1
|
Valado A, Cunha M, Pereira L. Biomarkers and Seaweed-Based Nutritional Interventions in Metabolic Syndrome: A Comprehensive Review. Mar Drugs 2024; 22:550. [PMID: 39728125 DOI: 10.3390/md22120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p. Additionally, this review highlights the importance of biomarkers in MetS and the need for advancements in their identification and use for improving prevention and treatment. Seaweed therapy is also discussed as a significant intervention for MetS due to its rich content of fiber, antioxidants, minerals and bioactive compounds, which help improve cardiovascular health, reduce inflammation, increase insulin sensitivity and promote weight loss, making it a promising nutritional strategy for managing metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Ana Valado
- Polytechnic University of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro-S. Martinho do Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- H&TRC-Health & Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Rua 5 de Outubro, 3045-043 Coimbra, Portugal
| | - Margarida Cunha
- Polytechnic University of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro-S. Martinho do Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| | - Leonel Pereira
- Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Huang Z, Ding M, Xie Y, Chen B, Zhao D, Li C. Kappa-carrageenan in a pork-based high-fat diet inhibited lipid bioavailability through interactions with pork protein. Int J Biol Macromol 2024; 276:133922. [PMID: 39029841 DOI: 10.1016/j.ijbiomac.2024.133922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
κ-Carrageenan is a soluble dietary fiber widely used in meat products. Although its regulatory effect on glycolipid metabolism has been reported, the underlying mechanism remains unclear. The present study established a pork diet model for in vitro digestion to study how κ-carrageenan affected its digestive behavior and lipid bioavailability. The results revealed that κ-carrageenan addition to a pork-based high-fat diet reduced the rate of lipolysis and increased the number and size of lipid droplets in an in vitro digestion condition. However, κ-carrageenan did not inhibit lipolysis when lipids and κ-carrageenan were mixed directly or with the addition of pork protein. Furthermore, the pork protein in the diet significantly enhanced the inhibitory effect of κ-carrageenan on lipolysis with decreased proteolysis and raised hydrophobicity of protein hydrolysate. Our findings suggest that κ-carrageenan can inhibit dietary lipid bioavailability by interacting with pork protein in meat products or meat-based diets during digestion and indicate the positive role of carrageenan in the food industry to alleviate the excessive accumulation of lipids in the body.
Collapse
Affiliation(s)
- Zhiji Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China; Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, PR China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Bingyan Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, PR China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China.
| |
Collapse
|
3
|
Song J, Li J, Zhong J, Guo Z, Xu J, Chen X, Qiu M, Lin J, Han L, Zhang D. An oral gel suitable for swallowing: The effect of micronization on the gel properties and microstructure of κ-carrageenan. Int J Biol Macromol 2024; 271:132708. [PMID: 38815948 DOI: 10.1016/j.ijbiomac.2024.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
κ-Carrageenan (κ-Car) is an important material for preparing food gels and hydrogels. However, κ-Car gel has issues with high hardness and low water-holding capacity. Modification strategy of micronization is proposed for the first time to explore its influence on texture properties and gelling process of κ-Car gel, and to investigate the feasibility of κ-Car as a food matrix with low strength. κ-Car undergoing 60 min of micronization, the d(0.9) decreased by 79.33 %, SBET and Vtotal increased by 89.23 % and 95.27 %. The swelling rate and degree of gelling process increased significantly, and the microstructure changed from loose large pores to dense small pores resembling a "honeycomb". Importantly, the hardness of gel-60, Milk-60 and PNS-60 decreased by 72.52 %, 49.25 % and 81.37 %. In addition, WHC of gel-60, Milk-60 and PNS-60 was improved. IDDSI tests showed that κ-Car gels, milk gels and PNS gels can be categorized as level 6 (soft and bite-sized), except for PNS-60, which belongs to level 5 (crumbly and moist). Furthermore, the texture and bitter masking effect of milk gels and PNS gels were improved. In conclusion, this study demonstrated that micronization can be a novel approach to improve the gel properties of κ-Car, laying the groundwork for developing dysphagia foods.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingping Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhiping Guo
- Sichuan HouDe Pharmaceutical Technology Co., Ltd., Chengdu 611730, PR China
| | - Jia Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xinglv Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China.
| |
Collapse
|
4
|
Kalaycı FM, Doruk ÖG, Erbaş İM, İnce OT, Tan MN, Aydın A, Abacı A, Böber E, Demir K. Salivary Sex Steroid Levels in Infants and the Relation with Infantile Colic. J Clin Res Pediatr Endocrinol 2024; 16:185-191. [PMID: 38347685 PMCID: PMC11590717 DOI: 10.4274/jcrpe.galenos.2024.2023-11-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/30/2024] [Indexed: 06/04/2024] Open
Abstract
Objective The hypothalamic-pituitary-gonadal axis is active during minipuberty, the timing of which coincides with infantile colic. To the best of our knowledge, the relationship between these entities has not been previously investigated. Methods Saliva samples were collected from 15- to 60-day-old term infants (n=139) between 9 am and 5 pm. Group 1 included infants with infantile colic (n=68, 54.4% female) while the remaining healthy infants constituted Group 2 (n=71, 47.9% female). Salivary levels of estradiol (Esal) in females and testosterone (Tsal) in males were measured by ELISA in duplicate. Results The median (25th-75th centile) age and birth week for all infants were 33 (29-43) days and 39 (38.1-40) weeks, respectively. Levels of Tsal in males [Group 1, 73.35 (59.94-117.82) pg/mL vs Group 2, 77.66 (56.49-110.08) pg/mL, p=0.956] and Esal in females [Group 1, 3.91 (2.76-5.31) pg/mL vs Group 2, 4.03 (1.63-12.1) pg/mL, p=0.683] were similar. However, in subjects with infantile colic (Group 1), Esal and body mass index (BMI) standard deviation scores of females were slightly correlated (Group 1, rs= 0.393, p=0.016 vs. Group 2, rs= 0.308, p=0.076) and there was a significant correlation between the sampling time and Tsal in males (Group 1, rs= 0.469, p=0.009 vs. Group 2, rs= -0.005, p=0.976). Conclusion Random salivary sex steroid levels were similar in infants with and without infantile colic. However, in subjects with infantile colic, Esal levels in females were positively correlated with BMI and Tsal levels were higher later in the day among males. Thus, sex steroid production may be altered during minipuberty in subjects with infantile colic.
Collapse
Affiliation(s)
- Fulya Mete Kalaycı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, İzmir, Turkey
| | - Özlem Gürsoy Doruk
- Dokuz Eylül University Faculty of Medicine, Department of Biochemistry, İzmir, Turkey
| | - İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Osman Tolga İnce
- Dokuz Eylül University Faculty of Medicine, Department of Social Pediatrics, İzmir, Turkey
| | - Makbule Neslişah Tan
- Dokuz Eylül University Faculty of Medicine, Department of Family Medicine, İzmir, Turkey
| | - Adem Aydın
- Dokuz Eylül University Faculty of Medicine, Department of Social Pediatrics, İzmir, Turkey
| | - Ayhan Abacı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ece Böber
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| |
Collapse
|
5
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
6
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, Gil-Agudo F, De la Fuente M. The immunity and redox clocks in mice, markers of lifespan. Sci Rep 2024; 14:1703. [PMID: 38242936 PMCID: PMC10799057 DOI: 10.1038/s41598-024-51978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Immune function and redox markers are used for estimating the aging rate, namely biological age (BA). However, it is unknown if this BA and its changes can be reflected in longevity. Thus, we must quantify BA in experimental animals. In peritoneal immune cells of 202 female mice (ICR/CD1) in different ages, 10 immune and 6 redox parameters were evaluated to construct two mathematical models for BA quantification in mice by multiple linear regression. Immune and redox parameters were selected as independent variables and chronological age as dependent, developing two models: the Immunity and the Redox Clocks, reaching both an adjusted R2 of 80.9% and a standard error of 6.38 and 8.57 weeks, respectively. Both models were validated in a different group of healthy mice obtaining a Pearson's correlation coefficient of 0.844 and 0.800 (p < 0.001) between chronological and BA. Furthermore, they were applied to adult prematurely aging mice, which showed a higher BA than non-prematurely aging mice. Moreover, after positive and negative lifestyle interventions, mice showed a lower and higher BA, respectively, than their age-matched controls. In conclusion, the Immunity and Redox Clocks allow BA quantification in mice and both the ImmunolAge and RedoxAge in mice relate to lifespan.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Fernando Gil-Agudo
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041, Madrid, Spain
| |
Collapse
|
7
|
Zhu C, Mou M, Yang L, Jiang Z, Zheng M, Li Z, Hong T, Ni H, Li Q, Yang Y, Zhu Y. Enzymatic hydrolysates of κ-carrageenan by κ-carrageenase-CLEA immobilized on amine-modified ZIF-8 confer hypolipidemic activity in HepG2 cells. Int J Biol Macromol 2023; 252:126401. [PMID: 37597638 DOI: 10.1016/j.ijbiomac.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leilei Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
8
|
Pradhan B, Ki JS. Biological activity of algal derived carrageenan: A comprehensive review in light of human health and disease. Int J Biol Macromol 2023; 238:124085. [PMID: 36948331 DOI: 10.1016/j.ijbiomac.2023.124085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Carrageenans are a family of natural linear sulfated polysaccharides derived from red seaweeds and used as a common food additive. Carrageenan's properties, impact on health, and aesthetic benefits have all been studied for a long time; however, the mechanisms are still unclear. In pharmaceutical aspects, carrageenan displayed potential antioxidant and immunomodulatory properties in both in vivo and in vitro action. It also contributes to potential disease-preventive activities through dynamic modulation of important intracellular signaling pathways, regulation of ROS buildup, and preservation of major cell survival and death processes which leads to potential drug development. Furthermore, the chemical synthesis of the current bioactive medicine with confirmational rearrangement may increase availability and bioactivity needs diligent examination. In this review, we give an up-to-date overview of recent research on Carrageenan with reference to health and therapeutic advantages. In addition, we have focused on structural conformation and its primary strategic deployment in disease prevention, as well as the mechanistic investigation of how it functions to combat various disease-preventive employed for future therapeutic interventions. This review may get new insights into the possible novel role of carrageenan and open up a novel disease-preventive mechanism and enhance human health.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea; School of Biological Sciences, AIPH University, Bhubaneswar 752101, Odisha, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
9
|
Valado A, Pereira L. Algae and cardiovascular-health. FUNCTIONAL INGREDIENTS FROM ALGAE FOR FOODS AND NUTRACEUTICALS 2023:493-517. [DOI: 10.1016/b978-0-323-98819-3.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods 2022; 11:foods11223550. [PMID: 36429141 PMCID: PMC9689188 DOI: 10.3390/foods11223550] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death worldwide. Recent evidence has demonstrated an association between the gut microbiota and CVD, including heart failure, cerebrovascular illness, hypertension, and stroke. Marine algal polysaccharides (MAPs) are valuable natural sources of diverse bioactive compounds. MAPs have many pharmaceutical activities, including antioxidant, anti-inflammatory, immunomodulatory, and antidiabetic effects. Most MAPs are not utilized in the upper gastrointestinal tract; however, they are fermented by intestinal flora. The relationship between MAPs and the intestinal microbiota has drawn attention in CVD research. Hence, this review highlights the main action by which MAPs are known to affect CVD by maintaining homeostasis in the gut microbiome and producing gut microbiota-generated functional metabolites and short chain fatty acids. In addition, the effects of trimethylamine N-oxide on the gut microbiota composition, bile acid signaling properties, and CVD prevention are also discussed. This review supports the idea that focusing on the interactions between the host and gut microbiota may be promising for the prevention or treatment of CVD. MAPs are a potential sustainable source for the production of functional foods or nutraceutical products for preventing or treating CVD.
Collapse
|
11
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
13
|
Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydr Polym 2022; 281:119045. [DOI: 10.1016/j.carbpol.2021.119045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
14
|
Wang Q, Zhang L, He Y, Zeng L, He J, Yang Y, Zhang T. Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
|
16
|
Cotas J, Pacheco D, Araujo GS, Valado A, Critchley AT, Pereira L. On the Health Benefits vs. Risks of Seaweeds and Their Constituents: The Curious Case of the Polymer Paradigm. Mar Drugs 2021; 19:164. [PMID: 33808736 PMCID: PMC8003528 DOI: 10.3390/md19030164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.
Collapse
Affiliation(s)
- João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Diana Pacheco
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Glacio Souza Araujo
- Federal Institute of Education, Science and Technology of Ceará—IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceara, Brazil;
| | - Ana Valado
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
- Department of Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, Apartamento 7006, 3046-854 Coimbra, Portugal
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, NS B1P 6L2, Canada
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| |
Collapse
|
17
|
The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar Drugs 2021; 19:md19030128. [PMID: 33652930 PMCID: PMC7996752 DOI: 10.3390/md19030128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.
Collapse
|
18
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
19
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Pereira L. Characterization of Bioactive Components in Edible Algae. Mar Drugs 2020; 18:E65. [PMID: 31963775 PMCID: PMC7024186 DOI: 10.3390/md18010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
From the origin of our planet, about 4 [...].
Collapse
Affiliation(s)
- Leonel Pereira
- Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|