual occupational exposure to C. frondosa resulting in cutaneous, respiratory and ocular irritating symptoms. These symptoms occurred as sea cucumbers were cut on half and eviscerated manually, following a machine breakdown in a sea cucumber processing factory. Given the composition of holothurians, these symptoms probably resulted from the aerosolization of various holothurins, saponins secreted by sea cucumbers as mean of defense. Treatment was solely symptomatic and included decontamination of the skin and the eyes, inhaled glucocorticoids, anticholinergic agents and oral glucocorticoids. As the exposure resulted from a machine breakdown, no specific protective equipment was put in place. Employees were advised not to handle manuallythe sea cucumbers in case such a breakdown was to happen again.
Collapse
Affiliation(s)
- Laurène Dufayet
- Centre antipoison de Paris - Fédération de toxicologie (FeTox), Hôpital Fernand-Widal, APHP, Paris, 75010, France; INSERM, UMRS-1144, Faculté de pharmacie, Paris, 75006, France; Unité médico-judiciaire, Hôtel-Dieu, APHP, 75004, Paris, France.
| | - Weniko Caré
- Centre antipoison de Paris - Fédération de toxicologie (FeTox), Hôpital Fernand-Widal, APHP, Paris, 75010, France; Département de médecine interne, hôpital d'instruction des armées Percy, Service de Santé des Armées, 92140, Clamart, France
| | - Luc de Haro
- Service de pharmacologie clinique, Centre antipoison, Hôpital Ste Marguerite, 13009, Marseille, France
| | - Macha Ameltchenko
- Centre antipoison de Paris - Fédération de toxicologie (FeTox), Hôpital Fernand-Widal, APHP, Paris, 75010, France
| | - Marlène Knezynski
- Service des urgences, Centre hospitalier François Dunan, 97500, Saint Pierre et Miquelon, France
| | - Dominique Vodovar
- Centre antipoison de Paris - Fédération de toxicologie (FeTox), Hôpital Fernand-Widal, APHP, Paris, 75010, France; INSERM, UMRS-1144, Faculté de pharmacie, Paris, 75006, France; UFR de médecine, Université de Paris, 75010, Paris, France
| | - Jérôme Langrand
- Centre antipoison de Paris - Fédération de toxicologie (FeTox), Hôpital Fernand-Widal, APHP, Paris, 75010, France
| |
Collapse
|
32
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Kalinin VI. Kurilosides A 1, A 2, C 1, D, E and F-Triterpene Glycosides from the Far Eastern Sea Cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin): Structures with Unusual Non-Holostane Aglycones and Cytotoxicities. Mar Drugs 2020; 18:md18110551. [PMID: 33172125 PMCID: PMC7694745 DOI: 10.3390/md18110551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Six new monosulfated triterpene tetra-, penta- and hexaosides, namely, the kurilosides A1 (1), A2 (2), C1 (3), D (4), E (5) and F (6), as well as the known earlier kuriloside A (7), having unusual non-holostane aglycones without lactone, have been isolated from the sea cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin) (Cucumariidae, Dendrochirotida), collected in the Sea of Okhotsk near Onekotan Island from a depth of 100 m. Structures of the glycosides were established by 2D NMR spectroscopy and HR-ESI mass spectrometry. Kurilosides of the groups A and E contain carbohydrate moieties with a rare architecture (a pentasaccharide branched by C(4) Xyl1), differing from each other in the second monosaccharide residue (quinovose or glucose, correspondingly); kurilosides of the group C are characterized by a unique tetrasaccharide branched by a C(4) Xyl1 sugar chain; and kurilosides of the groups D and F are hexaosides differing from each other in the presence of an O-methyl group in the fourth (terminal) sugar unit. All these glycosides contain a sulfate group at C-6 of the glucose residue attached to C-4 Xyl1 and the non-holostane aglycones have a 9(11) double bond and lack γ-lactone. The cytotoxic activities of compounds 1-7 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells and erythrocytes were studied. Kuriloside A1 (1) was the most active compound in the series, demonstrating strong cytotoxicity against the erythrocytes and JB-6 cells and a moderate effect against Neuro 2a cells.
Collapse
|
33
|
Kamyab E, Rohde S, Kellermann MY, Schupp PJ. Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians. Molecules 2020; 25:E4808. [PMID: 33086732 PMCID: PMC7587958 DOI: 10.3390/molecules25204808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin-sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future.
Collapse
Affiliation(s)
- Elham Kamyab
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
34
|
Shao X, Wang X, Zhu K, Dang Y, Yu B. Synthesis of Sea Cucumber Saponins with Antitumor Activities. J Org Chem 2020; 85:12080-12096. [PMID: 32924489 DOI: 10.1021/acs.joc.0c01191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holostane glycosides are characteristic metabolites of sea cucumbers, which possess various biological activities. Here, we report the synthesis of two representative congeners, namely, pervicoside B and C, starting from lanosterol with the longest linear sequence of both 34 steps and in 0.3% overall yields. The flexible synthetic approach has enabled us to expeditiously prepare 16 analogues for preliminary studies on the key structural features influencing their antiproliferative activities against tumor cells. A simplified disaccharide is found to be as potent as natural tetrasaccharides, which can be used as a lead for future studies.
Collapse
Affiliation(s)
- Xiaofei Shao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
35
|
Sangwan R, Nath Mishra V, Kumar Mandal P. Synthesis of a common pentasaccharide moiety of diplasteriosides A and B belong to starfish asterosaponins isolated from the Diplasterias brucei. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Ermakova SP, Malyarenko OS, Dautov SS, Kalinin VI. Structures and Bioactivities of Quadrangularisosides A, A 1, B, B 1, B 2, C, C 1, D, D 1-D 4, and E from the Sea Cucumber Colochirus quadrangularis: The First Discovery of the Glycosides, Sulfated by C-4 of the Terminal 3- O-Methylglucose Residue. Synergetic Effect on Colony Formation of Tumor HT-29 Cells of these Glycosides with Radioactive Irradiation. Mar Drugs 2020; 18:md18080394. [PMID: 32731458 PMCID: PMC7460491 DOI: 10.3390/md18080394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023] Open
Abstract
Thirteen new mono-, di-, and trisulfated triterpene glycosides, quadrangularisosides A-D4 (1-13) have been isolated from the sea cucumber Colochirus quadrangularis, which was collected in Vietnamese waters. The structures of these glycosides were established by 2D NMR spectroscopy and HR-ESI (High Resolution Electrospray Ionization) mass spectrometry. The novel carbohydrate moieties of quadrangularisosides D-D4 (8-12), belonging to the group D, and quadrangularisoside E (13) contain three sulfate groups, with one of them occupying an unusual position-at C(4) of terminal 3-O-methylglucose residue. Quadrangularisosides A (1) and D3 (11) as well as quadrangularisosides A1 (2) and D4 (12) are characterized by the new aglycones having 25-hydroperoxyl or 24-hydroperoxyl groups in their side chains, respectively. The cytotoxic activities of compounds 1-13 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, erythrocytes, and human colorectal adenocarcinoma HT-29 cells were studied. All the compounds were rather strong hemolytics. The structural features that most affect the bioactivity of the glycosides are the presence of hydroperoxy groups in the side chains and the quantity of sulfate groups. The membranolytic activity of monosulfated quadrangularisosides of group A (1, 2) against Neuro 2a, JB-6 cells, and erythrocytes was relatively weak due to the availability of the hydroperoxyl group, whereas trisulfated quadrangularisosides D3 (11) and D4 (12) with the same aglycones as 1, 2 were the least active compounds in the series due to the combination of these two structural peculiarities. The erythrocytes were more sensitive to the action of the glycosides than Neuro 2a or JB-6 cells, but the structure-activity relationships observed for glycosides 1-13 were similar in the three cell lines investigated. The compounds 3-5, 8, and 9 effectively suppressed the cell viability of HT-29 cells. Quadrangularisosides A1 (2), C (6), C1 (7), and E (13) possessed strong inhibitory activity on colony formation in HT-29 cells. Due to the synergic effects of these glycosides (0.02 μM) and radioactive irradiation (1 Gy), a decreasing of number of colonies was detected. Glycosides 1, 3, and 9 enhanced the effect of radiation by about 30%.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
- Correspondence: ; Tel.: +7(423)2-31-40-50
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pelageya V. Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Salim Sh. Dautov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Street, Vladivostok 690041, Russia;
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| |
Collapse
|
37
|
Hossain A, Dave D, Shahidi F. Northern Sea Cucumber ( Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar Drugs 2020; 18:md18050274. [PMID: 32455954 PMCID: PMC7281287 DOI: 10.3390/md18050274] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
- Correspondence: (D.D.); (F.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence: (D.D.); (F.S.)
| |
Collapse
|
38
|
Zhang M, Chen L, Liu Y, Chen M, Zhang S, Kong D. Sea cucumber Cucumaria frondosa fucoidan inhibits osteosarcoma adhesion and migration by regulating cytoskeleton remodeling. Oncol Rep 2020; 44:469-476. [PMID: 32467988 PMCID: PMC7336482 DOI: 10.3892/or.2020.7614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) has been demonstrated to be difficult to cure due to its potently malignant metastasis. Therefore, new therapeutic approaches blocking the metastatic potential of OS are urgently required to improve the outcomes for OS patients. In the present study, the anti-metastatic capacity of sea cucumber (Cucumaria frondosa) fucoidan (Cf-Fuc) was evaluated on osteosarcoma cells by cell adhesion assay, Transwell assay and U2OS cell migration assay. The underlying mechanism on the dynamic remodeling of the cytoskeleton was also explored. The present data indicated that Cf-Fuc could block the U2OS osteosarcoma cell adhesion to fibronectin and significantly inhibit U2OS cell migration. Cf-Fuc greatly impaired the migration capacity of U2OS cells, and the migrated distance and velocity of Cf-Fuc-treated cells were markedly reduced. Also, Cf-Fuc could impair the dynamic remodeling of the cytoskeleton possibly by suppressing the phosphorylation of focal adhesion kinase and paxillin, as well as the activation of the Rac1/PAK1/LIMK1/cofilin signaling axis. Collectively, the present findings provide a novel therapeutic potential of C. frondosa fucoidan for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li Chen
- Department of Oral Radiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Liu
- Department of Radiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Minghui Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuang Zhang
- Healthcare Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Daliang Kong
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
39
|
Choi H, Oh C, Hyun J, Yang J, Song MJ, Lee HS, Lee YJ. Triterpene Glycosides Isolated from the Edible Sea Cucumber Bohadschia vitiensis and Their Antagonistic Activity against Transient Receptor Potential Ankyrin 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5349-5355. [PMID: 32324385 DOI: 10.1021/acs.jafc.0c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a cation channel that plays a critical role in the occurrence and transmission of pain. By screening 393 marine invertebrate extracts for their antagonistic activity against TRPA1, it was found that the extract of the edible sea cucumber Bohadschia vitiensis had a remarkable potency. Bioassay-guided separation of the extract resulted in the isolation of six triterpene glycosides, including a novel analog. All six isolated compounds exhibited high inhibitory potency against TRPA1 (IC50 values ranging from 0.60 to 3.26 μM), which is comparable to that of a previously developed synthetic antagonist (A-967079). The discovery of TRPA1 antagonists, originated from this edible sea cucumber, opens the door for the elaboration of the valuable triterpene scaffold for the development of novel safe analgesics.
Collapse
Affiliation(s)
- Hansol Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, 2670 Iljudong-ro, Gujwa-eup, Jeju 63349, Republic of Korea
| | - JeongMi Hyun
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Jeungeun Yang
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Myung Jin Song
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| |
Collapse
|
40
|
Omran NE, Salem HK, Eissa SH, Kabbash AM, Kandeil MA, Salem MA. Chemotaxonomic study of the most abundant Egyptian sea-cucumbers using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00296-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Chen Y, Wang Y, Yang S, Yu M, Jiang T, Lv Z. Glycosaminoglycan from Apostichopus japonicus Improves Glucose Metabolism in the Liver of Insulin Resistant Mice. Mar Drugs 2019; 18:md18010001. [PMID: 31861309 PMCID: PMC7024160 DOI: 10.3390/md18010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Holothurian glycosaminoglycan isolated from Apostichopus japonicus (named AHG) can suppress hepatic glucose production in insulin resistant hepatocytes, but its effects on glucose metabolism in vivo are unknown. The present study was conducted to investigate the effects of AHG on hyperglycemia in the liver of insulin resistant mice induced by a high-fat diet (HFD) for 12 weeks. The results demonstrated that AHG supplementation apparently reduced body weight, blood glucose level, and serum insulin content in a dose-dependent manner in HFD-fed mice. The protein levels and gene expression of gluconeogenesis rate-limiting enzymes G6Pase and PEPCK were remarkedly suppressed in the insulin resistant liver. In addition, although the total expression of IRS1, Akt, and AMPK in the insulin resistant liver was not affected by AHG supplementation, the phosphorylation of IRS1, Akt, and AMPK were clearly elevated by AHG treatment. These results suggest that AHG could be a promising natural marine product for the development of an antihyperglycemic agent.
Collapse
Affiliation(s)
- Yunmei Chen
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
| | - Yuanhong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Shuang Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Mingming Yu
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tingfu Jiang
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhihua Lv
- Key Laboratory of Marine Drugs, Ministry of Education of China, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.C.); (Y.W.); (S.Y.); (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence: ; Tel./Fax: +86-532-8203-2064
| |
Collapse
|
42
|
Abstract
Covering: 1989-2017 Saponins are characteristic metabolites of starfish and sea cucumbers, and occasionally are also found in sponges, soft coral, and small fish. These steroid or triterpenoid glycosides often show remarkable biological and pharmacological activities, such as antifungal, antifouling, shark repellent, antitumor and anti-inflammatory activities. Over one thousand marine saponins have been characterized; the majority of them can be categorized into three major structural types, i.e., asterosaponins, polyhydroxysteroid glycosides, and holostane glycosides. Thus far, only 12 marine saponins have been synthesized; those representing the major types were successfully synthesized recently. The syntheses involve preparation of the aglycones from the terrestrial steroid or triterpene materials, installation of the carbohydrate units, and manipulation of the protecting groups. Herein, we provide a comprehensive review on these syntheses.
Collapse
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | | | | | | |
Collapse
|
43
|
An ethyl-acetate fraction of Holothuria scabra modulates inflammation in vitro through inhibiting the production of nitric oxide and pro-inflammatory cytokines via NF-κB and JNK pathways. Inflammopharmacology 2019; 28:1027-1037. [PMID: 31813081 DOI: 10.1007/s10787-019-00677-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Sea cucumber, Holothuria scabra, is an echinoderm marine animal that has long been used as a traditional therapeutic in various diseases due to its chemical composition and protein enrichment. Many researchers have extensively studied the efficacy of sea cucumber extracts for many health benefits in recent years. Inflammation is a complex process involved in pro-/anti-inflammatory cytokine products. However, the role of the H. scabra extracts in anti-inflammation and its molecular regulations has not been apparently elucidated yet. In this study, we investigated the anti-inflammatory effect of H. scabra extracts by using lipopolysaccharide (LPS) from E. coli to induce an inflammatory response in RAW264.7 macrophage. It was found that ethyl acetate fraction of H. scabra extracts (EAHS) inhibited pro-inflammatory cytokines synthesis at both the transcriptional and translational levels, notably nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2). In addition, EAHS was able to downregulate IκB/NF-κB, and JNK expressions. These effects may be influenced by high contents of phenolic compound and triterpene glycosides in EAHS. Therefore, EAHS might have the potential to be developed as a natural anti-inflammatory agent.
Collapse
|
44
|
Structures and Bioactivities of Psolusosides B 1, B 2, J, K, L, M, N, O, P, and Q from the Sea Cucumber Psolus fabricii. The First Finding of Tetrasulfated Marine Low Molecular Weight Metabolites. Mar Drugs 2019; 17:md17110631. [PMID: 31698820 PMCID: PMC6891663 DOI: 10.3390/md17110631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022] Open
Abstract
Ten new di-, tri- and tetrasulfated triterpene glycosides, psolusosides B1 (1), B2 (2), J (3), K (4), L (5), M (6), N (7), O (8), P (9), and Q (10), were isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk near the Kurile Islands. Structures of these glycosides were established by two-dimensional (2D) NMR spectroscopy and HR-ESI mass-spectrometry. It is particularly interesting that highly polar compounds 9 and 10 contain four sulfate groups in their carbohydrate moieties, including two sulfates in the same terminal glucose residue. Glycoside 2 has an unusual non-holostane aglycone with 18(16)-lactone and a unique 7,8-epoxy fragment. Cytotoxic activities of compounds 1-10 against several mouse cell lines such as Ehrlich ascites carcinoma cells, neuroblastoma Neuro 2A, normal epithelial JB-6 cells, and erythrocytes were quite different depending both on structural peculiarities of these glycosides and the type of cells subjected to their actions. Psolusoside L (5), pentaoside, with three sulfate groups at C-6 of two glucose and one 3-O-methylglucose residue and holostane aglycone, is the most active compound in the series. The presence of a sulfate group at C-2 of the terminal glucose residue attached to C-4 of the first (xylose) residue significantly decreases activities of the corresponding glycosides. Psolusosides of group B (1, 2, and known psolusoside B) are inactive in all tests due to the presence of non-holostane aglycones and tetrasaccharide-branched sugar chains sulfated by C-2 of Glc4.
Collapse
|
45
|
Silchenko AS, Avilov SA, Kalinovsky AI, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, Popov RS, Chingizova EA, Kasakin MF. Psolusosides C3 and D2-D5, Five Novel Triterpene Hexaosides From the Sea Cucumber Psolus fabricii (Psolidae, Dendrochirotida): Chemical Structures and Bioactivities. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19861253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five new triterpene glycosides, psolusosides C3 (1), D2 (2), D3 (3), D4 (4), and D5 (5), have been isolated from the sea cucumber Psolus fabricii. The structures of these glycosides were elucidated by 2-dimensional nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. All the compounds contain hexasaccharide carbohydrate chains, differing from each other in the third monosaccharide residue: xylose was found in psolusosides of group C and glucose in group D. Aglycones of the isolated compounds belong to the holostane type, contain 9(11)-double bond and 16-keto-group and have different side chains. The hemolytic activity against mouse erythrocytes and cytotoxic activity against mouse Ehrlich carcinoma cells (ascite form) and neuroblastoma Neuro 2A cells of 1 to 5 as well as the psolusosides isolated by us earlier, C1, C2, and D1, 26-nor-25-oxo-holotoxin A1, and holotoxin A1, have been studied. Psolusosides C2, D1, and D2 (2) having the aglycones without hydroxy group in the side chain showed the strongest hemolytic action in this series. Psolusoside D3 (3) containing a peroxide group in the side chain of its aglycone was surprisingly highly cytotoxic in all the tests.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Sergey A. Avilov
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Anatoly I. Kalinovsky
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Vladimir I. Kalinin
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Pelageya V. Andrijaschenko
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Pavel S. Dmitrenok
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Roman S. Popov
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Ekaterina A. Chingizova
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Marat F. Kasakin
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
46
|
Silchenko AS, Kalinovsky AI, Avilov SA, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, Popov RS, Chingizova EA, Ermakova SP, Malyarenko OS. Structures and Bioactivities of Six New Triterpene Glycosides, Psolusosides E, F, G, H, H 1, and I and the Corrected Structure of Psolusoside B from the Sea Cucumber Psolus fabricii. Mar Drugs 2019; 17:md17060358. [PMID: 31207953 PMCID: PMC6627558 DOI: 10.3390/md17060358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/30/2023] Open
Abstract
Seven sulfated triterpene glycosides, psolusosides B (1), E (2), F (3), G (4), H (5), H1 (6), and I (7), along with earlier known psolusoside A and colochiroside D have been isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk. Herein, the structure of psolusoside B (1), elucidated by us in 1989 as a monosulfated tetraoside, has been revised with application of modern NMR and particularly MS data and proved to be a disulfated tetraoside. The structures of other glycosides were elucidated by 2D NMR spectroscopy and HR-ESI mass-spectrometry. Psolusosides E (2), F (3), and G (4) contain holostane aglycones identical to each other and differ in their sugar compositions and the quantity and position of sulfate groups in linear tetrasaccharide carbohydrate moieties. Psolusosides H (5) and H1 (6) are characterized by an unusual sulfated trisaccharide carbohydrate moiety with the glucose as the second sugar unit. Psolusoside I (7) has an unprecedented branched tetrasaccharide disulfated carbohydrate moiety with the xylose unit in the second position of the chain. The cytotoxic activities of the compounds 2-7 against several mouse cell lines-ascite form of Ehrlich carcinoma, neuroblastoma Neuro 2A, normal epithelial JB-6 cells, and erythrocytes-were quite different, at that hemolytic effects of the tested compounds were higher than their cytotoxicity against other cells, especially against the ascites of Ehrlich carcinoma. Interestingly, psolusoside G (4) was not cytotoxic against normal JB-6 cells but demonstrated high activity against Neuro 2A cells. The cytotoxic activity against human colorectal adenocarcinoma HT-29 cells and the influence on the colony formation and growth of HT-29 cells of compounds 1-3, 5-7 and psolusoside A was checked. The highest inhibitory activities were demonstrated by psolusosides E (2) and F (3).
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pelageya V Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| |
Collapse
|
47
|
Shi Y, Zhang S, Peng D, Wang C, Zhao D, Ma K, Wu J, Huang L. Transcriptome Analysis of Clinopodium chinense (Benth.) O. Kuntze and Identification of Genes Involved in Triterpenoid Saponin Biosynthesis. Int J Mol Sci 2019; 20:E2643. [PMID: 31146369 PMCID: PMC6600151 DOI: 10.3390/ijms20112643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/28/2022] Open
Abstract
Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is an important herb in traditional Chinese medicine. Triterpenoid saponins are a major class of active compounds in C. chinense with broad pharmacological activities and hemostatic, antitumor, and anti-hyperglycemic effects. To identify genes involved in triterpenoid saponin biosynthesis, transcriptomic analyses of leaves, stems, and roots from C. chinense were performed. A total of 135,968 unigenes were obtained by assembling the leaf, stem, and root transcripts, of which 102,154 were annotated in public databases. Differentially expressed genes were determined based on expression profile analysis and analyzed for differential expression of unique genes related to triterpenoid saponin biosynthesis. Multiple unigenes encoding crucial enzymes or transcription factors involved in triterpenoid saponin synthesis were identified and analyzed. The expression levels of unigenes encoding enzymes were experimentally validated using quantitative real-time PCR. This study greatly broadens the public transcriptome database for this species and provides a valuable resource for identifying candidate genes involved in the biosynthesis of triterpenoid saponins and other secondary metabolites.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Chenkai Wang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Derui Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Kelong Ma
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Luqi Huang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
48
|
Silchenko AS, Avilov SA, Kalinovsky AI, Kalinin VI, Andrijaschenko PV, Dmitrenok PS. Psolusosides C1, C2, and D1, Novel Triterpene Hexaosides from the Sea CucumberPsolus fabricii (Psolidae, Dendrochirotida). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three new triterpene glycosides, psolusosides C1 (1), C2 (2) and D1 (3) have been isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk in the shallow waters of Onekotan Island (Kurile Islands). Five known glycosides: cladolosides B, M1, P2, isolated earlier from the sea cucumbers of genus Cladolabes and holotoxin A1 with 27- nor-25-oxo-holotoxin A1, isolated earlier from Apostichopus japonicus have also been found. The glycoside structures were elucidated by 2D NMR spectroscopy and HR mass-spectrometry. Compounds 1–3 possess hexasaccharide carbohydrate chains, identical for 1 and 2 and different in the third monosaccharide residue for 3. All the glycosides comprise holostane type aglycones with a 9(11)-double bond and a 16-keto-group and differ from each other in the side chains structures.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| | - Sergey A. Avilov
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| | - Anatoly I. Kalinovsky
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| | - Vladimir I. Kalinin
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| | - Pelageya V. Andrijaschenko
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| | - Pavel S. Dmitrenok
- Far East Branch of the Russian Academy of Sciences, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia
| |
Collapse
|
49
|
Zhao YC, Xue CH, Zhang TT, Wang YM. Saponins from Sea Cucumber and Their Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7222-7237. [PMID: 29932674 DOI: 10.1021/acs.jafc.8b01770] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, have been valued for centuries as a nutritious and functional food with various bioactivities. Sea cucumbers can produce highly active substances, notably saponins, the main secondary metabolites, which are the basis of their chemical defense. The saponins are mostly triterpene glycosides with triterpenes or steroid in aglycone, which possess multiple biological properties including antitumor, hypolipidemic activity, improvement of nonalcoholic fatty liver, inhibition of fat accumulation, antihyperuricemia, promotion of bone marrow hematopoiesis, antihypertension, etc. Sea cucumber saponins have received attention due to their rich sources, low toxicity, high efficiency, and few side effects. This review summarizes current research on the structure and activities of sea cucumber saponins based on the physiological and pharmacological activities from source, experimental models, efficacy, and mechanisms, which may provide a valuable reference for the development of sea cucumber saponins.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Chang-Hu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| | - Tian-Tian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Yu-Ming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| |
Collapse
|
50
|
Vasconcelos AA, Pomin VH. Marine Carbohydrate-Based Compounds with Medicinal Properties. Mar Drugs 2018; 16:E233. [PMID: 29987239 PMCID: PMC6070937 DOI: 10.3390/md16070233] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
The oceans harbor a great diversity of organisms, and have been recognized as an important source of new compounds with nutritional and therapeutic potential. Among these compounds, carbohydrate-based compounds are of particular interest because they exhibit numerous biological functions associated with their chemical diversity. This gives rise to new substances for the development of bioactive products. Many are the known applications of substances with glycosidic domains obtained from marine species. This review covers the structural properties and the current findings on the antioxidant, anti-inflammatory, anticoagulant, antitumor and antimicrobial activities of medium and high molecular-weight carbohydrates or glycosylated compounds extracted from various marine organisms.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|